Осуществление способа формования нетканого материала из пеноволокнистой массы с использованием контроллеров с нечетким алгоритмом

Реферат

 

Изобретение предназначено для использования при изготовлении нетканых материалов. Способ содержит стадии: (а) смешивания целлюлозных, синтетических или стеклянных волокон, воды, воздуха, рециркулируемой пены и поверхностно-активного вещества (ПАВ) в смесительном резервуаре для приготовления пеноволокнистой массы; (b) напуска пеноволокнистой массы в холстообразователь; (с) управления процессом формования; (d) формования волокнистого холста в холстообразователе со скоростью, равной скорости его подачи, путем удаления жидкости и пены из массы в холстообразователе и собирания по меньшей мере части удаленной жидкости и пены в поддоне под сеточным транспортером; (е) дополнительного воздействия на волокнистый холст, сформованный в холстообразователе для получения готового нетканого материала. Особенностью способа является то, что он содержит стадию (f), заключающуюся в том, что по меньшей мере одну из стадий (а)-(е) выполняют, используя контроллер с нечетким алгоритмом. Можно контролировать по меньшей мере уровень в поддоне под сеточным транспортером, уровень в смесительном резервуаре, давление в коллекторе холстообразователя, плотность пены, коэффициент истечения (скорость пены, деленная на скорость сеточного транспортера), подачу поверхностно-активного вещества (ПАВ), общую поверхностную плотность вырабатываемого волокнистого холста и, особенно когда изготавливают волокнистый холст из стеклянных волокон, уровень в резервуаре для связующего. Определенные входные параметры используют для каждого контроллера с нечетким алгоритмом. Например, контроллер с нечетким алгоритмом для автоматического контролирования уровня в смесительном резервуаре, в качестве входных параметров которого используют по меньшей мере некоторые из следующих параметров: плотность и скорость потока пены, многократно повторно подаваемой в смесительный резервуар из поддона под сеточным транспортером, рН пены в смесительном резервуаре, уровень пены в поддоне под сеточным транспортером и количество добавляемого в смесительный резервуар волокна. Нейронная сеть управления может быть использована для осуществления контроля качества, по существу, по всей системе для производства нетканого материала, и информацию о лабораторных испытаниях вводят в нейронную сеть управления для повышения уровня ее действия. Обеспечивается эффективное управление процессом формования волокнистого холста из пеноволокнистой массы при эффективном использовании практически любых волокон и наполнителей. 3 с. и 26 з.п.ф-лы, 25 ил., 6 табл.

Предпосылки к созданию изобретения и краткое описание изобретения При эффективном осуществлении способа формования волокнистого холста из пеноволокнистой массы при производстве нетканого материала, например, описанного в патентах США 3716449 и 3871952 (сущность которых включена в настоящую заявку путем ссылки), достигается ряд преимуществ в сравнении со способом формования волокнистого холста из водно-волокнистой массы. Однако в прошлом было сложно сделать процесс формования волокнистого холста из пеноволокнистой массы промышленно эффективным при использовании многих различных типов волокон. Хотя существует ряд промышленных установок для формования волокнистого холста из полипропиленовых волокон или стекловолокон при производстве нетканых материалов, могут возникать сложности в управлении такими установками и не было достигнуто эффективного промышленного производства при формовании волокнистого холста из целлюлозных или синтетических волокон (кроме установок по переработке полипропилена, упомянутых выше).

До сих пор процессами формования волокнистого холста из пеноволокнистой массы при производстве нетканых материалов управляли вручную или с использованием пропорциональных, интегральных и дифференциальных контроллеров (PID-контроллеров). Процессами можно управлять вручную, но это требует длительных периодов тренировки, знания процессов в совершенстве и большой концентрации внимания обслуживающего персонала, чтобы быть готовым к выполнению всех требуемых регулировочных операций в правильном порядке и точно по величине. При установившемся режиме работы, когда нет никаких нарушений процесса, ручное управление или управление с использованием PID-контроллеров можно считать приемлемым, поскольку обычно обеспечиваются качественные показатели продукции, соответствующие требованиям потребителей. Однако некоторые потребители выдвигают более высокие требования к качеству продукции (вероятно, из-за более высоких требований потребителей готовой продукции), которые легко приводят к существенному повышению количества брака, т.е. к выпуску продукции, не отвечающей требованиям потребителя, которая должна быть пущена в отходы. Кроме того, все возмущения процесса, например, пуск линии, изменения качества сырья и т.д., приводят к возникновению дополнительных проблем и требуют еще более компетентного обслуживающего персонала для того, чтобы сделать возможным выполнение быстрых и плавных регулировок при пуске линии или изменении качества сырья продукции.

