Производные антраниловой кислоты, способы их получения и фармацевтическая композиция на их основе
Реферат
Изобретение относится к новым производным антраниловой кислоты формулы I, где R, R1, R2 являются Н, алкилом, ОН, алкокси, галоген, нитро, N(R10R11), R3 является Н, алкил, R4 является алкилом или R4 обозначает -СН2- или -СН2СН2-, который присоединен либо в положении 2 цикла b, завершая насыщенный 5- или 6-членный азотсодержащий цикл, либо в положении 2 цикла а, с которым связан X, являющийся простой связью, завершая насыщенный 5- или 6-членный азотсодержащий цикл, R5 является Н, ОН, алкил, Х обозначает простую связь, О, S, -O-(СН2)р-, где р - число от 1 до 6, R6 является Н, алкил, алкокси, q - число от 0 до 1, Аr обозначает фенил, нафтил или гетероциклическую группу, содержащую S или N, каждый из R7 и R8 является Н, алкил, алкокси, гидрокси, фенил, -NHOH, нитро, N(R10R11), SR12, или каждый из R7 и R8 образует вместе с атомами углерода бензольный или метилендиокси заместитель, R9 обозначает фенильную или гетероциклическую группу, содержащую 1 или 2 из О, S или N, n - число 0 или 1, m - число 0 или 1 - 3. Соединения формулы I обладают активностью в качестве ингибитора P-гликопротеина и могут использоваться в качестве действующего начала в фармацевтической композиции, а также для применения для усиления действия цитотоксичности химиотерапевтического средства. Также изобретение относится к способам получения соединений формулы I и формулы Iа, которые включают обработку соединения формулы VI с карбоновой кислотой, соединения формулы XII с XX, соединения формулы VIII с карбоновой кислотой, соединения формулы XII с IX, соединения формулы XIII с IX. 7 с. и 10 з.п.ф-лы, 21 табл.
Изобретение относится к соединениям, полезным в качестве модуляторов множественной лекарственной устойчивости (MDR), в частности, MDR, вызванной избыточным продуцированием Р-гликопротеина (Р-gр), к их получению и содержащим их фармацевтическим и ветеринарным композициям. Устойчивость опухолей к лечению с помощью некоторых цитотоксических средств препятствует успешному химиотерапевтическому лечению раковых больных. Опухоль может приобретать устойчивость к цитотоксическому средству, использованному в предыдущем лечении. Опухоль может также проявлять наследственную устойчивость или перекрестную (кросс-) устойчивость к цитотоксическому средству, которое ранее не применялось, при этом данное средство не связано структурой или механизмом действия с каким-либо агентом, использованным при предыдущих лечениях опухоли. Аналогично, некоторые патогенные микроорганизмы могут приобретать устойчивость к фармацевтическим средствам, использованным в предыдущих лечениях заболеваний или нарушений, вызванных этими патогенными микроорганизмами. Патогенные микроорганизмы могут также проявлять наследственную или перекрестную устойчивость к фармацевтическим средствам, воздействию которых они ранее не подвергались. Примеры такого эффекта включают формы множественной лекарственной устойчивости малярии, туберкулеза, лейшманиоза и амебной дизентерии. Эти явления имеют общее название множественной лекарственной устойчивости (MDR). Наиболее общая форма MDR вызывается избыточным продуцированием в клеточной оболочке Р-gр, белка, способного снижать накопление лекарственных средств в клетках путем выкачивания этих средств. Показано, что этот белок является основной причиной множественной лекарственной устойчивости в опухолевых клетках (Beck, W.T. Biochem. Pharmacol., 1987, 36, 2879-2887). Кроме раковых клеток р-гликопротеин найден во многих нормальных человеческих тканях, включающих печень, тонкую кишку, почки и гематоэнцефалический эндотелий. P-gps локализованы во всех этих тканях в секреторных областях клеток. Эта локализация означает, что Р-gр может играть роль в ограничении абсорбции инородных токсических веществ через биологические барьеры. Следовательно, ожидается, что вдобавок к их способности повышать чувствительность раковых клеток к цитотоксическим агентам Р-gр-ингибиторы увеличивают оральную абсорбцию некоторых лекарственных средств и улучшают перемещение лекарств через гематоэнцефалический барьер. Действительно показано, что введение