Способ получения магнитной жидкости

Реферат

 

Изобретение относится к области получения магнитных жидкостей, а также к области синтеза основного компонента магнитной жидкости феррофазы (высокодисперсного магнетита) из отходов травильного и гальванического производства. Предложен способ получения магнитной жидкости, включающий образование суспензии магнетита путем соосаждения из растворов ионов двух- и трехвалентного железа, покрытие поверхности частиц магнетита адсорбированным слоем стабилизирующего вещества, подогрев суспензии магнитных частиц с адсорбированным на них слоем стабилизирующего вещества, отделение от суспензии фракции, содержащей стабилизированные магнитные частицы в жидкости-носителе, а в качестве источника трехвалентного железа для получения магнитной феррофазы используется солянокислый раствор осадка-отхода очистки сточных вод гальванических цехов. Техническим результатом изобретения является усовершенствование способа получения магнитных жидкостей с высокими магнитными характеристиками. 1 табл.

Изобретение относится к области получения магнитных жидкостей, а также к области синтеза основного компонента магнитной жидкости феррофазы (высокодисперсного магнетита) из отходов травильного и гальванического производства.

Магнитная жидкость - устойчивая коллоидная система высокодисперсных частиц магнитного материала (ферро- или ферримагнитных веществ), стабилизированного поверхностно-активными веществами в жидкости-носителе, которая способна взаимодействовать с магнитным полем и во многих отношениях ведет себя как однородная жидкость.

Магнитные жидкости, благодаря необычному сочетанию свойств магнетиков, жидкостей и коллоидных растворов, являются перспективным материалом и находят применение в различных областях техники: при создании магнитно-жидкостных уплотнений в химической промышленности, в качестве магнитных смазок, в процессах магнитного обогащения немагнитных материалов, в биологии и медицине.

Получение магнитных жидкостей состоит из двух основных операций.

1. Получение высокодисперсных частиц магнетика.

2. Стабилизация частиц магнетика в жидкости-носителе с использованием диспергирующего вещества, предотвращающего агрегирование частиц магнетика в жидкости-носителе и обеспечивающего устойчивость магнитной жидкости.

Первоначально в качестве феррофазы при получении магнитной жидкости использовали материалы, обладающие более высокими магнитными свойствами - высокодисперсное металлическое железо, кобальт, мягкие магнитные сплавы типа пермендюр [Матусевич Н.П., Рахуба В.К. Получение магнитных жидкостей методом пептизации, - В кн.: Гидродинамика и теплофизика магнитных жидкостей. - тезисы докладов Всесоюзного симпозиума. Саласпилс, ин-т АН Латвийской ССР, 1980, - С.21-28; Рентгеноконтрастная ферромагнитная жидкость / Черкасова О. Г. , Петров В.И., Руденко Б.А. - Формация. - 1986. - т.35, 3, - С.31-34; Физические свойства магнитных жидкостей: Сб. статей. - Свердловск, УНУ АН ССР, 1983. - 128 с.]. Однако при использовании чистых металлов возникает ряд технологических трудностей, связанных как с получением высокодисперсных частиц и их защитой от окисления, так и с их стабилизацией с последующим диспергированием в жидкости-носителе. Поэтому наряду с металлами в качестве феррофазы все чаще используется магнетит (окись-закись железа), который хотя и уступает металлам по магнитным характеристикам, но благодаря простоте получения высокодисперсных частиц, хорошей адсорбционной способности и химической устойчивости позволяет получать магнитные жидкости, которые превосходят по магнитным параметрам магнитные жидкости на металлах.

Известен способ получения магнитной жидкости, заключающийся в осаждении частиц магнетита из водных растворов солей Fe2+ и Fe3+ - избытком щелочи (NaOH и NH4OH). Предпочтительными солями являются хлориды и сульфаты из-за их доступности и экономичности. Присутствие ионов других металлов - Mg2+, Cr3+, Ni2+, Cu2+ - не являются вредными, если их содержание невелико.