При сравнении процесса, регулируемого вручную и с использованием PID-контроллеров, с процессом с использованием первых экспериментальных версий, выполненных в соответствии с настоящим изобретением, достаточно быстро было установлено, что время, требуемое для компенсации пуска линии, сокращается вдвое, время, требуемое для компенсации изменений качества сырья, сокращается, по меньшей мере, вдвое, в некоторых особых случаях время удается сократить почти до нуля, количество брака было сокращено, по меньшей мере, вдвое, разброс контролируемых параметров процесса был уменьшен вдвое и разброс физических параметров волокнистого холста был снижен вдвое. Так как приведенные выше результаты были получены на линии с индексом "бета", выполненной в соответствии с настоящим изобретением, то можно надеяться, что лучшее понимание изобретения и точная настройка нечетких управляющих алгоритмов и оборудования приведут к еще лучшим результатам.

В соответствии с настоящим изобретением можно эффективно управлять процессом формования волокнистого холста из пеноволокнистой массы при эффективном использовании практически любых волокон и наполнителей при выпуске широкого качества сырья нетканых материалов, отличающихся как по виду, так и по поверхностной плотности, и использовать преимущества процесса формования волокнистого холста из пеноволокнистой массы. Основные отличительные особенности настоящего изобретения, благодаря которым появляется возможность эффективного управления, заключаются в использовании контроллеров с нечетким алгоритмом в ряде различных стадий, выполняемых при формовании волокнистого холста. Предпочтительно использовать также нейронную сеть управления для сбора данных испытаний по определению качественных показателей (производимых вне линии) и показателей процесса для определения контрольных точек для долгосрочного регулирования и прогнозирования. Многопараметрическое регулирование может быть также использовано для измерения толщины волокнистого холста и для регулирования разбавления в/или/при подаче к отдельным распределительным трубам, чтобы задать контрольные точки различным контроллерам с нечетким алгоритмом. Контроллеры с нечетким алгоритмом, нейронная сеть управления и средства для многопараметрического управления, используемые в соответствии с изобретением, все являются обычными стандартными изделиями, например, поставляемыми фирмой Honeywell-Alcont.

В соответствии с одним аспектом настоящего изобретения создана система для производства нетканых материалов из целлюлозных, синтетических или стеклянных волокон. Эта система содержит следующие компоненты: смесительный резервуар для смешивания целлюлозных, синтетических или стеклянных волокон, воды, воздуха, повторно используемой (рециркулируемой) пены и поверхностно-активного вещества (ПАВ) для образования пеноволокнистой суспензии (массы); холстообразователь для формования волокнистого холста со скоростью перемещения волокнистого холста, соответствующей скорости формования, путем удаления жидкости и пены из массы и сбора, по меньшей мере, части удаленной жидкости и пены в поддоне под сеточным транспортером; насос для нагнетания пеноволокнистой массы из смесительного резервуара в холстообразователь; средство для последующего воздействия на волокнистый холст, сформованный на холстообразователе, для получения готового нетканого материала; и множество контроллеров с нечетким алгоритмом, включая, по меньшей мере, один контроллер с нечетким алгоритмом для автоматического регулирования плотности пены в смесительном резервуаре и, по меньшей мере, один контроллер с нечетким алгоритмом для автоматического регулирования уровня массы в смесительном резервуаре.