циклоспорина, ингибитора Р-gр, увеличивает кишечную асборбцию ацебутолола и винбластина в крысах в 2,6 и 2,2 раза соответственно (Tereo, T. et al., J. Pharm. Pharmacol., 1966, 48, 1083-1089), тогда как мышь с дефицитом mdr la P-gp гена показывает вплоть до 100-кратно увеличенную чувствительность к центрально-нейротоксическому пестициду ивермектину (Schinkel, A.H. et al., Cell, 1994, 77, 491-502). Показано, что помимо повышенных уровней лекарственных средств в головном мозге мыши с Р-gр-дефицитом обладают повышенными лекарственными уровнями во многих тканях и пониженной экскрецией лекарств (выделением лекарства из организма). Недостаток лекарственных средств, до сих пор используемых для модуляции MDR, называемых модифицирующими устойчивость агентами или RMA, состоит в том, что они часто обладают плохим фармакокинетическим профилем и/или являются токсичными при концентрациях, требуемых для MDR-модуляции. В настоящее время найдено, что ряд производных антраниловой кислоты проявляет активность в качестве ингибиторов Р-gр, и, следовательно, они могут быть использованы для преодоления множественной лекарственной устойчивости опухолей и патогенных микроорганизмов. Они также потенциально применимы для улучшения характеристик абсорбции, распределения, метаболизма и удаления некоторых лекарственных средств. Следовательно, данное изобретение предлагает соединение, являющееся производным антраниловой кислоты формулы (I) где каждый из R, R1 и R2, которые являются одинаковыми или различными, обозначает Н, C1-C6-алкил, ОН, C1-C6-алкокси, галоген, нитро или N(R10R11), где каждый из R10 и R11, которые являются одинаковыми или различными, обозначает Н или C1-C6-алкил, или R1 и R2, являясь присоединенными в соседние положения цикла , вместе образуют метилендиокси- или этилендиоксигруппу; R3 обозначает Н или C1-6-алкил; R4 обозначает C1-C6-алкил или R4 обозначает -СН2- или -СН2СН2-, который присоединен либо (I) в положение цикла , завершая насыщенный 5- или 6-членный азотсодержащий цикл, конденсированный с кольцом , либо (II) в положение в цикле , соседнее тому, с которым связан X, являющийся простой связью, тем самым завершая насыщенный 5- или 6-членный азотсодержащий цикл, конденсированный с кольцом ; R5 обозначает Н, ОН или C1-C6-алкил; Х обозначает простую связь, О, S, -S-(CH2)p- или -O-(CH2)p-, где р обозначает целое число от 1 до 6; R6 обозначает Н, C1-C6-алкил или C1-C6-алкокси; q обозначает 0 или 1; Аr обозначает ненасыщенную карбоциклическую или гетероциклическую группу; каждый из R7 и R8, которые являются одинаковыми или различными, обозначает Н, незамещенный или замещенный C1-C6-алкил, C1-C6-алкокси, гидрокси, галоген, фенил, -NHOH, нитро, определенную выше группу N(R10R11) или группу SR12, где R12 обозначает Н или C1-C6-алкил, или R7 и R8, когда расположены на соседних углеродных атомах, образуют вместе с атомами углерода, к которым они присоединены, бензольный цикл или метилендиоксизаместитель; R9 обозначает фенильную или ненасыщенную гетероциклическую группу, каждая из которых незамещена или замещена C1-C6-алкилом, ОН, C1-C6-алкокси, галогеном, С3-С6-циклоалкилом, фенилом, бензилом, трифторметилом, нитро, ацетилом, бензоилом или определенным выше N(R10R11), или два заместителя в соседних положениях кольца указанного фенила или гетероциклической группы вместе завершают насыщенный или ненасыщенный 6-членный цикл или образуют метилендиоксигруппу; n обозначает 0 или 1 и m обозначает 0 или целое число от 1 до 6; или его фармацевтически приемлемую соль. Группа Х присоединена в любом одном из положений 2-6 цикла , не занятом R6. Предпочтительно она присоединена в положение 3 или 4. В предпочтительных группах соединений, R6 находится в положении 2, и Х находится в положении 3 или 4 цикла . Когда Х находится в положении 3 или 4 цикла , R6 может альтернативно занимать положение 5. Благодаря свободному вращению цикла положение 6 эквивалентно положению 2. Значение m предпочтительно равно 0 или составляет целое число от 1 до 3, более предпочтительно 1 или 2. Значение q предпочтительно равно 1. C1-C6-алкильная группа может быть линейной или разветвленной. Обычно C1-C6-алкильная группа является C1-C4-алкильной