Фрагмент днк, кодирующий фрагмент белка рецептора трансферрина штамма haemophilus (варианты), плазмидный вектор (варианты), рекомбинантный белок (варианты), выделенный и очищенный белок (варианты), иммуногенная композиция и способ получения выделенного и очищенного белка

Реферат

 

Изобретение относится к генной инженерии. Фрагмент ДНК кодирует фрагмент белка рецептора трансферрина штамма Haemophilus. Консервативная аминокислотная последовательность белка приведена в описании. Фрагменты ДНК кодируют белки рецептора трансферрина штаммов DL 63 или Eagan Haemophilus influenzae типа b или нетипируемых штаммов РАК 12085, SB33, SB12, SB29, SB30 или SB32 Haemophilus influenzae. Аминокислотные последовательности кодируемых белков приведены в описании. Плазмидный вектор адаптирован для трансформации E.coli и включает один из вышеперечисленных фрагментов ДНК. Рекомбинантный белок продуцируется Е. coli, трансформированной одним из указанных фрагментов ДНК. Выделенный и очищенный белок Тbp1 и Тbp2 с аминокислотной последовательностью приведен в описании. Иммуногенная композиция изготовлена в виде вакцины для in vivo введения и включает выделенный и очищенный белок Тp1 или Тp2 штамма Haemophilus influenzae и фармацевтически приемлемый носитель. Получают рекомбинантный хозяин, экспрессирующий в тельцах включения один из белков Тp1 или Тp2, культивируют его, разрушают клеточную массу, получают клеточный лизат и фракционируют. Проводят селективную экстракцию и вновь фракционируют с выделением фракции, содержащей белок Тbp1 или 2. Изобретение позволяет проводить диагностику инфекций, вызываемых Haemophilus. 12 с. и 13 з.п.ф-лы, 30 ил., 7 табл.

Изобретение относится к молекулярному клонированию генов, кодирующих рецептор трансферрина, а в частности к клонированию генов рецептора трансферрина Haemophilus influenzae.

Ссылка на родственную заявку Настоящая заявка является частичным продолжением одновременно рассматриваемой заявки на патент США рег. 08/175116, поданной 29 декабря 1993, которая, в свою очередь, является частичным продолжением одновременно рассматриваемой заявки на патент США 08/148968, поданной 8 ноября 1993.

Предпосылки создания изобретения Инкапсулированные штаммы Haemophilus influenzae типа b являются главными возбудителями бактериального менингита и других инвазивных инфекций у детей младшего возраста. Однако некапсулированные и нетипируемые бактерии H.influenzae (NTHi) ответственны за возникновение широкого ряда заболеваний у человека, включая воспаление среднего уха, эпиглоттит, пневмонию и трахеобронхит. Вакцины, изготовленные на основе капсульного полисахарида H. influenzae типа b, конъюгированного с дифтерийным токсоидом [Berkowitz и др., 1987. (В данной заявке, для более полного описания современного уровня науки в той области, к которой относится настоящее изобретение, приводятся ссылки (в скобках) на различные литературные источники. Полная библиографическая информация для каждой ссылки приводится в конце данного описания, непосредственно перед формулой изобретения. Раскрытие этих работ вводится в настоящее описание посредством ссылки)], столбнячным токсоидом (Classon и др. , 1989, и патент США 4496538), или с внешним мембранным белком Neisseria meningitidis (Black и др., 1991), показали свою эффективность при лечении менингита, индуцированного H. influenzae типа b, однако они оказались неэффективными при лечении NTHi-индуцированного заболевания (Bluestone, 1982).

Воспаление среднего уха (средний отит) является одним из наиболее распространенных заболеваний у детей младшего возраста; причем у 60-70% всех детей в возрасте моложе 2 лет было зарегистрировано 1-3 ушных инфекций. Хроническое воспаление среднего уха может приводить к нарушению слуха, речи, и познавательной способности у детей. Инфекции, вызываемые H. influenzae, примерно а 30% случаев являются причиной возникновения острого воспаления среднего уха и примерно в 60% случаев хронического воспаления среднего уха. Только в США на антибиотики для лечения воспаления среднего уха и на хирургические операции, связанные с этим заболеванием, такие как тонзиллэктомия, аденоидэктомия, и введение тимпаностомических трубок, затрачивается 1-2 миллиардов долларов в год. Кроме того, многие микроорганизмы, возбудители среднего отита, приобретают устойчивость к лечению антибиотиками. Поэтому разработка эффективной профилактической вакцины против среднего отита имеет исключительно важное значение. Нетипируемые штаммы H. influenzae являются также главными патогенами, ответственными за возникновение пневмонии у людей пожилого возраста, и других индивидуумов, являющихся особенно восприимчивыми к респираторным инфекциям. В связи с этим очевидно, что необходимо получить такие антигены от H. influenzae, которые можно было бы использовать в качестве компонентов в иммуногенных препаратах, предназначенных для защиты против многих серотипов H. influenzae.

