Вектор (варианты), основанный на рекомбинантном дефектном вирусном геноме, и его применение для создания препаратов вакцин

Реферат

 

Изобретение относится к генной инженерии и касается векторов, содержащих дефектный вирусный геном, который экспрессирует антиген, пригодный для индукции секреторного и системного иммунных ответов, или антитело, обеспечивающее защиту против инфекционного агента. Представленный дефектный вирусный геном получен от родительского генома свиного вируса трансмиссивного гастроэнтерита (TGEV) путем делегирования части родительского генома и сохраняет 3' и 5' концы родительского генома с локализованными на них сигналами узнавания вирусной репликазой и, по меньшей мере, промотор. Указанные векторы пригодны для создания рекомбининтной системы, которая включает в себя указанный вектор экспрессии и хелперный вирус. Такая система используется для получения моно- и поливалентных вакцин против инфекционных агентов различных видов животных. Представленное изобретение предлагает векторы экспрессии гетерологичных генов с высоким уровнем безопасности и емкости клонирования, сконструированные таким образом, что их видоспецифичность и тропизм можно легко контролировать. 6 с. и 8 з.п.ф-лы, 2 табл., 30 ил.

Такие векторы содержат рекомбинантный дефектный вирусный геном, экспрессирующий по меньшей мере один антиген, пригодный для индукции системного и секреторного иммунных ответов. Дефектный вирусный геном содержит геном родительского вируса, имеющий сигналы для узнавания вирусной репликазой, локализованные на 3' и 5'-концах, кроме того, содержащий внутренние делеции, и в котором указанный дефектный вирусный геном зависит от хелперного вируса для его репликации. Эти векторы пригодны для создания рекомбинантной системы, включающей в себя: (а) вышеуказанный вектор экспрессии, и (б) хелперный вирус, который дает функциональные и структурные белки для репликации и капсидирования дефектного генома. Эта система является пригодной для производства моно- и поливалентных вакцин против инфекционных агентов различных видов животных, в особенности свиней, собак и кошек.

ОБЛАСТЬ ИЗОБРЕТЕНИЯ Данное изобретение относится к ряду векторов, основанных на рекомбинантных дефектных вирусных геномах, экспрессирующих антигены, пригодные для индукции системного и секреторного иммунных ответов для предупреждения инфекций слизистой оболочки, и к их применению в целях вакцинирования вместе с соответствующим хелперным вирусом.

ПРЕДПОСЫЛКИ ИЗОБРЕТЕНИЯ Создание рекомбинантных белков с использованием векторов экспрессии является хорошо известным фактом. Как правило, прокариотические и дрожжевые системы экспрессии являются высокоэффективными и простыми в применении, тогда как в используемых системах экспрессии, содержащих клетки высших эукариот, имеет место ряд недостатков, относящихся к низким уровням продукции белка и ограничениями круга хозяев. Из существующих систем экспрессии для клеток высших эукариот наиболее эффективными в отношении продукции белка являются векторы, основанные на бакуловирусах. Однако их можно использовать только в клетках насекомых, которые, как известно, гликозилируют белки иным путем, чем клетки животных. Кроме того, конструирование рекомбинантного вируса осуществляется посредством гомологичной рекомбинации, которая представляет собой трудоемкую методику, особенно если приходится анализировать многочисленные генетические варианты.

С другой стороны, известны векторы, пригодные для экспрессии гетерологичных генов, основанные на ДНК-содержащих вирусах. Однако в применении вирусов на основе ДНК имеет место ряд недостатков, так как они не надежны в связи с тем, что реплицируются в ядре клетки-хозяина и могут интегрировать в ее геном. Напротив, применение векторов на основе РНК позволяет преодолеть недостатки, связанные с применением ДНК-содержащих вирусов, так как то, что векторы на основе РНК-содержащих вирусов реплицируются не в геноме клетки-хозяина, а в цитоплазме, а их репликация осуществляется посредством РНК, а не ДНК, поэтому возможности их интеграции в геном очень малы, что делает эти векторы более надежными.