группой, например метил-, этил-, пропил-, изо-пропил-, н-бутил-, втор-бутил- или трет-бутилгруппой. Галоген является F, Cl, Вr или I. Предпочтительно F, Cl или Вr. Замещенная C1-C6-алкильная группа обычно замещена одним или более атомами галогена, например 1, 2 или 3 атомами галогена. Это может быть пергалоидалкильная группа, например трифторметил. C1-C6-алкоксигруппа может быть линейной или разветвленной. Обычно это С1-С4-алкоксигруппа, например метокси-, этокси-, пропокси-, изо-пропокси-, н-пропокси, н-бутокси-, втор-бутокси- или трет-бутоксигруппа. Целое число m имеет значения от 1 до 6 и обычно равно 1, 2 или 3. Ненасыщенная карбоциклическая группа обычно является C5-С10-карбоциклической группой, которая содержит по меньшей мере одну ненасыщенную связь, например С6-С10-арильной группой, такой как фенил- или нафтилгруппа. Ненасыщенная гетероциклическая группа является обычно 5- или 6-членным гетероциклическим кольцом с по меньшей мере одной ненасыщенной связью, содержащим один или более гетероатомов, выбранных из N, S и О, и необязательно конденсированным с бензольным кольцом или со вторым таким 5- или 6-членным гетероциклом. Ненасыщенной гетероциклической группой может быть, например, фуран-, тиофен-, пиррол-, индол-, изоиндол-, пиразол-, имидазол-, изоксазол-, оксазол-, изотиазол-, тиазол-, пиридин-, хинолин-, хиноксалин-, изохинолин-, тиенопиразин-, пиран-, пиримидин-, пиридазин-, пиразин-, пурин- или триазингруппа. Вышеуказанное гетероциклическое кольцо может быть незамещенным или замещенным одним или более заместителями, например одним или более заместителями, выбранными из ОН, галогена, C1-C6-алкила, незамещенного или замещенного, например галогеном, такой как СF3, C1-C6-алкокси, нитро и вышеуказанной аминогруппы N(R10R11). Предпочтительно гетероциклическая группа, представленная R9, включает по меньшей мере один атом азота, и гетероциклическая группа, представленная Аr, включает по меньшей мере один атом азота или серы. В предпочтительных рядах соединений n обозначает 0, а R4 обозначает -СН2СН2-, который присоединен в положение 2 или 6 цикла , завершая с циклом тетрагидроизохинолиновую группу. Альтернативно n обозначает 1, а R4 обозначает -СН2-, который присоединен в положение 2 или 6 цикла , завершая с циклом тетрагидроизохинолиновую группу. В других предпочтительных рядах соединений m обозначает 1, Х обозначает простую связь, присоединенную в положение 3 или 4 цикла , и R4 обозначает -CH2-, который присоединен в положение кольца цикла , соседнее с положением 3 или 4 соответственно, завершая с циклом тетрагидроизохинолиновую группу. Альтернативно m обозначает 0, Х обозначает простую связь, присоединенную в положение 3 или 4 цикла , и R4 обозначает -СН2СН2-, который присоединен в положение кольца цикла , соседнее с положением 3 или 4 соответственно, завершая с циклом тетрагидроизохинолиновую группу. Группа Аr обозначает предпочтительно бензольное, нафталиновое, тиофеновое, тиенопиразиновое, пиридиновое, пиразиновое, индольное или фурановое кольцо. Группа R9 является предпочтительно хинолин-, изохинолин-, хиноксалин-, пиридин-, пиразин-, оксазол-, изоксазол-, тиазол- или изотиазолгруппой. Более предпочтительно, R9 обозначает хинолин-3-ил, хиноксалин-2-ил, пиразин-2-ил, пиридин-2-ил-, пиридин-3-ил, оксазол-4-ил- или тиазол-4-ил-группу. R, R1 и R2 предпочтительно независимо выбирают из Н, ОН, C1-C6-алкокси и нитро, или R обозначает Н, и R1 и R2, являясь присоединенными в положениях 2 и 3, 3 и 4, 4 и 5 или 5 и 6 цикла , вместе образуют метилендиокси- или этилендиоксигруппу. В предпочтительном аспекте антраниловая кислота по изобретению имеет следующую формулу (Iа): где R11 и R21, которые могут быть одинаковыми или различными, каждый обозначает водород или метокси; R31 и R41, которые могут быть одинаковыми или различными, каждый независимо выбирают из Н, СН3, СF3, F, Cl, Вr, NH2, NO2, NHOH, метокси, гидрокси и фенила; или R31 и R41, когда расположены на соседних углеродных атомах, образуют вместе с атомами углерода, к которым они присоединены, бензольный цикл или метилендиоксизаместитель, R51 обозначает 2-фуранил, 3-фуранил, 2-тиофен, 3-тиофен, 2-индолил или 2-бензофуранил или