Железо является главным питательным элементом, необходимым для роста многих бактерий. Некоторые патогены человека, такие как H. influenzae, Branhamella cattaraliis, n. meningitidis, n. gonorrhocae и непатогенные комменсальные штаммы neisseria могут использовать трансферрин человека в качестве источника железа (Schryvers, 1988; Schryvers и Zee 1989; Micklsen и Sparling, 1981). Рецептор бактериального трансферрина (TfR) состоит из двух цепей, Tbp1 и Tbp2. В штаммах H. influenzae, молекулярная масса Tbp1 составляет приблизительно 100000, а молекулярная масса Тbp2 варьирует в пределах от 60000 до 90000 в зависимости от штамма (Schryvers и Gray-Owen, 1992; Holland и др., 1992). Экспрессия рецептора трансферрина H. influenzae является, очевидно, железо- и/или геминрегулируемой (Norton и др., 1993), а предполагаемый сайт fur-связывания, как было идентифицировано, находится выше tbp2. Эта последовательность была обнаружена в промоторной области генов, негативно регулируемых железом, включая ген TfR N. meningitidis (Zegrain и др., 1993).

Было установлено, что в других бактериальных TfR-оперонах, за промотором следуют гены tbp2 и tbp1 (Zegrain и др., 1993; Wilton и др., 1993). Антитела, которые блокируют доступ рецептора трансферрина к его источнику железа, могут предотвращать бактериальный рост. Кроме того, антитела против TfR, которые являются опсонизирующим или бактерицидным фактором, могут также обеспечивать защиту от бактерий посредством альтернативных механизмов. Таким образом, рецептор трансферрина, его фрагменты, его составляющие цепи или белки, происходящие от этого рецептора, являются кандидатами на использование их в целях изготовления вакцины для защиты от инфекций, вызываемых H. influenzae. Мыши, иммунизированные белками TfR n. meningitidis в адьюаанте Фрейнда, обнаруживали резистентность к гомологичной антигенной стимуляции, а антисыворотки против TfR обладали бактерицидным и протективным действием в анализе на пассивный транспорт (Danve и др., 1993). Свиньи, иммунизированные рекомбинантным Tbp2 A. pleuropneumoniae, обнаруживали устойчивость к гомологичной антигенной стимуляции, но не обнаруживали устойчивость к гетерологичной стимуляции (Rossi-Campos и др., 1992). Эти данные свидетельствуют о том, что вакцина, полученная на основе TfR, обладает защитным действием. При этом, было бы желательно получить последовательности ДНК-молекулы, кодирующие рецептор трансферрина и пептиды, соответствующие определенным частям рецептора трансферрина, а также векторы, содержащие такие последовательности, в целях использования их для диагностики, иммунизации, и продуцирования диагностических иммунологических реагентов.

Полиовирус представляет собой энтеровирус, род вируса, принадлежащий к семейству Пикорнавирусов. Существует три различных серотипа полиоаирусов, и кроме того, имеется множество штаммов, принадлежащих к каждому из этих трех серотипов. Вирулентные штаммы являются возбудителями паралитического полиомиелита. Аттенюированные штаммы, т.е., штаммы, обладающие пониженной способностью к индуцированию паралитического заболевания, и инактивированные вирулентные штаммы были использованы в качестве вакцин. Инфицирование вирусом индуцирует стойкий протективный иммунитет слизистых оболочек. Вакцинация с использованием вакцин на основе инактивированного полиовируса может также индуцировать иммунный ответ, опосредованный слизистой оболочкой.

Структура полиовируса известна и является в высокой степени консервативной для различных штаммов и серотипов. Были также определены структуры некоторых других пикорнавирусов (вирусов, принадлежащих к семейству Пикорнавирусов), и было также установлено, что по своей структуре эти пикорнавирусы являются близкородственными полиовирусам. Было показано, что можно экспрессировать чужеродные эпитопы на капсиде полиовирусов (Murdin и др., 1992), и этот опыт может быть распространен на другие пикорнавирусы. Эпитопы, которые были экспрессированы, представляли собой, в основном, короткие, хорошо определенные, смежные эпитопы; причем в большинстве своем они были экспрессированы в антигенном сайте I нейтрализации полиовируса (NAg1) или а экbивалентном сайте на других пикорнавирусах. Этот сайт включает а себя петлю, связывающую бета-цепи В и С (ВС-петлю) капсидного белка VPI полиовируса. ВС-петля белка VPI представляет собой поверхностно доступную петлю, состоящую из девяти аминокислот, которые могут быть заменены и к которым могут быть присоединены, по крайней мере, двадцать пять гетерологичных аминокислот (Murdin и др. , 1991). Гибридные или химерные полиовирусы, экспрессирующие эпитопы рецептора трансферрина, и культивированные до высокого титра, а также являющиеся иммуногенными, могли бы быть использованы в качестве вакцин и как средство для продуцирования иммунологических реагентов.

Краткое описание изобретения Настоящее изобретение относится к получению очищенных и выделенных молекул нуклеиновой кислоты, кодирующих рецептор трансферрина штамма Haemophilus, либо фрагмент или аналог белка рецептора трансферрина. Нуклеиновокислотные молекулы настоящего изобретения могут быть использованы для специфического обнаружения штаммов Haemophilus, а также для диагностики инфекций, вызываемых Haemophilus.