Хорошо известными являются также дефектные интерферирующие частицы (ДИ), которые содержат капсид вириона и дефектный геном и представляют собой делеционные субгеномные мутанты, образованные большей частью из инфекционных вирусных геномов посредством ошибки репликации. Как правило, термин "ДИ частица" относится к дефектным вирусам, у которых отсутствует район РНК или ДНК генома, содержащий белки и антигены вируса, и которым требуется коинфекция инфекционным родительским вирусом (хелперным вирусом) для их репликации, и специфически интерферируют с гомологичным хелперным вирусом, поскольку они реплицируются за счет него [Huang and Baltimore, Nature, 226, 325-327 (1970)] . ДИ геномы образуются вследствие геномных перестроек в результате сдвигов РНК-полимеразы от одной РНК матрицы к другой или от одного сегмента РНК матрицы к другому сегменту той же молекулы. Эти ДИ геномы, однажды образовавшись, амплифицируются самостоятельно за счет родительского генома или амплифицирующегося вируса, кодирующего белки, вовлеченные в репликацию и капсидирование, который должен конкурировать с дефектными геномами за такие продукты.

ДИ частицы были получены и охарактеризованы у некоторых коронавирусов, таких как мышиный вирус гепатита (MHV), вирус инфекционного бронхита (IBV) и бычий коронавирус (BCV), хотя ДИ частицы, происходящие от вируса трансмиссивного гастроэнтерита свиней (TGEV), не были описаны. Одна из природных ДИ частиц MHV была использована в качестве основы для конструирования вектора экспрессии, в котором экзогенный ген встроен под контролем внутренней последовательности промотора транскрипции [Lin and Lai, J. Virol., 6110-6118, Oct. (1993)].

Как правило, известные векторы экспрессии гетерологичных генов на основе ДИ частиц обладают некоторыми недостатками, связанными с видоспецифичностью и органоспецифичностью их мишени и с их ограниченной емкостью для клонирования, что ограничивает возможность их применения как в фундаментальных исследованиях, так и в прикладных исследованиях для создания таких векторов в терапевтических целях, включая вакцины.

Следовательно, до сих пор существует потребность в векторах экспрессии гетерологичных генов, которые могут позволить успешно преодолеть упомянутые недостатки. Конкретно, было бы очень полезно иметь в распоряжении несколько векторов экспрессии гетерологичных генов с высоким уровнем безопасности и емкости клонирования, которые были бы сконструированы таким образом, чтобы их видоспецифичность и тропизм можно было легко контролировать.

Настоящее изобретение предлагает решение существующей проблемы, включающее в себя вектор, основанный на рекомбинантном дефектном вирусном геноме, экспрессирующем антигены, пригодные для индукции иммунного ответа и для предупреждения инфекций, вызванных различными инфекционными агентами, у разных видов животных. Векторы экспрессии гетерологичных генов (или последовательности ДНК), предлагаемые данным изобретением, обладают высоким уровнем безопасности, так же как и высокой емкостью клонирования, и могут быть сконструированы таким образом, что их видоспецифичность и тропизм можно легко контролировать, что делает такие векторы пригодными для создания препаратов вакцин, способных обеспечить защиту от инфекций, вызванных рядом инфекционных агентов, у различных видов животных.

Таким образом, объектом настоящего изобретения является вектор, основанный на рекомбинантном дефектном вирусном геноме, экспрессирующий по меньшей мере один антиген, пригодный для индукции иммунного ответа, особенно системного и секреторного иммунного ответа против инфекционных агентов у разных видов животных, или антитело, обеспечивающее защиту против инфекционного агента, обладающий высоким уровнем безопасности и высокой емкостью клонирования, и который можно сконструировать таким образом, чтобы его видоспецифичность и тропизм можно было легко контролировать.

Дефектный вирусный геном, который служит основой для конструкции указанного вектора, является также дополнительным объектом данного изобретения.

Другим дополнительным объектом данного изобретения является рекомбинантная система экспрессии гетерологичных белков, включающая в себя: (а) вектор, описанный выше и (б) хелперный вирус, который должен дать белки, вовлеченные в репликацию и капсидирование рекомбинантного дефектного вирусного генома.

Еще одним дополнительным объектом данного изобретения являются вакцины, способные индуцировать защиту против инфекций, вызванных рядом инфекционных агентов, у различных видов животных, включающие в себя рекомбинантную систему, описанную выше, вместе с фармацевтически приемлемым эксципиентом. Эти векторы могут быть уни- или мультивалентными, в зависимости от того, экспрессируют ли векторы экспрессии, присутствующие в рекомбинантной системе, один или более чем один антиген, способный индуцировать иммунный ответ против одного или более чем одного инфекционного агента, либо одно или более чем одно антитело, обеспечивающее защиту против одного или более чем одного инфекционного агента.

Другие объекты, предлагаемые данным изобретением, включают в себя способ иммунизации животных, состоящий во введении указанной рекомбинантной системы или вакцины, также как и способ защиты новорожденных животных от инфекционных агентов, которые инфицируют упомянутые виды.