цикл одной из нижеследующих формул (II'), (III') или (IV'): где R61 и R71, которые могут быть одинаковыми или различными, выбирают из водорода, линейного или разветвленного C1-С6-алкила, С3-С6-циклоалкила, фенила, бензила, трифторметила, F, Cl, Br, OR12, NO2, диметиламино, диэтиламино, ацетила и бензоила, или R61 и R71, когда расположены на соседних атомах углерода, образуют вместе с атомами углерода, к которым они присоединены, бензольный цикл или метилендиоксизаместитель. R81 и R91, которые могут быть одинаковыми или различными, каждый обозначает водород, метил или метокси, или R81 и R91, когда расположены на соседних углеродах, образуют вместе с пиридиновым циклом, к которому они присоединены, хинолин- или 5,6,7,8-тетрагидрохинолинциклическую систему; R101 и R111, которые могут быть одинаковыми или различными, каждый обозначает водород, метил или пропионил; или R101 и R111, когда расположены на соседних атомах углерода, образуют вместе с атомами углеродов, к которым они присоединены, бензольный цикл; R121 обозначает Н, C1-С6-алкил или С3-С6-циклоалкил, фенил, бензил или ацетил; r обозначает 0 или 1 и s обозначает 1, 2 или 3; или ее фармацевтически приемлемая соль. Целое число s имеет значения от 1 до 3 и предпочтительно равно 1 или 2. В предпочтительных рядах соединений формулы (Iа) r обозначает 1, s обозначает 2, R11 и R21 оба обозначают метокси, а R51 обозначает 2-хиноксалингруппу, 3-хинолингруппу, 2-пиразингруппу или 3-пиридингруппу, каждая из этих групп может быть незамещенной или замещенной. В другом аспекте антраниловая кислота по изобретению имеет следующую структуру (А) где (a) каждый из R, R1 и R2, которые являются одинаковыми или различными, обозначает Н, ОН, NO2, N(R10R11), галоген или С2-С6-алкокси, или R обозначает Н, и R1 и R2 образуют, вместе с атомами углерода, с которыми они связаны, метилендиокси- или этилендиоксигруппу, при условии, что R, R1 и R2 не все являются Н, и каждый из R3, R5, R6, R7, R8, R9, Аr, Х и m имеет вышеуказанные для формулы (I) значения; или (b) каждый из R, R1 и R2, которые являются одинаковыми или различными, обозначает Н или ОМе, и каждый из R3, R5, R6, R7, R8, R9, Аr, Х и m имеет вышеуказанные значения. В другом варианте антраниловая кислота по изобретению имеет следующую структуру (В): где R, R1-R3, R5-R9, Ar и n имеют вышеуказанные для формулы (I) значения. В дополнительном аспекте антраниловая кислота по изобретению имеет следующую структуру (С) где R, R1-R3, R5-R9, Ar, Х и m имеют вышеуказанные для формулы (I) значения. В другом варианте антраниловая кислота по изобретению имеет следующую структуру (D) где R, R1-R3, Ar, m и n имеют вышеуказанные для формулы (I) значения, а X, находящийся в положении 3 или 4 цикла , имеет вышеуказанные для формулы (I) значения. В предпочтительных рядах соединений формулы (I), R4 обозначает C1-C6-алкил. Предпочтительно R, R1 и R2 каждый обозначает Н, ОН или метокси. В цикле R6 присоединен к любому одному из положений 2 - 6. Обычно R6 присоединен в положение 2 цикла . Примеры предпочтительных соединений по изобретению приведены в табл.А. Соединения формулы (I) могут быть получены по способу, который включает: (а) обработку аминобензамида формулы (VI) где Аr, R7 и R8 имеют вышеуказанные значения, и Z представляет фрагмент где m, n, q, R, R1-R6 и Х имеют вышеуказанные значения, карбоновой кислоты формулы R9COOH или ее активированного производного, где R9 имеет вышеуказанные значения; или (b) обработку соединения формулы (XII) где Ar, R5, R6-R9, X, q и m имеют вышеуказанные значения, амина формулы XX где R, R1-R4 и n имеют вышеуказанные значения; и, если требуется, удаление любых присутствующих необязательных защитных групп, и/или, если требуется, превращение одного соединения формулы (I) в другое соединение формулы (I), и/или, если требуется, превращение одного соединения формулы (I) в его фармацевтически приемлемую соль, и/или, если требуется, превращение соли в свободное соединение формулы (I). В варианте способа (а) карбоновая кислота R9-COOH является коммерчески доступной или может быть получена как описано в далее следующем ссылочном примере 6А. Кислота может быть активированной, в виде соответствующего