Входными параметрами контроллера с нечетким алгоритмом для автоматического регулирования уровня в смесительном резервуаре являются плотность и скорость потока пены, которую повторно подают в смесительный резервуар из поддона под сеточным транспортером, рН пены в смесительном резервуаре, уровень пены в поддоне под сеточным транспортером и количество волокна, добавляемого в смесительный резервуар. Предпочтительно также использовать контроллеры с нечетким алгоритмом для регулирования, по меньшей мере, уровня в поддоне под сеточным транспортером, давления в коллекторе холстообразователя и коэффициента истечения, а также для регулирования подачи ПАВ и общей поверхностной плотности вырабатываемого нетканого материала. Связующее также добавляют при производстве нетканого материала, содержащего, по меньшей мере, 10% стеклянных или арамидных волокон, причем связующее подают в резервуар для связующего. В этом случае система дополнительно содержит контроллер с нечетким алгоритмом для регулирования уровня в резервуаре для связующего.

Обычно холстообразователь содержит перемещаемый сеточный транспортер и напорный ящик. Один из контроллеров с нечетким алгоритмом предпочтительно содержит контроллер с нечетким алгоритмом для автоматического регулирования соотношения смеси воздух/пена, подаваемой в холстообразователь, включая регулирование скорости сеточного транспортера холстообразователя и давления в напорном ящике; причем в качестве входных параметров контроллера с нечетким алгоритмом используют, по меньшей мере, некоторое значение поверхностной плотности формируемого волокнистого холста, давление в напорном ящике, уровень пены в поддоне под сеточным транспортером, плотность рециркулируемой пены и количество или скорость удаления пены из напорного ящика.

Средства для последующей обработки волокнистого холста из пены могут содержать средство для промывки волокнистого холста и для удаления из волокнистого холста жидкости во время или в связи с промывкой (как правило, используют любую обычную моечную машину и/или вакуумное устройство для обработки волокнистого холста). В этом случае один из контроллеров с нечетким алгоритмом автоматически управляет средством для промывки и удаления жидкости, причем в качестве входных параметров контроллера с нечетким алгоритмом используют, по меньшей мере, некоторые из них: скорость холстоформирования, поверхностную плотность волокнистого холста, температуру промывочной жидкости, скорость отсасываемой пены и давление в средстве для промывки.

Средство для последующей обработки сформованного волокнистого холста может содержать обычную сушильную машину, в этом случае один из контроллеров с нечетким алгоритмом автоматически управляет сушильной машиной, причем в качестве входных параметров контроллера с нечетким алгоритмом используют, по меньшей мере, некоторые из следующих параметров: установочную температуру сушки, скорость транспортирования волокнистого холста, количество энергии, подаваемой в сушильную машину, уровень влажности в сушильной машине и перепад давления над и под волокнистым холстом в различных точках по длине сушильной машины.

Система может дополнительно содержать нейронную сеть управления для, по меньшей мере, частичного взаимодействия с контроллерами с нечетким алгоритмом для управления процессом формования волокнистого холста и/или для осуществления контроля качества по существу по всей линии для изготовления нетканого материала.

Согласно другому аспекту настоящего изобретения создан способ изготовления нетканого материала из целлюлозных, синтетических или стеклянных волокон, содержащий следующие стадии: (а) смешивание целлюлозных, синтетических или стеклянных волокон, воды, воздуха, рециркулируемой пены и ПАВ в смесительном резервуаре для приготовления пеноволокнистой массы; (b) нагнетание пеноволокнистой массы в холстообразователь; (с) управление работой холстообразователя; (d) в холстообразователе, формование волокнистого холста при скорости перемещения холста, путем удаления жидкости и пены из массы в холстообразователе, и сбор, по меньшей мере, части удаленной жидкости и пены в поддоне под сеточным транспортером; (е) дополнительное воздействие на холст, сформованный в холстообразователе, для получения готового нетканого материала; (f) осуществление, по меньшей мере, стадии (а) с использованием контроллера с нечетким алгоритмом.

Стадию (а) можно осуществлять частично путем регулирования уровня массы в смесительном резервуаре, а стадию (f) можно осуществлять частично путем автоматического регулирования уровня в смесительном резервуаре с использованием контроллера с нечетким алгоритмом, в котором в качестве входных параметров используют, по меньшей мере, некоторые из следующих параметров: плотность и скорость потока пены, повторно подаваемой в смесительный резервуар из поддона под сеточным транспортером, рН пены в смесительном резервуаре, уровень пены в поддоне под сеточным транспортером и количество волокна, добавляемого в смесительный резервуар. Стадию (а) можно также осуществлять путем автоматического регулирования количества добавляемого ПАВ и путем рециркуляции некоторого количества воды, удаляемой из волокнистого холста во время формования и отделенной от воздуха; и далее стадию (f) осуществляют частично путем автоматического управления количеством добавляемого ПАВ с использованием контроллера с нечетким алгоритмом, в котором в качестве входных используют, по меньшей мере, некоторые из следующих параметров: скорость потока ПАВ, давление в коллекторе холстообразователя, уровень пены в поддоне под сеточным транспортером, скорость потока добавляемого волокна и скорость потока рециркулируемой воды.