Выделенные и очищенные нуклеиновокислотные молекулы настоящего изобретения, такие как ДНК, могут быть также использованы для экспрессии генов TfR с применением техники рекомбинантных ДНК в целях экономически выгодного продуцирования очищенных и выделенных субъединиц рецептора трансферрина, его фрагментов, или аналогов. Рецептор трансферрина, его субъединицы, фрагменты или аналоги, а также кодирующие их молекулы нуклеиновой кислоты и векторы, содержащие эти молекулы нуклеиновой кислоты, могут быть использованы в иммуногенных композициях для защиты против заболеваний, вызываемых Haemophilus; для диагностики инфекций, вызываемых Haemophilus, а также как средство для продуцирования иммунологических реагентов. Моноклональные антитела или моноспецифические антисыворотки (антитела), вырабатываемые против белка рецептора трансферрина, продуцированного в соответствии с аспектами настоящего изобретения могут быть использованы для диагностики инфекций, вызываемых Haemophilus; для специфического обнаружения Haemophilus (например, в in vitro и in vivo-анализах); и для лечения заболеваний, вызываемых Haemophilus.

Пептиды, соответствующие определенным участкам рецептора трансферрина или его аналогам, могут быть использованы а иммуногенных композициях для лечения заболеваний, вызываемых Haemophilus, для диагностики Haemophilus-инфекций, а также как средство продуцирования иммунологических реагентов. Моноклональные антитела или антисыворотки, вырабатываемые против этих пептидов, полученных в соответствии с аспектами настоящего изобретения, могут быть использованы для диагностики Haemophilus-инфекций, для специфического обнаружения Haemophilus (например, в in vitro и in vivo-анализах) и для проведения иммунизации в целях лечения заболеваний, вызываемых Haemophilus.

В одном из своих аспектов настоящее изобретение относится к очищенной и выделенной молекуле нуклеиновой кислоты, кодирующей белок рецептора трансферрина, происходящего от штамма Haemophilus, в частности от штамма H. influenzae, а более конкретно от штамма H. influenzae типа b, такого как штамм DI63, Eagan или Minna H. influenzae типа b; или нетипируемого штамма H. influenzae, такого как штамм РАК 12085, SB33, SВ12, SВ29, SВ30 или SВ32 H. influenzae; либо фрагмент или аналог белка рецептора трансферрина.

В одном из предпочтительных вариантов осуществления изобретения молекула нуклеиновой кислоты может кодировать либо белок Tbp1, либо белок TBp2 штамма Haemophilus. В другом предпочтительном варианте осуществления настоящего изобретения нуклеиновая кислота может кодировать фрагмент белка рецептора трансферрина, происходящего от штамма Haemophilus и имеющего аминокислотную последовательность, которая является консервативной для бактерий, продуцирующих белок рецептора трансферрина. Такая консервативная аминокислотная последовательность может иметь аминокислотную последовательность, содержащуюся в аминокислотной последовательности пептидов, показанных ниже, в таблицах 2 и 3, для штамма Eagan Haemophilus influenzae типа b, а также соответствующих пептидов других штаммов H. influenzae.

В другом своем аспекте настоящее изобретение относится к очищенной и выделенной молекуле нуклеиновой кислоты, имеющей ДНК-последовательность, выбранную из группы, включающей в себя: (а) любую из ДНК-последовательностей, представленных на фиг.3, 4, 5, 6, 7, 8, 9, 10 или 11 (SEQ ID 1, 2, 3, 4, 105, 108, 110, 112, 114), или ДНК-последовательность, комплементарную любой из указанных последовательностей; (b) ДНК-последовательность, кодирующую одну из аминокислотных последовательностей, представленных на фиг.3, 4, 5, 6, 7, 8, 9, 10 или 11 (SEQ ID 5, 6, 7, 8, 9, 10, 11, 12, 106, 107, 109, 111, 113, 115), или ДНК-последовательность, комплементарную указанной последовательности; и (с) ДНК-последовательность, которая гибридизуется в жестких условиях с любой из ДНК-последовательностей, определенных в (а) и (b). Предпочтительно, чтобы ДНК-последовательность, определенная в (с), по крайней мере, примерно на 90% была идентична любой из ДНК-последовательностей, определенных в (а) и (b).

В другом своем аспекте настоящее изобретение относится к вектору, адаптированному для трансформации хозяина и содержащему молекулу нуклеиновой кислоты, определенную выше. Таким вектором может быть любой вектор, имеющий характеристики плазмиды DS-712-1-3 (ATСC, входящий номер 75603) или плазмиды JB-1042-7-6 (ATСC, входящий номер 75607).