хлорангидрида R9-COCl. Он может быть получен коммерчески или получен обработкой свободной карбоновой кислоты R9-COOH тионилхлоридом. Альтернативно карбоновая кислота R9-COOH может быть активирована циклогексил-N-(2-морфолиноэтил)карбодиимид-метил-п-толуол-сульфонатом и 1-гидроксибензотриазолом, или 2-хлор-1-метилпиридиний-йодидом. Аминобензамиды общей формулы VI могут быть получены одним из трех способов, иллюстрируемых схемой 1 (см. в конце описания), где каждый из Z, R7, R8 и Ar имеет вышеуказанные значения. Первый путь включает непосредственное сочетание соответственно замещенной, коммерчески доступной антраниловой кислоты формулы (IV) с амином формулы IX (стадия III) и описан более подробно в нижеследующем ссылочном примере 4А. Исходный амин формулы IX может быть получен как описано в нижеследующем ссылочном примере 1А. Второй путь включает сочетание соответственно замещенной, коммерчески доступной нитробензойной кислоты III и последующее восстановление нитрогруппы до аминогруппы (стадии I и II). Эти стадии описаны более подробно в нижеследующих ссылочных примерах 2А и 3А соответственно. Третий способ включает 4 стадии, исходя из коммерчески доступного сложного аминоэфира VII. Этот способ описан более подробно в нижеследующем ссылочном примере 5. В варианте способа (b) амины формулы XX являются известными соединениями или могут быть получены из известных исходных соединений с применением общепринятых в органической химии технологий, например, как описано в примере 3. Промежуточный бромид формулы II получают обработкой соответствующего гидроксисоединения формулы XVII бромирующим агентом. Подходящие бромирующие агенты включают N-бромсукцинимид. Гидроксисоединение формулы XVII может быть получено как иллюстрируется схемой 2 (см. в конце описания). Реакции схемы 2 более подробно описаны в нижеследующем ссылочном примере 7. Исходное аминопроизводное формулы XIII, в котором Р обозначает гидроксизащитную группу, получают из соответствующего защищенного нитропроизводного путем восстановления, например, обработкой H2 в EtOH в присутствии PtO2. Защищенное нитропроизводное, в свою очередь, получают обработкой незащищенного нитропроизводного защитной группой, что дает группу Р. Стадию (I) обычно осуществляют реакцией совместно соединений формулы XIII и XIV в присутствии основания, например триэтиламина. Полученное соединение восстанавливают на стадии (II), например, в условиях, описанных выше для получения соединения XIII, с получением промежуточного соединения формулы XV. Стадия (III) включает обработку соединения формулы XV соединением R9-COCl в органическом растворителе в присутствии основания, с получением соединения формулы XVI. С последнего соединения снимают защиту на стадии (IV), и полученное незащищенное производное формулы XVII подвергают взаимодействию с бромирующим агентом на стадии (V), получая целевое соединение формулы XII. Соединения формулы (Iа) могут быть получены по способу, который включает: (а') обработку аминобензамида формулы (VIII') где R31 и R41 имеют вышеуказанные значения и, если требуется, являются необязательно защищенными, и Z' представляет фрагмент где r, s, R11 и R21 имеют вышеуказанные значения, карбоновой кислоты формулы R51-COOH, или ее активированного производного, где R51 имеет вышеуказанные значения; или (b') обработку соединения формулы XII' где R51 имеет вышеуказанные значения, амином формулы IX' где r, s, R11 и R21 имеют вышеуказанные значения; с получением соединения формулы (Iа), где R31 и R41 оба являются водородом; или (с') обработку азалактона формулы XIII' где R51 имеет вышеуказанные значения, амином формулы (IX') где r, s, R11 и R21 имеют вышеуказанные значения, с получением соединения формулы (Iа), где R31 и R41 оба являются водородом; и, если требуется, удаление любых присутствующих необязательных защитных групп, и/или, если требуется, превращение одного соединения формулы (Iа) в другое соединение формулы (Iа), и/или, если требуется, превращение одного соединения формулы (Iа) в его фармацевтически приемлемую соль, и/или, если требуется, превращение соли в свободное соединение формулы (Ia). В варианте способа (а') карбоновая кислота R51-COOH является коммерчески доступной или может быть получена как описано в нижеследующем ссылочном примере 6В. Кислота может быть активированной, в виде соответствующего хлорангидрида R51-COCl. Он может быть получен коммерчески или получен обработкой свободной карбоновой кислоты R51-COOH тионилхлоридом. Альтернативно карбоновая кислота R51-COOH может быть активирована циклогексил-N-(2-морфолиноэтил)карбодиимид-метил-п-толуол-сульфонатом и 1-гидроксибензотриазолом, или 2-хлор-1-метилпиридиний-йодидом. 