Осадок магнетита промывают деконтацией от избытка щелочи и удаления солей до достижения рН=7. Полученный магнетит обладает дисперсностью, легко стабилизируется и диспергируется. Магнитная жидкость получается добавлением к водной суспензии магнетита жидкости-носителя, в которой растворен стабилизатор - ПАВ. В качестве жидкости-носителя используется керосин, в качестве стабилизатора - олеиновая кислота. При хемосорбции олеиновой кислоты на поверхности частиц магнетита образуется адсорбционный слой. При этом происходит обезвоживание частиц магнетита и разделение фаз, то есть выделение магнетита из водной среды и его переход в среду жидкости-носителя [Матусевич Н.П., Рахуба В.К. Получение магнитных жидкостей методом пептизации, - В кн.: Гидродинамика и теплофизика магнитных жидкостей. - Тезисы докладов Всесоюзного симпозиума. Саласпилс, ин-т АН Латвийской ССР, 1980. - С.21-28].

Известен также [Ахалая М.Г., Кокиашвилли М.С., Берия В.П. Перспективы применения магнитных жидкостей в биологии и медицине. - В кн.: Физические свойства магнитных жидкостей: - Сб. статей. - Свердловск, УНУ АН СССР, 1983. - С.115-120] способ получения магнитной жидкости, в котором синтез феррофазы осуществляется как в [Матусевич Н.П., Рахуба В.К. Получение магнитных жидкостей методом пептизации, - В кн.: Гидродинамика и теплофизика магнитных жидкостей. - Тезисы докладов Всесоюзного симпозиума. Саласпилс, ин-т АН Латвийской ССР, 1980. - С.21-28], затем производится удаление воды из осадка последовательной промывкой его ацетоном, толуолом. Для получения магнитной жидкости в требуемой жидкости-носителе толуол сливают с осадка магнетита, влажный осадок переносят в фарфоровую ступню, добавляют к нему стабилизатор - олеиновую кислоту. Из полученной смеси толуол выпаривают нагреванием в ступне до 90-110oС при непрерывном растирании осадка. После испарения толуола смесь продолжают тщательно растирать при той же температуре. Полученную массу переносят с помощью требуемого количества дисперсионной среды в мельницу и гомогенизируют в стальной мельнице на 1/2 заполненной стальными шарами. Нужная степень пептизации достигается за 6-12 ч.

Описанные способы получения магнитной жидкости отличаются трудоемкостью и длительностью процессов.

Наиболее близким к заявленному способ, описанный в патенте 1439031 - Великобритания, выбранный нами за прототип [патент 1439031, Великобритания, МПК: H 01 F 1/36, В 05 D 7/00, С 02 В 9/09].

Он состоит из следующих стадий.

1. Образование суспензий магнитных частиц коллоидного размера в воде.

2. Покрытие поверхности частиц адсорбированным слоем стабилизирующего вещества, которое имеет растворимую в воде форму.

3. Нагрев суспензии покрытых стабилизирующим веществом частиц до температуры, достаточной для разложения стабилизирующего вещества и превращения его в форму, нерастворимую в воде.

4. Отделение от суспензии фракции, содержащей покрытые стабилизирующим веществом магнитные частицы. Отделенная фракция диспергируется в любой неводной жидкости, обладающей растворимостью для стабилизирующего вещества в его форме. Полученная магнитная жидкость представляет стабильную коллоидную суспензию магнитных частиц.

В описанном способе для получения высокодисперсных частиц магнетита был использован как источник соли Fe2+ травильный раствор сталеплавильного завода, имеющий следующий химический состав,%: Fеобщ - 99,98; Fe2+ - 98,07; Mn2+ - 0,41; Cr3+ - 0,008; Ni2+ - 0,015; Cu2+ - 0,013; свободная НС1 - 30,2. При этом источником соли Fe3+ служил тот же травильный раствор, в котором FеС13 был получен окислением Fe2+ перекисью водорода. Излишек перекиси водорода был удален из раствора кипячением.

Целью настоящего изобретения является усовершенствование способа получения магнитных жидкостей с высокими магнитными характеристиками путем использования для получения высокодисперсной феррофазы не только травильного раствора сталеплавильных и приборостроительных заводов как источника Fe2+, но и осадка-отхода после очистки сточных вод гальванического производства электрокоагуляцией как источника Fe3+.

Цель достигается тем, что проведение процесса получения магнитной жидкости по предлагаемому способу исключает операцию окисления травильного раствора с целью получения Fe3+ перекисью водорода с последующим кипячением раствора для удаления излишка перекиси водорода. Предлагаемый способ предполагает вместо окисления травильного раствора использовать в качестве источника Fe3+, имеющийся в больших количествах высокодисперсный осадок-отход очистки сточных вод, состоящий в основном из Fе(ОН)3. Простое (без подогрева) растворение имеющегося осадка в соляной кислоте обеспечит стабильное наличие второго компонента (FеС13) для получения высокодисперсного магнетита.