Эти плазмиды могут быть адаптированы для экспрессии кодируемого рецептора трансферрина, его фрагментов или аналогов в липидизированной или нелипидизированной форме в гетерологичном или гомологичном хозяине. В соответствии с этим в еще одном своем аспекте настоящее изобретение относится к экспрессирующему вектору, адаптированному для трансформации хозяина, содержащему молекулу нуклеиновой кислоты настоящего изобретения; и экспрессирующий элемент, правильно присоединенный к нуклеиновокислотной молекуле для обеспечения экспрессии хозяином белка рецептора трансферрина, или его фрагмента, или аналога. В конкретных вариантах осуществления этого аспекта настоящего изобретения молекула нуклеиновой кислоты может кодировать, в основном, весь белок рецептора трансферрина, либо белок Tbp1, либо белок Tbp2 штамма Haemophilus. Экспрессирующий элемент может включать в себя часть аминокислоты, кодирующую лидерную последовательность, для секреции из хозяина белка рецептора трансферрина, или его фрагмента, или аналога. Экспрессирующий элемент может также включать в себя часть нуклеиновой кислоты, кодирующую сигнал липидизации, для экспрессии в хозяине липидизированной формы белка рецептора трансферрина, или его фрагмента, или аналога. Экспрессирующая плазмида может иметь идентифицирующие признаки плазмиды JB-1468-29, JB-1600-1 или JB-1424-2-4. Хозяин может быть выбран, например, из Escherchia coli, Bacillus, Haemophilus, грибков, дрожжей или бакуловирусов; при этом могут быть также использованы экспрессирующие системы вируса лесов Семлики.

В другом своем аспекте настоящее изобретение относится к трансформированному хозяину, содержащему вектор экспрессии, определенный выше. Этот хозяин может быть выбран из JB-1476-2-1, JB-1437-4-1 и JB-1607-1-1. Кроме того, настоящее изобретение относится к белку рецептора трансферрина, или к его фрагменту, или аналогу, продуцируемому трансформированным хозяином.

Как подробно описывается ниже, рецепторные белки Tbp1 и Тbp2 были продуцированы отдельно друг от друга. Поэтому в еще одном своем аспекте настоящее изобретение относится к выделенному и очищенному белку Tbp1 штамма Haemophilus, отделенному от белка Тbр2 штамма Haemophilus и к выделенному и очищенному белку Тbр2 штамма Haemophilus, отделенному от белка Tbp1 штамма Haemophilus. В качестве штамма Haemophilus может быть использован штамм H. influenzae типа b или нетипируемый штамм H. influenzae.

Кроме того, настоящее изобретение относится к синтетическим пептидам, соответствующим отдельным участкам рецептора трансферрина. В связи с этим в другом своем аспекте настоящее изобретение относится к синтетическому пептиду, содержащему не менее шести аминокислот и не более 150 аминокислот и имеющему аминокислотную последовательность, соответствующую лишь части белка рецептора трансферрина или аналога белка рецептора трансферрина штамма бактерий. Предпочтительным бактериальным штаммом является штамм Haemophilus, в частности штамм H. influenzae, а более конкретно штамм H. influenzae типа b, или нетипируемый штамм H. influenzae.

Пептиды, полученные в соответствии с настоящим изобретением, могут содержать аминокислотную последовательность, которая является консервативной для бактерий, продуцирующих белок рецептора трансферрина, включая штаммы Haemophilus. Этот пептид может включать в себя аминокислотную последовательность LEGGFYGP (SEQ ID 74) или последовательность LEGGFYG (SEQ ID 85). Пептиды настоящего изобретения могут иметь аминокислотную последовательность, выбранную из последовательностей, представленных ниже (в таблице 2 или 3) для штамма Eagan H. influenzae типа b, и соответствующие аминокислотные последовательности для других штаммов H. influenzae.

В другом своем аспекте настоящее изобретение относится к иммунной композиции, которая содержит, по крайней мере, один активный компонент, выбранный, по крайней мере, из одной молекулы нуклеиновой кислоты, представленной в настоящей заявке; по крайней мере, один рекомбинантный белок, представленный в настоящей заявке; по крайней мере, один из очищенных и выделенных белков Tbp1 или Тbр2, представленных в настоящей заявке; по крайней мере, один синтетический пептид, представленный в настоящей заявке; и "живой" вектор, представленный в настоящей заявке; а также фармацевтически приемлемый носитель. При введении хозяину, по крайней мере, один активный компонент продуцирует иммунный ответ.

Иммуногенные композиции настоящего изобретения могут быть изготовлены в виде вакцины для введения in vivo в целях защиты организма от болезней, вызываемых бактериальными патогенами, которые продуцируют рецепторы для трансферрина. Для этих целей композиции могут быть изготовлены в виде микрочастиц, капсул или липосомных препаратов. Альтернативно композиции могут быть изготовлены в комбинации с молекулой, обеспечивающей направленную доставку композиции к специфическим клеткам иммунной системы или к поверхности слизистых оболочек. Иммуногенная композиция может содержать множество активных компонентов для защиты от болезней, вызываемых множеством видов бактерий, продуцирующих рецептор трансферрина. Иммуногенные композиции могут также содержать адъювант.

В другом своем аспекте настоящее изобретение относится к способу защиты от инфекции или заболеваний, вызываемых Haemophilus или другими бактериями, продуцирующими рецептор трансферрина; причем указанный способ предусматривает стадию введения восприимчивому хозяину, такому как человек, эффективного количества иммуногенной композиции, определенной выше.

В еще одном своем аспекте настоящее изобретение относится к антисыворотке или антителу против рекомбинантного белка; к выделенному и очищенному белку Tbp1 или Тbp2; к синтетическому пептиду или к иммунногенной композиции.