Стадию (с) можно осуществлять, по меньшей мере, частично путем автоматического регулирования соотношения воздух/пена при подаче в холстообразователь, включая регулирование скорости сеточного транспортера в холстообразователе и давление в напорном ящике; и далее стадию (f) осуществляют частично путем использования контроллера с нечетким алгоритмом, в котором в качестве входных используют, по меньшей мере, некоторые из следующих параметров: поверхностную плотность формируемого волокнистого холста, давление в напорном ящике, уровень пены в поддоне под сеточным транспортером, плотность рециркулируемой пены и количество или скорость удаления пены из напорного ящика. Стадию (е) выполняют для промывки холста и удаления жидкости из волокнистого холста во время или в связи с промывкой; и затем стадию (f) выполняют частично для автоматического контролирования стадии (е) путем использования контроллера с нечетким алгоритмом, в котором в качестве входных используют, по меньшей мере, некоторые из следующих параметров: скорость формования волокнистого холста, давление в моечной машине, поверхностную плотность волокнистого холста, температуру промывочной воды, скорость отсоса пены.

Способ может также дополнительно содержать стадию использования нейронной сети управления для осуществления контроля качества по существу по всей технологической линии по изготовлению нетканого материала.

Согласно другому аспекту настоящего изобретения создан способ изготовления нетканого материала из целлюлозных, синтетических или стеклянных волокон, который содержит следующие стадии: (а) смешивание целлюлозных, синтетических или стеклянных волокон, воды, воздуха, рециркулируемой пены и ПАВ в смесительном резервуаре для приготовления пеноволокнистой массы; (b) нагнетание пеноволокнистой массы в холстообразователь; (с) управление работой холстообразователя; (d) в холстообразователе - формование волокнистого холста при скорости перемещения волокнистого холста путем удаления жидкости и пены из массы в холстообразователе и сбор, по меньшей мере, части удаленной жидкости и пены в поддоне под сеточным транспортером; (е) дополнительное воздействие на волокнистый холст, сформованный в холстообразователе, для получения готового нетканого материала; (f) выполнение, по меньшей мере, стадий (а)-(е) с использованием контроллера с нечетким алгоритмом; и стадию (g), используя нейронную сеть управления для осуществления контроля качества по существу по всей технологической линии изготовления нетканого материала.

Стадию (e) можно выполнять с целью сушки волокнистого холста, причем большая часть волокон, добавляемых на стадии (а), может быть стекловолокнами, к которым добавляют связующее. В этом случае стадию (f) выполняют частично для управления процессом сушки волокнистого холста и добавлением связующего, используя контроллеры с нечетким алгоритмом.

Стадию (а) можно также выполнять частично для точного контролирования рН в смесительном резервуаре, используя множество рН-метров для измерения кислотности; и далее стадию (f) выполняют частично, используя контроллер с нечетким алгоритмом для контролирования и координирования рН-метров.

В соответствии с еще одним аспектом настоящего изобретения создан способ изготовления нетканого материала из целлюлозных, синтетических или стеклянных волокон, который содержит следующие стадии: (а) смешивание целлюлозных, синтетических или стеклянных волокон, воды, воздуха, рециркулируемой пены и ПАВ в смесительном резервуаре для приготовления пеноволокнистой массы; (b) нагнетание пеноволокнистой массы в холстообразователь; (с) контролирование работы холстообразователя; (d) в холстообразователе формование волокнистого холста при скорости перемещения волокнистого холста путем удаления жидкости и пены из массы в холстообразователе и сбор, по меньшей мере, части удаленной жидкости и пены в поддоне под сеточным транспортером; (е) дополнительное воздействие на волокнистый холст, сформованный в холстообразователе, для получения готового нетканого материала; и стадию (f), использование контроллеров с нечетким алгоритмом для управления, по меньшей мере, уровнем в поддоне под сеточным транспортером, уровня в смесительном резервуаре, давления в коллекторе холстообразователя, плотности пены и коэффициента истечения.

