Металлоценовые соединения, способы их получения

Реферат

 

Изобретение относится к металлоценовым соединениям формулы (I), в которой СрI и СрII представляют собой карбанионы с циклопентадиенилсодержащей структурой, D представляет собой донорный атом и А-акцепторный атом, причем D и A связаны обратимой координационной связью таким образом, что донорная группа получает положительный (частичный) заряд, а акцепторная группа - отрицательный (частичный) заряд, М означает переходный металл III, IV, V или VI подгрупп Периодической системы элементов (Менделеева), Х означает анионный эквивалент, n в зависимости от заряда М означает число ноль, один, два, три или четыре. Соединения I могут использоваться в качестве катализаторов для (со)полимеризации олефинов, изоолефинов, алкинов и/или диолефинов или для полиприсоединения с раскрытием цикла. Типичный рентгеноструктурный анализ представлен формулой (18а). 7 c. и 6 з.п.ф-лы.

Данное изобретение касается металлоценовых соединений, в которых переходный металл комплексно связан с двумя анионными циклопентадиенильными лигандами (карбанионами) и оба карбаниона связаны друг с другом, по крайней мере, одним мостиком, состоящим из донора и акцептора. Образующаяся между донорным (D) и акцепторным атомами (А) координационная связь создает в донорной группе положительный (частичный) заряд, а в акцепторной группе - отрицательный (частичный) заряд: +D -A [донорная группа --> акцепторная группа].

Кроме того, изобретение касается способов получения подобных новых металлоценовых соединений.

Металлоцены и их применение в качестве катализаторов при полимеризации олефинов известны давно (заявка на европейский патент ЕР-А 129368 и цитированная там литература). Далее, из заявки на европейский патент ЕР-А '368 известно, что металлоцены в комбинации с системой алюминийалкил/вода в качестве сокатализаторов представляют собой эффективную систему для полимеризации этилена (так, например, из 1 моля триметилалюминия и 1 моля воды образуется метилалюмоксан (МАО). Уже с успехом использовались и другие стехиометрические соотношения (международная заявка WO 94/20506)). Также уже известны металлоцены, циклопентадиенильные кольца которых ковалентно связаны друг с другом мостиком. В качестве примера многочисленных патентов и заявок в этой области следует упомянуть заявку на европейский патент ЕР-А 704461, в которой упомянутая там связующая группа представляет собой замещенную метиленовую или этиленовую группу, силиленовую группу, замещенную силиленовую группу, замещенную гермиленовую группу или замещенную фосфиновую группу. В европейском патенте ЕР '461 в качестве катализаторов полимеризации для олефинов предусмотрены связанные мостиками металлоцены. Несмотря на многочисленные патенты и заявки в этой области, сохраняется желание улучшить катализаторы, отличающиеся высокой активностью, таким образом, чтобы количество катализатора, остающегося в полимере, могло быть незначительным и одновременно пригодным для полимеризации и сополимеризации олефинов в термопласты и в эластомерные продукты, а также для полимеризации и сополимеризации диолефинов, при необходимости, с олефинами.

Задачей данного изобретения является расширение арсенала высокоэффективных катализаторов на основе металлоценов.

Преимущество предлагаемых соединений формулы (I) заключается в том, что они получаются из мостиковых металлоценовых соединений, у которых мостиковое связывание обоих циклопентадиенилсодержащих лигандов создается одной, двумя или тремя донорно-акцепторными связями, в которых в каждом случае между донорным и акцепторным атомами образуется координационная или так называемая дативная связь, которая, по крайней мере, формально приобретает ионный характер. Обратимость донорно-акцепторной связи допускает, наряду с обозначенным стрелкой между D и А состоянием мостикового связывания, также и безмостиковое состояние, в котором обе -системы вследствие свойственной им энергии вращения могут, например, поворачиваться на 360 угловых градусов по отношению друг к другу, не нарушая целостность металлического комплекса. После завершения полного поворота донорно-акцепторная связь снова "защелкивается". При наличии нескольких доноров и/или акцепторов такое "защелкивание" может происходить уже после поворота меньше, чем на 360 угловых градусов. Поэтому для того, чтобы охватить оба состояния связывания, металлоцены согласно изобретению изображаются только с помощью двойной стрелки и формульных блоков (Iа) и (Iб).

Поставленная задача решается металлоценовыми соединениями формулы (I) в которой СрI и СрII представляют собой два одинаковых или различных карбаниона с циклопентадиенилсодержащей структурой, в которых атомы водорода, от одного до всех, могут быть замещены на одинаковые или различные остатки из группы линейного алкила с 1-20 атомами углерода или разветвленного алкила с 3-20 атомами углерода, которые однократно, или многократно, или исчерпывающе могут быть замещены галоидом, 1-3-кратно-фенилом, а также 1-3-кратно - винилом, арила с 6-12 атомами углерода, галоидарила с 6-12 атомами углерода, металлорганических заместителей, таких как силил, триметилсилил, ферроценил, а также могут быть однократно или двукратно замещены на D и А, +D означает донорную группу, где D означает донорный атом, который может дополнительно нести заместители и который в данном состоянии связывания обладает, по меньшей мере, одной свободной электронной парой, -А означает акцепторную группу, где А означает акцепторный атом, который может дополнительно нести заместители и который в данном состоянии связывания имеет дефицит электронной пары, причем D и А связаны обратимой координационной связью такого типа, что донорная группа получает положительный или частичный положительный заряд, а акцепторная группа - отрицательный или частичный отрицательный заряд, М означает переходный металл III, IV, V или VI подгруппы периодической системы элементов (Менделеева), включая лантаниды и актиниды, Х означает анионный эквивалент и n в зависимости от заряда М означает число ноль, один, два, три или четыре.