В следующем своем аспекте настоящее изобретение относится к "живому" вектору, осуществляющему доставку рецептора трансферрина в организм хозяина и содержащему молекулу нуклеиновой кислоты, определенную выше. Этот вектор может быть выбран из Salmonella, ВСG, аденовируса, поксвируса, вакцинного вируса (вируса коровьей оспы) и полиовируса. В частности, указанным вектором может быть полиовирус, а указанная молекула нуклеиновой кислоты может кодировать фрагмент рецептора трансферрина, имеющий аминокислотную последовательность EGGFYGP (SEQ ID 74) или последовательность EGGFYG (SEQ ID 85). Кроме того, настоящее изобретение включает в себя плазмидный вектор, имеющий идентифицирующие признаки плазмиды рТ7ТВР2А, рТ7ТВР2В, рТ7ТВР2С или рТ7ТВР21 (АТСС, 75931, 75932, 75933, 75934).

В еще одном своем аспекте настоящее изобретение относится к штамму Haemophilus, который не продуцирует белок рецептора трансферрина. Этот штамм может содержать ген, кодирующий рецептор трансферрина, который является функционально блокированным, например, путем инсерционного мутагенеза. Штамм Haemophilus может быть аттенюированным штаммом, и этот аттенюированный штамм может содержать вектор для доставки рецептора трансферрина.

Как указывалось выше, в одном своем аспекте настоящее изобретение относится к выделенному и очищенному белку Tbp1 или белку Тbр2 штамма Haemophilus, а предпочтительно штамма Haemophilus influenzae; причем указанные белки являются выделенными отдельно друг от друга. В соответствии с этим в еще одном своем аспекте настоящее изобретение относится к способу получения выделенного и очищенного белка Tbp1 или Тbр2 штамма Haemophilus, предусматривающему проведение следующих стадий: (а) получение рекомбинантного хозяина, экспрессирующего в тельцах включения, либо белок Tbp1, либо белок Тbр2 (но не оба); (b) культивирование хозяйских клеток в целях получения клеточного пула; (с) дезинтеграцию клеточного пула для получения клеточного лизата; (d) фракционирования клеточного лизата для получения первого супернатанта и первого осадка, где первый супернатант, в основном, содержит большое количество растворимых хозяйских белков; (е) отделение первого супернатанта от первого осадка; (f) селективное экстрагирование первого осадка для удаления, в основном, всех растворимых белков хозяина и мембранных белков хозяина с получением второго супернатанта и экстрагированного осадка, содержащего тельца включения; (g) отделение второго супернатанта от экстрагированного осадка; (h) солюбилизацию экстрагированного осадка для получения солюбилизированного экстракта и (i) фракционирование солюбилизированного экстракта с получением фракции, содержащей белок Tbp1 или Тbр2.

Клеточный лизат может быть фракционирован с получением первого супернатанта, а первый осадок может быть получен путем, по крайней мере, одной экстракции детергентом.

Солюбилизированный экстракт может быть фракционирован путем гель-фильтрации с получением фракции, содержащей либо белок Tbp1, либо белок Тbр2, которая может быть затем диализована для удаления, по крайней мере, детергента, в результате чего получают более очищенный раствор белка Tbp1 или Тbр2.

Краткое описание чертежей Для лучшего понимания настоящего изобретения ниже приводится подробное его описание со ссылками на следующие чертежи, где: На фиг.1А показана рестрикционная карта двух плазмидных клонов (pBHT1 и рВНТ2) оперона рецептора трансферрина штамма DL63 Haemophilus influenzae типа b.

На фиг.1В показана рестрикционная карта клонов S-4368-3-3 и JB-901-5-3, содержащих гены ТfR от штамма Eagan H. influenzae типа b.

На фиг. 1C показана рестрикционная карта клона DS-712-1-3, содержащего ген рецептора трансферрина от штамма MinnA H. influenzae типа b.

На фиг. 1D показана рестрикционная карта клона JB-1042-7-6, содержащего ген рецептора трансферрина от нетипируемого штамма РАК 12085 H. influenzae.

На фиг.2 проиллюстрированы организация и рестриционные карты клонированных генов Тbр1 и Тbр2 идентифицированных штаммов и генетическая организация TfR-оперона с двумя последовательно расположенными генами (Tbp1 и Tbp2), образующими оперон под транскрипционным контролем единственного промотора; и кроме того, на чертеже изображен 3,0 кb-ДНК-фрагмент плазмиды рВНIТ2, используемый для зондирования библиотек генов TfR от штаммов Haemophilus.

На фиг.3 показаны нуклеотидные последовательности генов рецептора трансферрина (SEQ ID 1) и их выведенные аминокислотные последовательности (SEQ ID 5 - Tbp1 и SEQ ID 6 - Tbp2) от штамма DL63 H. influenzae типа b. Подчеркнутые аминокислотные последовательности соответствуют пептидам Тbр1, идентифицированным путем аминокислотного секbенирования. Предполагаемые сигнальные последовательности показаны двумя линиями, проведенными сверху, и соответствуют остаткам 1-17 для Tbp1 и остаткам 1-25 для Тbр2.

На фиг.4 показаны нуклеотидные последовательности генов рецептора трансферрина (SEQ ID 2) и их выведенные аминокислотные последовательности (SEQ ID 7 - Tbp1 и SEQ ID 8 - Тbр2) от штамма Eagan H. influenzae типа b. Предполагаемые -35, -10 и последовательности сайта связывания рибосомы показаны линией, проведенной сверху.