2-Аминобензамиды формулы VIII' получают одним из двух способов. Первый включает восстановление соответствующих 2-нитробензамидов, например, обработкой водородом в присутствии РtO2-катализатора. 2-Нитробензамид, в свою очередь, может быть получен обработкой соответствующей 2-нитробензойной кислоты, которая необязательно является активированной, амином формулы IX', как определено выше. Получение аминов формулы IX' описано в нижеследующем ссылочном примере 1В. Стадии до промежуточного соединения VIII' иллюстрируются последующей схемой 3 (см. в конце описания). Стадии (I), (II) и (III) схемы описаны в последующих ссылочных примерах 2В, 3В и 4В соответственно, и стадия (III) описана в ссылочном примере 4В. Получение амина IX' описано в ссылочном примере 1В. В варианте способа (b') промежуточное соединение формулы XII' получают гидролизом соответствующего сложного метилового эфира, который, в свою очередь, получают обработкой коммерчески доступного метил-антранилата хлорангидридом кислоты в присутствии триэтиламина в дихлорметане. Эти стадии описаны в последующем ссылочном примере 6. В варианте способа (с') азалактон формулы XIII' получают обработкой коммерчески доступной антраниловой кислоты хлорангидридом кислоты общей формулы R51-COCl в пиридине или в смеси пиридин/дихлорметан при 0oС в течение 3-8 часов. Соединения формулы (I) общепринятыми способами могут быть превращены в фармацевтически приемлемые соли, и соли могут быть превращены в свободное соединение. Соли могут являться моно- или бис-солями. Бис-соли, или двойные соли, могут быть получены, когда в структуре соединения формулы (I) есть два основных атома азота. Подходящие соли включают соли с фармацевтически приемлемыми неорганическими или органическими кислотами. Примеры неорганических кислот включают соляную кислоту, серную кислоту и ортофосфорную кислоту. Примеры органических кислот включают п-толуолсульфокислоту, метансульфокислоту, слизевую кислоту и янтарную кислоту. Бис-соли могут включать, в частности, бис-гидрохлориды и бис-мезилаты. Необязательное превращение соединения формулы (I) в другое соединение формулы (I) может быть выполнено общепринятыми способами. Например, соединение формулы (I), содержащее этерифицированную гидроксигруппу, такую как -ОСОМе, путем гидролиза, например щелочного гидролиза, может быть превращено в соединение формулы (I), содержащее свободную гидроксигруппу. Соединение формулы (I), содержащее гидроксигруппу путем этерификации, например путем реакции с подходящей карбоновой кислотой, галогенангидридом или ангидридом, может быть превращено в соединение формулы (I), содержащее этерифицированную гидроксигруппу. Соединение, содержащее галоген, может быть превращено в соединение, содержащее арилгруппу по реакции сочетания Suzuki (Miyaura, M., Yanagi, Т. and Suzuki, A. , Synth. Commun. 1981, vol. 11, р.513). Соединение формулы (I), содержащее нитрогруппу, может быть превращено в соединение формулы (I), содержащее аминогруппу, восстановлением, например обработкой газообразным водородом в присутствии РtO2-катализатора. Также, соединение формулы (I), содержащее нитрогруппу, путем восстановления, например обработкой газообразным водородом в присутствии РtO2-катализатора при соответственно регулируемых условиях, может быть превращено в соединение формулы (I), содержащее гидроксиаминогруппу - NHOH. Раковые клетки, которые проявляют множественную лекарственную устойчивость, упомянутые как MDR-клетки, демонстрируют снижение внутриклеточной кумуляции лекарства по сравнению с соответствующими чувствительными к лекарствам клетками. Как обсуждалось выше, исследования с использованием in vitro полученных линий MDR клеток показали, что