КРАТКОЕ ОПИСАНИЕ ГРАФИЧЕСКИХ МАТЕРИАЛОВ На фиг.1 показана структура TGEV. Вирион представляет собой сферическую частицу, состоящую из липидной оболочки, внутри которой находится одноцепочечная молекула РНК положительной полярности размером 28,5 тысяч оснований (т.о.). Эта РНК ассоциирована с белком N, формирующим нуклеокапсид. Структурные белки М и sM включены в мембрану. Белок S группируется в тримеры и встроен во внешнюю часть оболочки, образуя пепломеры.

На фиг. 2 показана геномная организация четырех секвенированных коронавирусов: MHV, IBV, HCV229E (человеческий коронавирус 229Е) и TGEV. Открытые рамки считывания, кодирующие каждый белок, указаны по масштабу. В каждом геноме начало РНК, которая экспрессируется каждым вирусом, указано стрелкой. Число мессенджер-РНК (мРНК), экспрессируемых вирусами MHV или TGEV, может варьировать в зависимости от штамма вируса. На данной фигуре TGEV стрелки соответствуют мРНК, экспрессируемым штаммом THER-1. мРНК котерминальны по 3' концу и пронумерованы в порядке уменьшения размера.

На фиг. 3 показана экспрессия генома TGEV, штамма THER-1. Расположение открытых рамок считывания (ОРС) в геноме указано: Pol - полимераза; S, sM, M и N - структурные белки; nsp 3а, 3b и 7 - неструктурные белки (белок 3b не продуцируется этим вирусом). Геном транскрибируется на РНК равной длины, но отрицательной полярности (-), которая будет служить матрицей для синтеза семи мРНК (от 1 до 7). В каждой мРНК представлена общая последовательность, лидер, на 5' конце (прямоугольник), участок полиаденилирования на 3' конце и зона, которая транслируется в каждой из них (толстые линии).

На фиг. 4 показано изменение титра изолятов TGEV THER-1 (А) и PUR46-mar 1СС12 (Б) с числом пассажей при высокой множественности инфекции (м. и.) в клетках ST.

На фиг. 5 показаны результаты электрофоретического анализа РНК, продуцируемых клетками ST, инфицированными вирусом THER-1, после 46 пассажей при высокой м. и. Число пассажей указано над каждой дорожкой, а полосы слева указывают положение маркеров молекулярной массы (геномная РНК TGEV и маркеры от GibcoBRL), выраженное в т. о. Полосы справа указывают мРНК TGEV и дефектные интерферирующие РНК (ДИ). НИ - не инфицированы.

На фиг. 6 показаны результаты Норзерн-блот-анализа РНК клеток ST, инфицированных вирусом THER-1 р35.

На фиг.7 показаны результаты Норзерн-блот-анализа РНК, полученной из пассажей разведенного вируса THER-1 р41 в клетках ST.

На фиг.8 показано влияние смены клеточной линии на размножение дефектных РНК А, В и С. Провели 10 пассажей без разведения вируса THER-1-ST-р46 в клетках IPEC (клетки кишечного эпителия свиньи) и 5 пассажей в клетках РМ (макрофаги свиньи). Фиг.8А и 8Б: изменение титра вируса с числом пассажей в IPEC и РМ, соответственно. Фиг.8В: анализ РНК клеток ST, инфицированных вирусом из пассажей 1 и 10 в IPEC (метаболическим мечением 32Рi) или из пассажей 1 и 5 в клетках РМ (гибридизацией с одним олигонуклеотидом, комплементарным лидерной РНК).

На фиг. 9 показано капсидирование дефектных геномов А, В и С. На фиг.9А показан агарозный гель, окрашенный бромистым этидием, на котором РНК, выделенную из очищенных вирионов из пассажей 1 и 41, анализировали методом центрифугирования через 15%-ную сахарозную "подушку". На дорожке, соответствующей пассажу 41, можно наблюдать как РНК А, В и С, так и родительский геном. Полосы слева указывают подвижность маркеров в т.о. На фиг.9Б показаны результаты анализа РНК вирионов из пассажа 41, очищенной центрифугированием через сахарозные "подушки" или непрерывный градиент, Норзерн-блот анализом с олигонуклеотидом, комплементарным лидерной РНК. В качестве маркеров использовали фирменные РНК от GibcoBRL и РНК из вирионов пассажа 1 (дорожка а). Дорожки б и в: РНК, выделенная из вирионов, осажденных через 31% и 15% сахарозные "подушки" (вес/объем) соответственно. Дорожки г и д: РНК, выделенная из вируса, очищенная через непрерывный сахарозный градиент, фракции плотности 1,20 и 1,15 г/мл, соответственно.