На фиг.5 показаны нуклеотидные последовательности генов рецептора трансферрина (SEQ ID 3) и их выведенные аминокислотные последовательности (SEQ ID 9 - Tbp1 и SEQ ID 10 - Тbр2) от штамма MinnA H. influenzae типа b. Предполагаемые последовательности -35, -10 и последовательность сайта связывания рибосомы показаны линиями, проведенными сверху.

На фиг.6 показаны нуклеотидные последовательности генов рецептора трансферрина (SEQ ID 4) и их выведенные аминокислотные последовательности (SEQ ID 11 - Tbp1 и SEQ ID 12 - Тbр2) от нетипируемого штамма РАК 12085 H. influenzae. Предполагаемые последовательности -35, -10 и последовательность сайта связывания с рибосомой показаны линиями, проведенными сверху.

На фиг.7 показаны нуклеотидные последовательности генов рецептора трансферрина (SEQ ID 105) и их выведенные аминокислотные последовательности (SEQ ID 106 - Tbp1 и SEQ ID 107 - Тbр2) от нетипируемого штамма SB33 H. influenzae.

На фиг.8 показана нуклеотидная последовательность гена Тbр2 (SEQ ID 108) и его выведенная аминокислотная последовательность (SEQ ID 109 - Тbр2) от нетипируемого штамма SВ12 H. influenzae.

На фиг.9 показана нуклеотидная последовательность гена Тbр2 (SEQ ID 110) и выведенная аминокислотная последовательность (SEQ ID 111 - Тbр2) от нетипируемого штамма SВ29 H. influenzae.

На фиг. 10 показана нуклеотидная последовательность гена Тbр2 (SEQ ID 112) и его выведенная аминокислотная последовательность (SEQ ID 113 - Тbр2) от нетипируемого штамма SВ30 H. influenzae.

На фиг. 11 показана нуклеотидная последовательность гена Тbр2 (SEQ ID 114) и его выведенная аминокислотная последовательность (SEQ ID 115 - Тbр2) от нетипируемого штамма SВ32 H. influenzae.

На фиг.12А показаны нуклеотидные последовательности промоторных областей и 5'-конца генов tbp2, происходящих от штаммов Eagan (SEQ ID 116), MinnA (SEQ ID 117), РАК 12085 (SEQ ID 118) и SВ33 (SEQ ID 119). Смысловой праймер, используемый для амплификации генов tbp 2 с помощью PCR, подчеркнут (SEQ ID 120).

На фиг.12В показана нуклеотидная последовательность межгенной области и 5'-конца генов tbp 1, происходящих от штаммов H. influenzae, таких как Eagan (SEQ ID 121), MinnA (SEQ ID 122), DL63 (SEQ ID 123), РАК 12085 (SEQ ID 124), SВ12 (SEQ ID 125), SB29 (SEQ ID 126), SВ30 (SEQ ID 127) и SВ32 (SEQ ID 128). Антисмысловой праймер, используемый для амплификации генов с помощью PCR, подчеркнут (SEQ ID 129).

На фиг.13 проиллюстрирован анализ методом электрофореза на агарозном геле PCR-амплифицированных генов tbp 2, происходящих от нетипируемых штаммов H. influenzae, таких как: SВ12, SВ29, SB30, SВ32 и SB33. Дорожка 1 - SB33; дорожка 2 - SВ12, дорожка 3 - SВ29, дорожка 4 - SB30, дорожка 5 - SВ32.

На фиг.14 проиллюстрировано сравнение аминокислотных последовательностей белка Tbp1, происходящего от штаммов H. influenzae, таких как Eagan DL63, РАК 12085 и SВ33 (SEQ ID 7, 5, 11 и 106); штаммов N. meningitidis, таких как В16В6 и М982 (SEQ ID 94 и 95); и штамма FA19 N. gonorrhoeae (SEQ ID 96).

На фиг.15 проиллюстрировано сравнение аминокислотной последовательности белка Тbр2, происходящего от штаммов H. influenzae, таких как Eagan, DL63, РАК 12085, SВ12, SВ29, SB30 и SВ32 (SEQ ID 8, 6, 12, 109, 110, 112, 114), штаммов N. meningitidis, таких как В16В6 и М982 (SEQ ID 97 и 98), штамма FА19 N. gonorrhoeae и штаммов Actinobacillus pleuropneumoniae, таких как АР205 и АР37 (SEQ ID 99 и 100).

На фиг.16А показана предполагаемая вторичная структура белка Tbp1 H. influenzae, а на фиг. 16В показана предполагаемая вторичная структура белка Тbр2 H. influenzae.

На фиг. 17 показана схема конструирования плазмиды JB-I468-29, которая экспрессирует в E. coli белок Tbp1, происходящий от штамма Eagan H. influenzae типа b.

На фиг. 18 показана схема конструирования плазмиды JB-I424-2-8, которая экспрессирует в E.coli белок Тbр2, происходящий от штамма H. influenzae типа b.

На фиг. 19 представлены пары олигонуклеотидов (SEQ ID 130, 131), используемых для конструирования плазмиды JB-1424-2-8.