Стадию (f) можно дополнительно выполнять с целью контролирования подачи ПАВ и общей поверхностной плотности вырабатываемого нетканого материала. Связующее можно также добавлять во время изготовления нетканого материала, содержащего, по меньшей мере, 10% стеклянных или арамидных волокон, причем связующее добавляют в резервуар для связующего, а стадию (f) можно выполнять для контролирования уровня в резервуаре для связующего.

Основной целью настоящего изобретения является создание эффективной системы управления процессом формования волокнистого холста из пеноволокнистой массы при производстве нетканого материала.

Эта и другие цели изобретения станут более понятными при ознакомлении с подробным описанием изобретения и с прилагаемой Формулой изобретения.

Краткое описание иллюстраций На Фиг. 1 представлена общая блок-схема приведенной в качестве примера системы для осуществления процесса формования волокнистого холста из пеноволокнистой массы, выполненной в соответствии с настоящим изобретением; на Фиг. 2 - подробный схематический вид, частично в поперечном сечении, на котором показана подача пеноволокнистой массы из смесительного резервуара к насосу, питающему коллектор и напорный ящик; на Фиг.3 - подробный схематический вид в изометрии, частично с вырывами, показывающий возможность добавления самой по себе пены в трубу между коллектором и напорным ящиком; на Фиг.4 - вид сбоку, частично в разрезе части, приведенного в качестве примера, холстообразователя с наклонным сеточным транспортером, который может быть использован для осуществления процесса формования волокнистого холста из пеноволокнистой массы; на Фиг.5 - схематическое представление, иллюстрирующее эффект добавления пены в трубы, направленные от коллектора в напорный ящик; на Фиг.6 - схематическое представление поверхностной плотности волокнистого холста в напорном ящике, представленной на Фиг.4 и 5, с добавлением пены и без ее добавления; на Фиг.7 - схематический вид с торца, частично в разрезе, примерного вертикального холстообразователя, который может быть использован для осуществления процесса формования волокнистого холста из пеноволокнистой массы вместо холстообразователя с наклонным сеточным транспортером, представленного на Фиг.4; на Фиг. 8 - вид с торца с частями компонентов с вырывами для большей ясности рисунка, на котором показаны трубы в поперечном сечении устройства для подачи других материалов, расположенного в центре устройства, представленного на Фиг.7; на Фиг. 9 - схематический вид с торца, частично в разрезе, одной из вакуум-камер, используемых совместно с напорными ящиками/холстообразователями, представленными на Фиг.4 или 7; на Фиг.10 - вид сбоку холстообразователя, представленного на Фиг.7, вместе с другими компонентами системы для осуществления процесса формования волокнистого холста из пеноволокнистой массы; на Фиг.11 - схематический вид, на котором показан вариант осуществления компонентов линии, представленной на Фиг.10, с устройством для возврата пены из вакуум-камер в поддон под сеточным транспортером; на Фиг. 12 - схематический вид сбоку, на котором в качестве примера показана технологическая схема обработки волокнистого холста, сформованного с помощью устройства, представленного на Фиг. 1, после его формования, включая промывку холста и нанесение слоя материала с использованием простой установки для нанесения покрытия; на Фиг.13-16 - блок-схемы различных входных параметров и контролируемых функций контроллеров с нечетким алгоритмом системы, представленной на Фиг.1; на Фиг. 17 - блок-схема соединений между системой управления с нечеткой логикой, нейронной сетью управления и многопараметрической системой управления, которые могут быть использованы в соответствии с настоящим изобретением; на Фиг. 18 - более подробная, чем представленная на Фиг.17, блок-схема системы управления, на которой показаны различные системы и параметры, которые можно контролировать, и входные параметры, вводимые в системы контроля, выполненная в соответствии с настоящим изобретением; на Фиг.19 - блок-схема, на которой показано использование системы управления с нечеткой логикой для определения разницы между желаемой плотностью и измеренной плотностью пены, используемой в процессе формования волокнистого холста из пеноволокнистой массы в соответствии с изобретением; на Фиг. 20 - другая блок-схема, на которой показана система контролирования плотности пены с использованием контроллера с нечетким алгоритмом; на Фиг. 21 - блок-схема преобразования параметров измерений в группу нечетких множеств "фазификация"; на Фиг. 22 - графическое представление, иллюстрирующее примерное преобразование измеренных значений плотности пены в группу нечетких множеств; на Фиг.23 - схема, иллюстрирующая принцип действия "базы правил", используемый при преобразовании параметров измерений в группу нечетких множеств; на Фиг.24 - блок-схема, подобная изображенной на Фиг.21, только иллюстрирующая принцип "дефазификации"; на Фиг.25 - схематическое представление примера алгоритма "дефазификации".