На фиг. 10 показана стратегия клонирования дефектных РНК ДИ-В и ДИ-С, в которой можно наблюдать схематическое представление фрагментов комплементарной ДНК (кДНК), полученной посредством ОТ-ПЦР (обратная транскрипция - полимеразная цепная реакция), использующей в качестве матрицы полноразмерную геномную РНК (А), ДИ-В (Б) и ДИ-С (В). Пунктирные линии указывают отсутствие ожидаемого фрагмента в связи с его большим размером. Дефектные РНК клонировали как четыре перекрывающихся фрагмента (а, б, в и г), представленных линиями; цифры под этими линиями указывают размер фрагмента, определенный в агарозных гелях. Олигонуклеотиды, использованные в качестве праймеров, и их полярность указаны с помощью стрелок и цифр. Олигонуклеотидная последовательность приведена в Таблице 2. Заштрихованные и открытые прямоугольники в (А) указывают относительное положение вирусных генов: ро1 - полимераза; S, М и N - структурные гены; 3а, 3b, sM и 7 - малые ОРС. Темные узкие прямоугольники указывают лидерную последовательность.

На фиг. 11 показаны результаты электрофоретического анализа продуктов ПЦР, полученных при амплификации дефектных РНК. РНК очищенных вирионов THER-1p1 или THER-1p41 использовали в качестве матрицы в реакции ОТ-ПЦР с олигонуклеотидами 1 и 2 (а), 3 и 4 (б), 5 и 6 (в) или 7 и 8 (г), последовательность и положение которых в родительском геноме указаны в Таблице 2. Дорожка, соответствующая РНК-матрице пассажа 1 (родительская геномная РНК) или пассажа 41 (родительская РНК, ДИ-А, ДИ-В и ДИ-С), и дорожка маркеров подвижности ДНК (М, GibcoBRL) указаны в каждом случае. Цифры жирным шрифтом указывают размер в т.о. продуктов амплификации, специфичных для дефектных РНК. РНК В+С, РНК В и С: четкие полосы в эксперименте, где РНК вируса THER-lSTp41 фракционировали в геле. РНК В и С мигрируют очень близко и были вырезаны как одна полоса.

На фиг.12 показана полная последовательность кДНК РНК ДИ-С (см. SEQ. ID No. 24), полученная определением нуклеотидной последовательности перекрывающихся фрагментов клонирования а, б, в и г. РНК ДИ-С содержала четыре прерывающихся района родительского генома: I, II, III и IV. Фланкирующие сайты этих районов указаны стрелками. Трансляция трех ОРС, присутствующих в геноме ДИ-С, указана: химерная ОРС 6,7 т.о., получающаяся при слиянии прерывающихся районов I и II в фазе; мини-ОРС из трех аминокислот, предшествующая ей в фазе, и ОРС, которая инициируется в AUG гена S. Высокогомологичные районы - с белковыми доменами, описанными для других коронавирусов как ответственные за активности полимеразы и геликазы, и сайты связывания ионов металлов - выглядят затененными. Последовательности промоторов транскрипции СТАААС выглядят затененными. Перекрывающаяся область между ОРС 1а и 1б (41 нуклеотид) выглядит затененной, последовательность сдвига рибосомы выглядит подчеркнутой, и кодон терминации ОРС 1а находится в прямоугольнике. В положениях 637, 6397 и 6485 указаны специфические замены по отношению к родительскому геному. Указаны нуклеотиды, присутствующие в этих положениях в родительском геноме.

На фиг.13 показана диаграмма структуры РНК ДИ-С. Суммарный размер генома находится справа от прямоугольников. РНК ДИ-С содержит четыре прерывающихся района генома TGEV (I, II, III и IV). Эти районы включают в себя 2,1 т.о. 5' конца генома, почти полную ОРС 1б, включая перекрывающуюся область между ОРС 1а и 1б, начало гена S, неполную ОРС 7 и 3' нетранслируемый район. Буквы и цифры над прямоугольником родительского генома указывают вирусные гены. Цифры под прямоугольником указывают положение нуклеотидов, фланкирующих прерывающиеся районы родительского генома, на основании последовательности изолята TGEV PUR46-PAR. В прямоугольнике, соответствующем РНК ДИ-С, указана длина четырех прерывающихся районов в нуклеотидах. В третьем прямоугольнике указано число нуклеотидов, происходящих от каждого вирусного гена, принимая во внимание, что ОРС 1а и 1б перекрываются друг с другом в родительском геноме на 43 нуклеотида. ОРС, предсказанные компьютерным анализом, указаны стрелками или наконечниками стрелок. Pnt - псевдоузел; Pol - полимераза; Mib - связывание ионов металлов; Не1 - геликаза; Cd - консервативный домен.