На фиг. 20 показаны последовательности пар олигонуклеотидов: А (SEQ ID 86, 87); В (SEQ ID 88, 89); С (SEQ ID 90, 91) и D (SEQ ID 92, 93), используемых для конструирования плазмид, экспрессирующих Tbp1 и Тbр2.

На фиг.21 показана схема конструирования плазмиды JB-1600-1, которая экспрессирует в E.coli белок Тbр2, происходящий от штамма SВ12 H. influenzae.

На фиг. 22 проиллюстрирован электрофорез в ПААГ с ДСН продуктов экспрессии белка Tbp1 и белка Тbр2 штамма Eagan Haemophilus типа b, и белка Тbр2 нетипируемого штамма SВ12 H. influenzae в E.coli. Дорожка 1: JB-1476-2-1 (T7/Eagan Tbp1) в t0; дорожка 2: JB-1476-2-1, при времени индукции t=4 часа; дорожка 3: маркеры молекулярной массы: 200 кДа, 116 кДа, 97,4 кДа, 66 кДа, 45 кДа и 31 кДа; дорожка 4: JB-1437-4-1 (Т7/Eagan - Tbp2) при t0; дорожка 5: JB-1437-4-1 при времени индукции t=4 часа; дорожка 6: JB-1607-1-1 (T7/JB12-Tbp2) при t0; дорожка 7: JB-1607-1-1 при времени индукции t=4 часа.

На фиг. 23 проиллюстрирована схема очистки белков Tbp1 и Тbр2, экспрессированных в E.coli.

На фиг. 24 проиллюстрирован анализ частоты рекомбинантных белков Tbp1 и Тbр2, очищенных по схеме, проиллюстрированной на фиг.23. Дорожка 1 - маркеры молекулярной массы (106,80; 49,5; 32,5; 27,5 и 18,5 кДа); дорожка 2 - лизат целых клеток E.coli; дорожка 3 - солюбилизированные тельца включения; дорожка 4 - очищенные белки Tbp1 и Тbр2.

На фиг. 25 проиллюстрирована иммуногенность рекомбинантного белка Tbp1 (rTbp1, верхняя панель) и рекомбинантного белка Тbр2 (rТbр2, нижняя панель) у мышей.

На фиг. 26 проиллюстрирована реактивность антисывороток против rTbp1 штамма Eagan по отношению к различным штаммам H. influenzae при Вестерн-блоттинге. Дорожка 1: BL21/DЕ3; дорожка 2: SВ12-EDDA; дорожка 3: SВ12+EDDA; дорожка 4: SВ29-EDDA; дорожка 5: SВ29 + EDDA; дорожка 6: SВ33-EDDA; дорожка 7: SВ33+EDDA; дорожка 8: Eagan-EDDA; дорожка 9: Eagan+EDDA; дорожка 10: В. catarrhalis 4223-EDDA; дорожка 11: В. catarrhalis 4223+EDDA; дорожка 12: N. meningitidis 608-EDDA; дорожка 13: N. meningitidis 608+EDDA; дорожка 14: индуцированный штамм JB-1476-2-1, экспрессирующая рекомбинантный белок Tbp1 штамма Eagan; дорожка 15: маркеры молекулярных масс. Специфические ~95 кДа-полосы, прореагировавшие с антисыворотками против Tbp1, на дорожках 3, 4, 5, 7, 8 и 9 соответствуют штаммам SВ12, SВ29, SВ33 и Eagan H. influenzae; ~ 110 кДа-полосы на дорожках 10 и 11 соответствуют штамму 4223 В. catarrhalis; а ~80 кДа-полосы на дорожках 12 и 13 соответствуют 608 N. meningitidis.

На фиг.27 проиллюстрирована реактивность антисывороток против rТbр2 штамма Eagan по отношению к различным штаммам H. influenzae при Вестерн-блоттинге. Дорожка 1: маркеры молекулярных масс; дорожка 2: индуцированный штамм JB-1437-4-1, экспрессирующая рекомбинантный белок Тbр2 штамма Eagan; дорожка 3: SB12-EDDA; дорожка 4: SВ12+EDDA; дорожка 5: SВ29-EDDA; дорожка 6: SВ29+EDDA; дорожка 7: SВ30-EDDA; дорожка 8: SВ30+EDDA; дорожка 9: SВ32-EDDA; дорожка 10: SВ33-EDDA; дорожка 11: SВ33+EDDA; дорожка 12: РАК-EDDA; дорожка 13: РАК+EDDA; дорожка 14: Eagan-EDDA; дорожка 15: Eagan+EDDA. Специфические 60-70 кДа-полосы реагировали с антисыворотками против Тbр2 на дорожках 3, 6, 7, 8, 13, 14 и 15, которые соответствуют штаммам SВ12, SВ29, SВ30, РАК и Eagan.

На фиг. 28 проиллюстрировано конструирование плазмид pNH1T1KFN и pNH1T1KFP, использованных для получения штаммов H. influenzae, которые не продуцируют рецептор трансферрина.

На фиг.29 проиллюстрировано конструирование плазмид, кодирующих химерные полиовирусы, экспрессирующие эпитоп, происходящий от белка рецептора трансферрина, который является консервативным для бактерий, продуцирующих рецептор трансферрина.