MDR часто связана с повышенной экспрессией гликопротеина клеточной мембраны (Р-gр), обладающего свойствами связывать лекарства. Предполагается, что Р-gр действуют как откачивающий насос для многих гидрофобных соединений, и исследования трансфекции с использованием клонированного Р-gр показали, что его избыточная экспрессия может давать MDR-фенотип на клетках: см., например, Ann. Rev. Biochem., 58, 137-171 (1989). Основная функция Р-gр в нормальных тканях состоит в выводе внутриклеточных токсинов из клетки. Есть основания предполагать, что избыточная экспрессия Р-gр может играть клиническую роль во множественной лекарственной устойчивости. Повышенные уровни Р-gр мРНК или белка обнаружены во многих формах человеческих раковых опухолей - лейкемиях, лимфомах, саркомах и карциномах. Действительно, было найдено, что в некоторых случаях Р-gр-уровни повышены в опухолевых биопсиях, полученных после рецидива от химиотерапии. Показано, что ингибирование Р-gр-функции в Р-gр-опосредованной MDR ведет к общей кумуляции противораковых средств в клетках. Например, показано, что верапамил, известный блокатор кальциевых каналов, повышает чувствительность MDR-клеток к алкалоидам Vinca in vitro и in vivo: Cancer Res., 41, 1967-1972 (1981). Предполагаемый механизм действия включает конкуренцию с противораковым средством за связывание с Р-gр. Описан ряд структурно несвязанных модифицирующих устойчивость средств, действующих по этому механизму, таких как тамоксифен (Nolvadex: ICI) и родственные соединения, и циклоспорин А и производные. В биологических тестах найдено, что производные антраниловой кислоты формулы (I) и их фармацевтически приемлемые соли (далее называемые как "рассматриваемые соединения") обладают активностью в качестве ингибиторов Р-gр. Они могут быть использованы для модуляции MDR, в частности Р-gр-опосредованной MDR. Результаты приведены в нижеследующем примере 1. Как Р-gр-ингибиторы, рассматриваемые соединения могут быть использованы в качестве средств модификации множественной лекарственной устойчивости, также называемые модифицирующие устойчивость средства или RMAs. Рассматриваемые соединения могут модулировать, например снижать или устранять множественную лекарственную устойчивость, особенно ту, которая является Р-gр-опосредованной. Следовательно, рассматриваемые соединения могут быть использованы в способе усиления действия цитотоксичности агента, являющегося цитотоксическим в отношении опухолевой клетки. Такой способ включает, например, применение одного из рассматриваемых соединений к опухолевой клетке, пока опухолевая клетка подвергается воздействию указанного цитотоксического агента. Терапевтический эффект химиотерапевтического или противоопухолевого средства может таким образом быть усилен. Множественная лекарственная устойчивость опухолевой клетки к цитотоксическому средству во время химиотерапии может быть снижена или устранена. Рассматриваемые соединения могут также быть использованы в способе лечения заболевания, при котором ответственный патогенный микроорганизм обладает множественной лекарственной устойчивостью, особенно Р-gр-опосредованной множественной лекарственной устойчивостью, например множественные лекарственные устойчивые формы малярии (Plasmodium falciparum), туберкулеза, лейшманиоза и амебной дизентерии. Такой способ включает, например, применение одного из рассматриваемых соединений с (раздельно, одновременно или последовательно) лекарственным средством, к которому связанный патогенный микроорганизм проявляет множественную лекарственную устойчивость. Терапевтический эффект лекарственного средства, направленный против патогенного микроорганизма с множественной лекарственной устойчивостью, может таким образом быть усилен. Больной человек или животное, имеющие опухоль, могут быть подвергнуты лечению от устойчивости к химиотерапевтическому средству способом, включающим введение им одного из рассматриваемых соединений. Рассматриваемое соединение вводят в количестве, эффективном для усиления действия цитотоксичности указанного химиотерапевтического средства. Примеры химиотерапевтических или противоопухолевых средств, предпочтительных с точки зрения настоящего