На фиг. 14 показана структура РНК ДИ-В. РНК ДИ-В содержит три прерывающихся района (I, II и III) генома TGEV, включающих в себя 2,1 т.о. 5' конца генома, полную ОРС 1б, включая перекрывающуюся область между ОРС 1а и 1б, начало гена S, конец ОРС7 и нетранслируемый район 3' конца. Буквы и цифры над прямоугольником родительского генома указывают вирусные гены. Цифры под прямоугольником указывают положение нуклеотидов, фланкирующих прерывающиеся районы родительского генома, на основании последовательности изолята TGEV PUR46-PAR. Гетерогенность размеров делеций, появляющихся между прерывающимися районами II и III, ответственна за действительное существование популяции генома ДИ-В. Во втором и третьем прямоугольниках указана длина в нуклеотидах трех прерывающихся районов для геномов самого большого и самого маленького размеров, соответственно. В третьем прямоугольнике указано число нуклеотидов, происходящих от каждого вирусного гена, принимая во внимание, что ОРС 1а и 1б перекрываются друг с другом в родительском геноме на 43 нуклеотида. Pnt - псевдоузел; Pol - полимераза; Mib - связывание ионов металлов; Не1 - геликаза; Cd - консервативный домен.

На фиг. 15 показана вторичная и третичная структуры РНК перекрывающейся зоны между ОРС 1а и 1б в РНК ДИ-С. (А) Структура, предсказанная при рассмотрении района, ближайшего к структуре вилки, комплементарного нуклеотидам узла, и таким образом составляющего псевдоузел (нуклеотиды 2354-2358). Последовательность сдвига UUUAAAC подчеркнута. Кодон терминации ОРС 1а указан в прямоугольнике. (Б) Схематическое представление этого псевдоузла, в который вовлечены два участка комплементарности последовательности (стволы: S1 и S2). Последовательность сдвига представлена в прямоугольнике. (В) Альтернативная модель, рассматривающая последовательность от нуклеотида 2489 до нуклеотида 2493 в складке псевдоузла. Эта структура содержит дополнительный участок комплиментарности последовательности (ствол). (Г) Схематическое представление псевдоузла, в котором три ствола обозначены: S1, S2 и S3.

На фиг. 16 показано картирование РНК ДИ посредством гибридизации с олигонуклеотидами, специфичными для вируса, в Норзерн-блот-анализах. РНК вируса THER-1-STp41 фракционировали в агарозных гелях до тех пор, пока не получили четкое разделение РНК родительского генома и ДИ А, В и С. РНК, перенесенная на нейлоновые фильтры, которые гибридизовали с несколькими олигонуклеотидами, мечеными 32Pi, гибридизующимися с родительским геномом (+), и гибридизующимися (+) или нет (-) с дефектными геномами. Приблизительная локализация последовательностей, комплементарных олигонуклеотидам, в родительском геноме указана стрелками. Их точная последовательность и положение указаны в Таблице 3. Все олигонуклеотиды гибридизовались с родительским геномом и давали ожидаемые результаты с РНК В и С.

На фиг.17 показана схема способа получения вакцинных вирусов путем трансфекции инфицированных клеток РНК ДИ-С. Прототип схемы иллюстрирован конструкцией, которая обеспечивала продукцию РНК ДИ-С посредством транскрипции in vitro, сохраняющей 5' и 3' концы, присутствующие в исходной дефектной частице. Последовательность промотора Т7 [РrТ7] и последовательность автокаталитического рибозима вируса гепатита дельта (HDV) [Rz HDV] клонировали, фланкируя последовательность РНК ДИ-С. Положение автокаталитического расщепления, введенное рибозимом, обозначено над последовательностью. Стрелки указывают положения внутренних последовательностей промоторов транскрипции, сохраненные в природной форме в РНК ДИ-С. L - лидер; Т7 - сигналы терминации транскрипции бактериофага Т7. Вирионы, капсидирующие как хелперный вирус, так и дефектные геномы, в которые были клонированы гетерологичные гены, восстанавливались, когда РНК, транскрибированными in vitro, трансфицировали клетки ST, инфицированные соответствующим хелперным вирусом.