Подробное описание иллюстраций Приведенная в качестве примера система по изготовлению матов или волокнистых холстов из целлюлозных и синтетических волокон в соответствии со способом формования волокнистого холста из пеноволокнистой массы согласно изобретению показана схематически на Фиг.1 и обозначена поз. 10. Система содержит смесительный резервуар или пульпер 11, снабженный впуском 12 для подачи волокна, впуском 13 для подачи поверхностно-активного вещества (ПАВ) и впуском 14 для подачи других добавок, например химических соединений для регулирования рН, например карбоната калия или кислот, стабилизаторов и т.д. Природа волокон, ПАВ и добавок в виде макрочастиц не играет существенной роли и их можно варьировать в широких пределах в зависимости от точных характеристик вырабатываемой продукции (включая ее поверхностную плотность). Желательно использовать ПАВ, которые могут быть достаточно легко вымыты, так как ПАВ приводят к снижению поверхностного натяжения готового волокнистого холста, если они остаются в волокнистом холсте, в частности это относится к продукции фирмы Weyerhaeuser, упоминаемой ниже, для которой это является нежелательным свойством.

Смесительный резервуар 11 сам по себе является совершенно обычным резервуаром такого же типа, что и резервуар, который используют в качестве смесителя в обычном бумагоделательном производстве при осуществлении процесса осаждения волокнистого слоя из водно-волокнистой массы. Единственным отличием является то, что боковые стенки смесительного резервуара 11 выступают вверх в три раза выше в сравнении с резервуаром, предназначенным для водно-волокнистой массы, так как пена имеет плотность, приблизительно составляющую одну треть плотности воды. Скорость и конфигурация мешалки обычного механического миксера в смесительном резервуаре 11 можно варьировать в зависимости от конкретных свойств вырабатываемой продукции, но эти параметры не являются существенными, и можно использовать широкий диапазон различных компонентов и переменных параметров. Тормозящие средства также могут быть устроены на стенках. На дне смесительного резервуара 11 устроен вихреобразователь, через который сливают пену, но вихрь не виден, при производстве пуска, так как смесительный резервуар 11 заполнен пеной и волокном.

В смесительном резервуаре 11 также предпочтительно установлено большое количество рН-метров 15 для измерения рН в ряде различных точек. рН оказывает влияние на поверхностное натяжение, и поэтому кислотность необходимо точно определять. рН-метры 15 поверяют ежедневно.

При первоначальном пуске воду с волокном добавляют по трубопроводу 12, ПАВ - по трубопроводу 13, а другие добавки - по трубопроводу 14; однако, как только процесс начат, добавочной воды не требуется, и, главным образом, осуществляют поддерживание пены в смесительном резервуаре 11, не только пенообразование.

Пеноволокнистую массу выпускают через дно смесительного резервуара 11, через вихреобразователь, по трубопроводу 16 под воздействием насоса 17. Насос 17, как и все другие насосы в системе 10, предпочтительно является дегазирующим центробежным насосом. Пена, выходящая из насоса 17, поступает по трубопроводу 18 к последующим устройствам.

На Фиг.1 показан устанавливаемый по выбору резервный, или буферный, резервуар 19, показанный пунктирными линиями. Резервный, или буферный, резервуар 19 не является обязательным, но может быть желательным для обеспечения относительно равномерного распределения волокна в пене в случае, когда имеют место некоторые колебания, когда смесь подают в смесительный резервуар 11. Это означает, что буферный резервуар 19 (который достаточно мал, обычно его объем составляет всего порядка 5 м3) выполняет роль, более или менее сходную с "пеноуловителем" для выравнивания распределения волокна. Так как общее время перемещения от смесительного резервуара 11 к напорному ящику обычно составляет всего только 45 секунд при выполнении процесса в соответствии с изобретением, буферный резервуар 19, если его используют, обеспечивает запас времени для выравнивания колебаний в распределении волокна.