Экономическая целесообразность предлагаемого способа состоит в следующем.

1. Предлагается использование не имеющего в настоящее время применение отхода производства.

2. Не потребуется затрат на окисление травильного раствора перекисью водорода и его последующего кипячения.

Процесс получения магнитной жидкости состоит из следующих операций.

1. Смешение в требуемом соотношении (Fe3+/Fe2+ = 3:2) солянокислого раствора осадка-отхода и травильного раствора.

2. Получение суспензии магнитных частиц оксидов Fe2+ и Fe3+ коллоидного размера пептизацией смеси растворов добавлением гидроксида аммония 28%-ного.

3. Покрытие осажденных частиц оксидов Fe2+ и Fe3+ в водной среде стабилизирующим веществом, образующим в избытке гидроксида аммония аммонийную соль, растворимую в воде.

4. Подогрев суспензии стабилизированных частиц для преобразования стабилизирующего вещества (разложение его аммонийной соли с образованием аммиачного газа) и превращение в нерастворимую в воде форму и отделение их от водной фазы.

5. Образование магнитной жидкости при смешении коагулянта с неводными жидкими носителями, которые обладают некоторой растворимостью по отношению к стабилизирующему веществу.

Пример 1.

Осадок-отход после очистки сточных вод гальванического производства, высушенный при 105oС в течение 1 ч с влажностью 6,6%; содержание основного вещества (Fе2О3) - 67,9%; содержание нерастворимого в НСl остатка - 0,7%; рН водной вытяжки - 6,6; содержание водорастворимых солей - 3,55% растворяют в концентрированной соляной кислоте; после фильтрования раствора его смешивают с травильным раствором, содержащим ионы Fe3+ и 0,06 моля Fe2+, затем медленно добавляют 50 см3 28%-ного гидроксида аммония с одновременным перемешиванием для осаждения гидроксидов железа. Смесь подогревают до 95oС и добавляют 50 см3 керосина и 5 см3 олеиновой кислоты (при интенсивном перемешивании). Затем продолжают подогрев и происходит отчетливое разделение водной и органической фаз. Водную фазу удаляют с помощью пипетки. Этим уменьшают время подогрева, а также ликвидируют большую часть хлорида аммония. Подогрев продолжают до тех пор, пока не истощится Н2О и температура органической фазы не возрастет до 130oC.

Жидкость охлаждают до комнатной температуры и сливают в мензурку. Добавляют керосин до объема жидкости 55 см3, чем компенсируют потерю керосина во время подогрева. Свойства полученной магнитной жидкости представлены в таблице - МЖ1.

Пример 2.

Проводится как пример 1, но исходными компонентами для получения магнитной феррофазы является травильный раствор и соль FеСl32О. Свойства полученной магнитной жидкости представлены в таблице - МЖ2.

Пример 3.

Проводится как пример 2, но объемная для магнетита увеличена в 2 раза. Свойства магнитной жидкости представлены в таблице - МЖ3.

Для сравнения в таблице представлены показатели магнитной жидкости из патента Великобритании 1439031 (пример 4) - МЖ4. Магнитная феррофаза получена осаждением избытка из смеси солей FeCl2H2O и FeCl24H2O избытком гидроксида аммония.

Пример 5.

Магнитная жидкость получена по примеру 1 патента Великобритании 1439031. Свойства магнитной жидкости представлены в таблице - МЖ3.

Формула изобретения

Способ получения магнитной жидкости, включающий образование суспензии магнетита путем соосаждения из растворов ионов двух- и трехвалентного железа, покрытие поверхности частиц магнетита адсорбированным слоем стабилизирующего вещества, подогрев суспензии магнитных частиц с адсорбированным на них слоем стабилизирующего вещества, отделение от суспензии фракции, содержащей стабилизированные магнитные частицы в жидкости-носителе, отличающийся тем, что в качестве источника трехвалентного железа для получения магнитной феррофазы используется солянокислый раствор осадка-отхода очистки сточных вод гальванических цехов.

РИСУНКИ

Рисунок 1