На фиг. 18 показан прототип схемы конструкции, которая обеспечивала продукцию pDIA-6А.С3 посредством транскрипции in vitro, сохраняющей 5' и 3' концы, присутствующие в исходной дефектной частице. Последовательность промотора бактериофага Т7 [РrТ7] и последовательность автокаталитического рибозима вируса гепатита дельта (HDV) [Rz HDV] клонировали, фланкируя последовательность кДНК, кодирующую авторепликативную РНК. Плазмида pDIA-6A,C3 содержит ген, кодирующий моноклональное антитело 6А.С3, которое нейтрализует TGEV [см. Пример 4]. Клонирование гетерологичного гена делали после ОРС 1б, за кодоном инициации (AUG) гена S и в рамке считывания с этим геном (IGS - межгенная последовательность; L - лидерная последовательность; D - район различия; J - район присоединения; VH -вариабельный модуль тяжелой цепи иммуноглобулина; СН - константный модуль тяжелой цепи иммуноглобулина; VK - вариабельный модуль легкой цепи иммуноглобулина; СК - константный модуль легкой цепи иммуноглобулина polyA - полиА последовательность; Т7 - терминатор транскрипции Т7].

ДЕТАЛЬНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ Данное изобретение предлагает векторы экспрессии гетерологичной ДНК, основанные на рекомбинантных дефектных вирусных геномах, экспрессирующих по меньшей мере один антиген, пригодный для индукции иммунного ответа против ряда инфекционных агентов у различных видов животных, или антитело, обеспечивающее защиту против инфекционного агента, обладающих высокой безопасностью и емкостью клонирования, и которые можно сконструировать таким образом, чтобы их видоспецифичность и тропизм можно было легко контролировать.

Термин "инфекционный агент" в том смысле, в котором он используется в данном описании, включает в себя любой вирусный, бактериальный или паразитический инфекционный агент, который может инфицировать животное и вызывать патологию.

Термин "виды животных" включает в себя животных любых видов, обычно млекопитающих, в частности свиней, собак или кошек.

В конкретной реализации данного изобретения, вектора экспрессии получены на основе рекомбинантных дефектных вирусных геномов, экспрессирующих антигены, пригодные для индукции системного и секреторного иммунных ответов, для предупреждения инфекций слизистой оболочки, сконструированные так, чтобы обеспечить легкость контроля их видоспецифичности и тропизма для инфекции кишечных или респираторных слизистых, что делает их совершенно адекватными для индукции иммунитета слизистой оболочки и лактогенного иммунитета, в частности с целью защиты новорожденных животных от инфекций кишечного тракта. В другой конкретной реализации данного изобретения предлагается вектор экспрессии на основе рекомбинантного дефектного вирусного генома, экспрессирующий по меньшей мере одно антитело, которое обеспечивает защиту против инфекционного агента.

Векторы экспрессии, полученные посредством данного изобретения, содержат дефектный вирусный геном, происходящий от вируса, предпочтительно вируса с РНК геномом и положительной полярностью, который сохраняет 3' и 5' концы родительского вируса, имеет внутренние делеции и зависит от хелперного вируса для его репликации. Следовательно, изобретение предлагает, дополнительно, дефектный вирусный геном, содержащий геном родительского вируса, имеющий сигналы для узнавания вирусной репликазой, локализованные на 3' и 5' концах, кроме того, содержащий внутренние делеции, и в котором вышеуказанный дефектный вирусный геном зависит от хелперного вируса, дающего функциональные и структурные белки для репликации и капсидирования рекомбинантного дефектного вирусного генома. В конкретной реализации дефектный вирусный геном содержит, дополнительно, полную последовательность, кодирующую репликазу родительского вируса. В этом случае, если это желательно, хелперный вирус может давать только структурные белки, требующиеся для капсидирования рекомбинантного дефектного вирусного генома или, альтернативно, функциональные и структурные белки для репликации и капсидирования рекомбинантного дефектного вирусного генома. Когда вирус, от которого происходит рекомбинантный дефектный вирусный геном, представляет собой вирус с РНК геномом, вектор экспрессии содержит кДНК, комплементарную вышеуказанной дефектной РНК, или кДНК, в основном комплементарную вышеуказанной дефектной РНК.

Векторы, которые предлагает данное изобретение, обладают высокой емкостью клонирования - по меньшей мере 18 т.о. - которая является самой высокой емкостью клонирования, описанной для вектора, основанного на эукариотических РНК вирусах. Кроме того, эти векторы обладают высоким уровнем безопасности, поскольку они (а) основаны на дефектных геномах, (б) содержат РНК геномы и не используют ДНК в качестве посредника репликации и (в) основаны на вирусах, растущих в цитоплазме инфицированных клеток - все это предохраняет дефектный геном от рекомбинации с хромосомой клетки.