Когда используют буферный резервуар 19, пену подают насосом 17 по трубопроводу 20 в верхнюю часть буферного резервуара 19, а отводят снизу резервуара по трубопроводу 21 под воздействием насоса, предпочтительно центробежного насоса 22, а затем подают в трубопровод 18. Это означает, что, когда используют буферный резервуар 19, насос 17 не напрямую соединен с трубопроводом 18, а только через посредство буферного резервуара 19.

Трубопровод 18 направлен в поддон 23 под сеточным транспортером. Поддон 23 под сеточным транспортером сам по себе является обычной ванной, опять-таки такой же, как в обычной линии для осуществления процесса осаждения волокнистого холста из водно-волокнистой массы, но с более высокими боковыми стенками. Важно сделать поддон 23 под сеточным транспортером так, чтобы в нем не было "мертвых" углов и, следовательно, поддон 23 не должен быть слишком большой. Обычное устройство 24, с помощью которого можно направлять пеноволокнистую смесь в трубопровод 18 и к насосу 25 (который операционно присоединен вблизи дна поддона 23 под сеточным транспортером), будет описано ниже со ссылкой на Фиг.2. В любом случае пеноволокнистую смесь, вводимую устройством 24, насосом 25 транспортируют по трубопроводу 18, и дополнительное количество пены из поддона 23 под сеточным транспортером подают в трубопровод 26. Так как насосом 25 отсасывают достаточно большое количество пены из поддона 23, то обычно консистенция смеси в трубопроводе 26 значительно меньше, чем в трубопроводе 18. Консистенция смеси в трубопроводе 18 обычно составляет 2-5% твердого вещества (волокна), тогда как в трубопроводе 26 она обычно составляет 0,5-2,5%.

В поддоне 23 под сеточным транспортером не происходит существенного разделения пены по слоям с различной плотностью. Хотя происходит в минимальной степени увеличение плотности по направлению ко дну поддона, эта степень увеличения плотности обычно мала и не оказывает пагубного влияния на работу линии.

По трубопроводу 26 пеноволокнистую смесь подают в коллектор 21, который содержит пенообразующие форсунки 28, связанные с ним. Предпочтительно, форсунки 28 - которые являются обычными пенообразующими форсунками (которыми сильно перемешивают пену), описанными в патентах 3716449 и 3871952 - установлены на коллекторе 27, причем большое количество форсунок 28 установлено на коллекторе 27. От каждой форсунки 28 отходит труба 29, которая направлена в напорный ящик 30 холстообразователя, через который перемещают обычный сеточный транспортер (перфорированный элемент) (или транспортеры).

Напорный ящик 30 содержит множество вакуум-камер (обычно три - пять) 31, посредством которых отсасывают пену с противоположной стороны сеточного транспортера со стороны ввода пеноволокнистой смеси, и последнюю отделительную камеру 32, которая расположена на выходе из зоны формования волокнистого холста 33 из напорного ящика 30. Количество вакуум-камер 31, располагаемых в зоне формовочного стола для управления дренажом, увеличивают при изготовлении более плотной продукции или при работе с более высокой скоростью. Сформованный волокнистый холст 33, который обычно имеет консистенцию твердых частиц около 40-60% (например, около 50%), предпочтительно подвергают промывке, как схематически показано в виде стадии промывки 34 на Фиг.1. Стадия промывки 34 предназначена для удаления ПАВ. Благодаря высокой консистенции холста 33 требуется минимальное количество сушильного оборудования.