На фиг. 30 показан Вестерн-блоттинг, иллюстрирующий реактивность антисывороток, продуцированных путем иммунизации кроликов химерными полиовирусами, экспрессирующими эпитоп, происходящий от белка рецептора для трансферрина, который является консервативным для бактерий, продуцирующих рецептор трансферрина. На панели А показан окрашенный кумасси бриллиантовым голубым гель, обнаруживающий очищенный рекомбинантный белок Tbp 2, происходящий от штамма SВ12 H. influenzae, и экспрессированный в E.coli (дорожка 1); очищенный белок Тbр2, происходящий от штамма 4223 Branhamella catarrhalis (дорожка 2); клеточный лизат от железолимитированного штамма 4223 В. catarrhalis (дорожка 3), клеточный лизат от штамма JM109 E.coli, выращенного в железонелимитированных условиях (дорожка 5). На панели В показаны результаты Вестерн-блоттинга реплики с геля с использованием пула сывороток, собранных на 27-ой день после иммунизации кроликов путем введения PUITBP2A (кролики 40, 41 и 42). На панели С показаны результаты, полученные для пула неиммунных сывороток, взятых от кроликов, которые обнаруживали минимальную специфическую реактивность.

На некоторых из вышеописанных фигур для сайт-специфических рестриктирующих эндонуклеаз были использованы следующие сокращения: R - Eco RI; Рs - Pst I; Н - Hind III; Вg - Bg1 II; Nde - Nde I; Ear - Ear I и Sau -Sau 3A I.

На фиг. 28 для обозначения сайт-специфических рестриктирующих эндонуклеаз были использованы следующие сокращения: А - Асc I; В - Bam HI; Е - Eco RI; O - Xho I; Н - Hind III; Ps - Pst I; V - Eco RV; Х - Хbа I; G - Вg1 II; S - Sa1 I; К - kpn I и S - SAc I.

Общее описание изобретения Для получения очищенной и выделенной нуклеиновой кислоты, которая может представлять собой ДНК-молекулу, содержащую, по крайней мере, часть нуклеиновой кислоты, кодирующую рецептор трансферрина, типированный в соответствии с настоящим изобретением, может быть использован любой штамм Haemophilus. Такие штаммы могут быть получены из клинических источников, либо из коллекций бактериальных культур, таких как Американская коллекция типовых культур.

В соответствии с одним аспектом настоящего изобретения белок рецептора трансферрина может быть выделен из штаммов Haemophilus методами, описанными Schryvers (1989) Ogunnaviwo и Schryvers (1992), и а патенте США 5141743, раскрытие которого вводится в настоящее описание посредством ссылки. Хотя подробное описание этого способа приводится в патенте США 5141743, однако, для ясности, ниже приводится краткое изложение его сущности. Рецептор трансферрина получают путем выделения мембранной фракции из бактериального штамма, экспрессирующего активность связывания с трансферрином, и последующей очистки рецептора трансферрина аффинным методом, предусматривающим последовательные стадии предварительного связывания трансферрина с рецептором для трансферрина в мембранной фракции, солюбилизации мембраны, иммобилизации трансферрина и отделения рецептора трансферрина от иммобилизованного трансферрина. Альтернативно рецепторные белки могут быть выделены методом, представляющим собой модификацию вышеуказанного метода, в котором отсутствует стадия предварительного связывания, а буфер для солюбилизации содержит высокую концентрацию соли, что позволяет осуществить непосредственное выделение с иммобилизованным трансферрином, как описано в работе Ogunnariwo и Schryvers (1992).

В настоящей заявке термин "рецептор трансферрина" используется для определения семейства белков Tbp1 и/или Тbр2, имеющих различные отклонения в своих аминокислотных последовательностях, обусловленные их происхождением от различных природных штаммов, например Haemophilus. Другими бактериальными источниками рецептора трансферрина являются, но не ограничиваются ими такие виды, как Neisseria, Branhamella, Pasteurella и Actinobacillus.

Некоторые, если не все, из этих бактерий содержат оба белка Tbp1 и Тbр2. Под очищенными и выделенными ДНК-молекулами, содержащими, по крайней мере, часть нуклеотидной последовательности, кодирующей рецептор трансферрина настоящего изобретения, подразумеваются также ДНК-молекулы, кодирующие функциональные аналоги рецептора трансферрина. В настоящей заявке первый белок или пептид является "функциональным аналогом" второго белка или пептида в том случае, если указанный первый белок или пептид является иммунологически родственным второму белку или пептиду и/или имеет такую же функцию. Функциональным аналогом может быть, например, фрагмент белка или его мутант, образованный вследствие аминокислотного замещения, добавления или делеции.

В одном из вариантов осуществления настоящего изобретения рецептор трансферрина выделяют из штамма DL63 H. influenzae типа b и очищают методами аффинной хроматографии, как описано в работах Schryvers (1989), Ogunnariwo и Schryvers (1992) и в патенте США 5141743. Выделенный и очищенный рецептор трансферрина был использован для продуцирования у кроликов антисыворотки против TfR. Хромосомную ДНК из штамма DL63 H. influenzae типа b подвергали механической фрагментации, затем добавляли EcoRI-линкеры и конструировали библиотеку экспрессир