В конкретной реализации данного изобретения описывается получение дефектных РНК геномов, происходящих от коронавирусов, в частности от TGEV. Эти геномы обладают дополнительным преимуществом очень низкой частоты рекомбинации TGEV (<1109), что предотвращает свободную рекомбинацию дефектного генома с геномом хелперного вируса. Однако, даже хотя эта рекомбинация может в действительности иметь место, то будет получаться ослабленный вирус, поскольку изобретение предполагает удобство использования одного и того же ослабленного вируса как в качестве хелперного вируса, так и в качестве исходного материала для получения дефектного генома.

Дефектные геномы, составляющие основу таких векторов, можно получить в различных клеточных системах посредством серийных пассажей без разведения вируса, от которого они происходят. Частота генерации ДИ частиц может сильно варьировать в различных системах вирус-клетка; по этой причине следует делать пассажи с различными вирусными изолятами в различных клеточных линиях с целью отобрать пригодный изолят и клеточную линию. После определенного числа пассажей вирусы выделяют и затем используют для анализа внутриклеточных РНК, продуцируемых при инфекции, с целью наблюдения за возможным появлением полос, не соответствующих какой-либо вирусной мРНК, и в этом случае, чтобы проанализировать природу этих новых РНК - субгеномных или дефектных - продолжают серийные пассажи без разведения с родительским вирусом. После нескольких пассажей анализируют изменение характера РНК во всех серийных пассажах, и с этой целью клетки подходящей клеточной системы инфицируют вирусами, происходящими из различных пассажей, и продуцируемые РНК анализируют по стандартным методикам, например метаболическим мечением 32Pi или гибридизацией с соответствующим олигонуклеотидом. Детальное описание получения и характеристики некоторых дефектных РНК, производных от TGEV, дается в Примере 1.

С дефектных РНК возможно получить соответствующую кДНК - комплементарную или в основном комплементарную - вышеуказанным дефектным РНК посредством реакции обратной транскрипции (ОТ) и полимеразной цепной реакции амплификации (ПЦР), в дальнейшем ОТ-ПЦР. После этого возможно клонировать кДНК в подходящие плазмиды, например Bluescript II, под контролем эффективных промоторов. Полученные плазмиды содержат дефектный вирусный геном под контролем нескольких регуляторных элементов, содержащих сигналы для регуляции и контроля репликации и для инициации и терминации транскрипции и трансляции. Таким образом, эти плазмиды могут включать в себя полиА последовательности, последовательности для автокаталитического расщепления или для узнавания ферментами рестрикции, позволяющие встраивать гетерологичную ДНК, и соответствующие сигналы регуляции, контроля и терминации.

С полученными таким образом плазмидами, содержащими дефектный геном или соответствующую кДНК, можно манипулировать посредством стандартных методик генной инженерии, чтобы клонировать с повышенной эффективностью по меньшей мере одну последовательность гетерологичной ДНК, кодирующую специфическую активность, под контролем промотора гена, присутствующего в дефектных геномах, или какого-либо другого промотора вируса, от которого происходит дефектный геном или вариант этих промоторов, и под контролем регуляторных последовательностей, содержащихся в полученном векторе экспрессии. Пример 2 описывает создание векторов экспрессии, кодирующих антигены, индуцирующие защиту против различных вирусов.

Векторы экспрессии, полученные по этому изобретению, могут экспрессировать одну или более чем одну активность, такую как один или более чем один антиген, способный индуцировать иммунные ответы против различных инфекционных агентов, или одно или более чем одно антитело, обеспечивающее защиту против одного или более чем одного инфекционного агента. В одной конкретной и предпочтительной реализации эти векторы экспрессируют по меньшей мере один антиген, способный индуцировать системный иммунный ответ или иммунный ответ слизистой оболочки против различных инфекционных агентов, которые размножаются в респираторной или кишечной слизистой оболочке. В другой конкретной и предпочтительной реализации указанные векторы экспрессии экспрессируют по меньшей мере один ген, кодирующий тяжелую и легкую цепи антитела какого-либо изотипа (например, IgG1, IgA и так далее), которое обеспечивает защиту против инфекционного агента. В специфичном случае экспрессируемое антитело представляет собой моноклональное антитело, определенное как 6А.С3 (см. Пример 4), которое нейтрализует TGEV, экспрессируемое с изотипами IgG1 или IgA, в которых константная часть иммуноглобулина свиного происхождения.