Холст 33 после моечной машины пропускают через одну или большее количество по выбору установок 35 для нанесения покрытия и направляют в обычную сушильную машину 36. В обычной сушильной машине 36, когда синтетические волокна со структурой оболочка-сердечник (например, волокно Целлбонд) составляют часть холста 33, сушильную машину 34 используют на режиме, при котором температуру холста доводят до значения, превышающего температуру плавления материала оболочки (обычно полипропилена), в то время как материал сердечника (обычно полиэтилентерефталат (PET)) не расплавляется. Например, когда используют волокно Целлбонд в холсте 33, температура в сушильной машине обычно составляет около 130oС или несколько выше, и эта температура равна или несколько превышает температуру плавления оболочки волокна, но значительно ниже температуры плавления сердечника волокна, которая составляет около 250oС. Таким образом осуществляют процесс скрепления холста за счет материала оболочки волокна, но целостность изделия (обеспечиваемая сердечником волокна) не подвергают пагубному воздействию.

Хотя это не всегда необходимо, способом согласно изобретению предусмотрено добавление чистой пены в напорный ящик 30 или непосредственно рядом с ним для достижения ряда благоприятных целей. Как показано на Фиг.1, насосом, предпочтительно центробежным насосом, 41 отсасывают пену из поддона 23 под сеточным транспортером по трубопроводу 40. Пену по трубопроводу 40 подают в питатель 42, от которого затем распределяют пену по большому количеству различных трубопроводов 43, направленных в напорный ящик 30. Пену можно напускать, как показано линией 44, непосредственно под крышку напорного ящика 30 (в случае напорного ящика с наклонным сеточным транспортером) и/или по трубам 45 к трубопроводам 29 (или форсункам 28) для напуска пеноволокнистой смеси в напорный ящик 30. Подробно устройство для напуска пены будет описано со ссылкой на Фиг.3-6.

Вакуум-камерами 31 отсасывают пену, выходящую из напорного ящика 30, и направляют по трубопроводам 46 в поддон 23 сеточного транспортера. Обычно для этих целей не требуется использование насосов.

Значительное количество пены из поддона 23 под сеточным транспортером повторно направляют в смесительный резервуар 11. Пену направляют по трубопроводу 47 насосом, предпочтительно центробежным насосом, 48 и затем пропускают по трубопроводу 47 через обычное установленное в трубопроводе устройство 49 для измерения плотности (плотномер) для ввода (как показано схематически поз. 50) обратно в смесительный резервуар 11. Помимо измерения плотности пены в трубопроводе 47 с помощью плотномера 49 (как схематически показано на Фиг.1) одно или более измерительных устройств (например, плотномеров) 49А может быть установлено непосредственно в самом смесительном резервуаре 11.

Помимо рециркуляции пены также осуществляют рециркуляцию воды. Пену, удаленную из последней вакуум-камеры 32, направляют по трубопроводу 51 в обычный сепаратор 53, например, циклонный сепаратор. Сепаратором 53, например, вихревого действия, отделяют воздух и воду от пены, подаваемой в сепаратор 53, для получения воды с очень небольшим содержанием воздуха в ней. Отделенную воду направляют по трубопроводу 54 снизу от сепаратора 53 в резервуар 55 для воды. Воздух, отделенный сепаратором 53, направляют по трубопроводу 56 посредством вентилятора 57 сверху из сепаратора 53 и выбрасывают в атмосферу или используют в процессе горения, или обрабатывают каким-либо другим способом.

В резервуаре 55 для воды поддерживают уровень 58 жидкости путем некоторого слива жидкости в канализацию или для обработки, как схематически показано поз. 60 на Фиг.1. Воду также отбирают ниже уровня 58 из резервуара 55 для воды по трубопроводу 61 и под воздействием насоса, предпочтительно центробежного насоса, 62 подают по трубопроводу 61 через обычный измеритель скорости потока 63 (посредством которого управляют насосом 62). И, наконец, рециркулируемую воду подают, как показано схематически поз. 64 на Фиг.1, сверху в смесительный резервуар 11.

Типичные примерные скорости потоков составляют: 4000 л/мин пеноволокнистой массы в трубопроводе 18, 40000 л/мин пеноволокнистой массы в трубопроводе 26, 3500 л/мин пены в трубопроводе 47 и 500 л/мин пены в трубопроводе 51.

Система 10 также содержит ряд новых компонентов управления. Первым контроллером 71 с нечетким алгоритмом осуществляют управление уровнем пены в резервуаре 11. Вторым контроллером 72 с нечетким алгоритмом осуществляют управление добавлени