изобретения, включают алкалоиды Vinca, такие как винкристин и винбластин; антрациклиновые антибиотики, такие как даунорубицин и доксорубицин; митоксантрон; актиномицин D; таксаны, например таксол; эпиподофиллотоксины, например этопозид и пликамицин. Рассматриваемые соединения могут также быть использованы в способе улучшения характеристик абсорбции, распределения, метаболизма и выделения терапевтического средства, который включает введение пациенту, раздельно, одновременно или последовательно, одного из рассматриваемых соединений и указанного терапевтического средства. В частности, этот способ может быть использован для повышения проникновения терапевтического средства в центральную нервную систему или повышения пероральной абсорбции терапевтического средства. Например, рассматриваемые соединения могут быть использованы в способе облегчения доставки лекарственных средств через гематоэнцефалический барьер и при лечении СПИДа или СПИД-связанного комплекса. Больной человек или животное при необходимости такого лечения могут быть подвергнуты лечению по способу, включающему введение им одного из рассматриваемых соединений. Рассматриваемые соединения могут быть введены в различных лекарственных формах, например перорально, в форме таблеток, капсул, покрытых сахаром или оболочкой таблеток, жидких растворов или суспензий, или парентерально, например внутримышечно, внутривенно или подкожно. Следовательно, рассматриваемые соединения могут быть введены путем инъекции или вливания. Дозировка зависит от различных факторов, включающих возраст, вес и состояние пациента, и пути введения. Однако обычно дозировка для взрослого человека, принятая для каждого способа введения, при введении только соединения по изобретению составляет от 0,001 до 50 мг/кг, наиболее часто в интервале от 0,01 до 5 мг/кг веса тела. Так доза может вводиться, например, от 1 до 5 раз ежедневно путем болюсной инфузии, инфузией в течение нескольких часов и/или путем повторного введения. Производное антраниловой кислоты формулы (I) или его фармацевтически приемлемую соль составляют для применения в виде фармацевтической или ветеринарной композиции, включающей также фармацевтически или ветеринарно приемлемый носитель или разбавитель. Композиции обычно получают следующими общепринятыми способами и вводят в фармацевтически или ветеринарно приемлемой форме. Следовательно, предлагается средство для применения в качестве модулятора множественной лекарственной устойчивости, включающее любое одно из рассматриваемых соединений. Рассматриваемые соединения могут быть введены в любой общепринятой форме, например, как перечислено ниже: А) Перорально, например в виде таблеток, покрытых оболочкой таблеток, драже, пастилок, лепешек, водных или масляных суспензий, жидких растворов, диспергируемых порошков или гранул, эмульсий, жестких или мягких капсул или сиропов или эликсиров. Предназначенные для перорального применения композиции могут быть получены любым способом, известным в области промышленного получения фармацевтических композиций, и такие композиции могут содержать один или более агентов, выбранных из группы, состоящей из подслащивающих веществ, ароматизирующих веществ, красителей и консервантов для получения фармацевтически изысканных и принятых препаратов. Таблетки содержат активный ингредиент в смеси с нетоксическими фармацевтически приемлемыми эксципиентами, пригодными для промышленного получения таблеток. Этими эксципиентами могут быть, например, инертные разбавители, такие как карбонат кальция, карбонат натрия, лактоза, декстроза, сахароза, целлюлоза, кукурузный крахмал, картофельный крахмал, фосфат кальция или фосфат натрия; гранулирующие и дезинтегрирующие средства, например маисовый крахмал, альгиновая кислота, альгинаты или натрий-крахмал-гликолят; связующие средства, например крахмал, желатин или акация; смазывающие средства, например двуокись кремния, стеарат магния или кальция, стеариновая кислота или тальк; пенящиеся смеси; красители, подсластители, смачивающие средства, такие как лецитин, полисорбаты или лаурилсульфат. Таблетки могут быть без оболочки, или они могут быть покрыты оболочками известными способами для замедления расще