В конкретной реализации данного изобретения клонирование гетерологичных генов в плазмиду, содержащую кДНК, производную от дефектной РНК, осуществляли после ОРС 1б, за кодоном инициации гена S (AUG) и в рамке считывания с этим геном (Пример 2). Альтернативно, последовательности гетерологичных ДНК можно клонировать в другие области генома, например в зоны, соответствующие ОРС 1, 2 или 3 TGEV. С полученных плазмид РНК экспрессировали с использованием подходящей полимеразы и этой РНК трансформировали соответствующие клетки, предварительно инфицированные ослабленным хелперным вирусом, обеспечивая восстановление вирионов, содержащих геном хелперного вируса, и другие вирионы с дефектным геномом (фиг.17).

Альтернативно, векторы экспрессии по данному изобретению позволяют экспрессировать один или несколько генов, используя описанную выше стратегию. С этой целью можно использовать один или несколько промоторов, или промотор и несколько внутренних сайтов посадки рибосомы (IRES) или, альтернативно, несколько промоторов и один внутренний сайт посадки рибосомы.

Данное изобретение также предлагает рекомбинантную систему для экспрессии гетерологичных белков, включающую в себя: (а) вектор, описанный выше и (б) хелперный вирус, который дает белки, вовлеченные в репликацию и капсидирование рекомбинантного дефектного вирусного генома. Таким образом, предлагается рекомбинантная система для экспрессии гетерологичных белков, основанная на рекомбинантных дефектных вирусных геномах, экспрессирующих белки по меньшей мере с одной специфической активностью, включающая в себя: (а) рекомбинантный вектор, содержащий дефектный вирусный геном, для которого в этом случае была получена кДНК, с которой можно манипулировать посредством стандартной генной инженерии, содержащая сигналы узнавания вирусной репликазы, локализованные на 3' и 5' концах, содержащая, дополнительно, внутренние делеции и по меньшей мере одну внутреннюю последовательность ДНК, кодирующую одну активность, например антиген, способный обеспечивать системный иммунитет и иммунитет слизистой оболочки; или антитело, обеспечивающее защиту против инфекционного агента; и (б) хелперный вирус, обеспечивающий функциональные и структурные белки для репликации и капсидирования дефектного генома.

Альтернативно, вышеуказанная рекомбинантная система для экспрессии гетерологичных белков включает в себя вектор экспрессии описанного выше типа, содержащий полную последовательность, кодирующую репликазу родительского вируса, и хелперный родительский вирус, который предоставляет структурные белки для капсидирования дефектного генома и, факультативно, функциональные белки (репликазу) для репликации дефектного вирусного генома.

Эти системы обеспечивают экспрессию либо антигенов, способных индуцировать иммунный ответ, либо антител, которые дают защиту против инфекционных агентов, в связи с чем они являются пригодными для применения в целях вакцинирования и для защиты против инфекций.

Данное изобретение также предлагает вакцины, способные индуцировать защиту против инфекций, вызванных рядом инфекционных агентов у различных видов животных, включающие в себя: (1) рекомбинантную систему, описанную выше, содержащую: (а) вектор экспрессии на основе дефектного вирусного генома, в который клонирована последовательность гетерологичной ДНК, и (б) хелперный вирус, способствующий репликации дефектного генома вместе с ним, факультативно, (2) фармацевтически приемлемый эксципиент. Вакцины, предлагаемые данным изобретением, являются, следовательно, пригодными для обеспечения иммунитета против ряда инфекционных агентов, поражающих различные виды животных.

"Обеспечивать иммунитет" в смысле, использованном в данном описании, в котором следует его понимать, означает запускать в рецепторном организме (животном, подлежащем лечению) посредством рекомбинантной системы, такой как описанная выше, соответствующие механизмы, такие как антигенпредставляющие клетки, В и Т лимфоциты, антитела, вещества, повышающие клеточный иммунный ответ (интерлейкины, интерфероны и так далее), факторы некроза клеток и подобные вещества, которые производят у животных защиту против инфекций, вызванных патогенными агентами.

Вакцины, предлагаемые данным изобретением, могут быть моновалентными или мультивалентными, в зависимости от того, один или более чем один антиген, способный индуцировать иммунный ответ против одного или более чем одного инфекционного агента, экспрессируется с вектора экспрессии, присутствующего в рекомбинантной системе. Вектора эскпрессии могут быть одновалентными или поливалентными в зависимости от того, экспрессируют ли они одно или более чем одно антитело, обеспечивающее защиту против одного или более чем одного инфекционного агента.

Видоспецифичность контролируют таким путем, что хелперный вирус будет экспрессировать белок оболочки, подходящий для узнавания клеточными рецепторами соответствующих видов. Конкретная группа вакцин, полученных по данному изобрете