Кроме того, изобретение касается способов получения металлоценовых соединений формулы (I), которые отличаются тем, что или подвергают взаимодействию друг с другом соединения формул (II) и (III) или соединения формул (IV) и (V) MXn+2, (V) с отщеплением М'Х в присутствии апротонного растворителя или соединения формул (VI) и (VII) или соединения формул (VIII) и (IX) или соединения формул (X) и (V) MXn+2, (V) или соединения формул (XI) или (VI) и (V) в присутствии соединения формулы (XII) и (XIII) MXn+2 (V) с отщеплением E(R1R2R3)X и F(R4R5R6)X в отсутствие или в присутствии апротонного растворителя, причем CpI, CpII, D, A, M, X и n имеют вышеуказанное значение, СрIII и CpIV представляют собой два одинаковых или различных незаряженных фрагмента молекулы с циклопентадиенсодержащей структурой, а CpI и CpII одинаковы, M' означает катионный эквивалент (щелочноземельного) щелочного металла или Т1, К означает M' (соединение XI), a L означает MXn+1 (соединение VII) или К означает MXn+1 (соединение VIII), а L означает M' (соединение XII), Е и F независимо друг от друга каждый означает один из элементов Si, Ge или Sn и R1, R2, R3, R4, R5 и R6 независимо друг от друга каждый означает неразветвленный или разветвленный алкил с 1-20 атомами углерода, арил с 6-12 атомами углерода, а также арил с 6-12 атомами углерода, замещенный алкилом с 1-6 атомами углерода и алкил с 1-6 атомами углерода, замещенный арилом с 6-12 атомами углерода, винил, алкил или галоид, причем, кроме того, в формулах (VI), (IX), (X) вместо E(R1R2R3) и F(R4R5R6) может находиться водород, и в этом случае Х может также означать амидный анион типа R2N, или карбанион типа R3N, или алкоголятный анион типа RO, и причем, кроме того, соединения формул (II, где К означает М') или (VI) в присутствии соединений формул (III, где L означает М') или (IX) можно подвергать взаимодействию непосредственно с соединением переходного металла формулы (V). В дальнейшем два аниона могут быть связаны в дианион с возможным промежуточным образованием одноатомного или многоатомного мостика.

При реакции (VI) с (III, где L означает MXn+1) или (II, где К означает MXn+1) с (IX) или (X) с (V) по упомянутому последним варианту образуется структура (I) с отщеплением амина R2NH, или R2NE(R1R2R3), или R2NF(R4R5R6), либо углеводородного соединения формулы R3СН, или R3CE(R1R2R3), или R3CF(R4R5R6), либо простого эфира ROE(R1R2R3), или ROF(R4R5R6), в которых органические остатки R являются одинаковыми или различными и независимо друг от друга каждый представляет собой алкил с 1-20 атомами углерода, арил с 6-12 атомами углерода, замещенный или незамещенный аллил, бензил или водород. Примерами отщепляющегося амина или углеводорода, простого эфира, силана, станнана или германа являются диметиламин, диэтиламин, ди-(н-пропил)-амин, ди-(изопропил)-амин, ди-(трет.-бутил)-амин, трет.-бутиламин, циклогексиламин, анилин, метилфениламин, ди-(аллил)-амин или метан, толуол, триметилсилиламин, тетраметилсилан и им подобные.

Также соединения формул (II, где К означает М') или (VI) можно подвергать взаимодействию непосредственно с соединением переходного металла формулы (V) в присутствии соединений формул (III, где L означает М') или (IX).

Кроме того, изобретение касается применения описанных металлоценовых соединений в процессе гомополимеризации или сополимеризации одного или нескольких олефинов, изоолефинов, алкинов или диолефинов в качестве мономеров или в процессе полиприсоединения с размыканием цикла в газовой фазе, в фазе раствора, в фазе высокого давления или в фазе суспензии при температуре от -60 до +250oС, предпочтительно до +200oС, и давлении от 0,5 до 5000 бар, предпочтительно от 1 до 3000 бар, и в присутствии или в отсутствие насыщенных или ароматических углеводородов или насыщенных или ароматических галоидоводородов и в присутствии или в отсутствие водорода, причем эти металлоценовые соединения используются в качестве катализаторов в количестве от 101 до 1012 моля каждого мономера на моль металлоцена и причем, кроме того, с ними можно работать в присутствии кислот Льюиса, кислот Бренстеда или кислот Персона, либо дополнительно в присутствии оснований Льюиса.

Такими кислотами Льюиса являются, например, бораны или аланы, такие как алкилы алюминия, галоидиды алюминия, алкоголяты алюминия, органические соединения бора, сложные эфиры борной кислоты, или соединения бора, или алюминия, которые содержат в качестве заместителей как остатки галоидидов, так и алкилы или арилы или остатки алкоголятов, а также их смеси или трифенилметильный катион. Особенно предпочтительными являются алюмоксаны или смеси содержащих алюминий кислот Льюиса с водой. В соответствии с современными представлениями, все кислоты действуют как ионизирующие агенты, которые способствуют образованию катиона металлоцения, заряд которого компенсируется объемным, плохо координирующим анионом.

Металлоценовые соединения формулы (I) согласно изобретению могут существовать как в мономерной, димерной, так и в олигомерной форме.

Металлоценовые соединения согласно изобретению могут отдельно применяться в качестве особо чистых веществ для (со)полимеризации. Однако можно также их получать и применять in situ в реакторе для (со)полимеризации известным специалисту способом.

Первый и второй карбанионы СрI и СрII с циклопентадиенильным кольцом могут быть одинаковыми или различными. Циклопентадиенильное кольцо может быть, например, из группы циклопентадиена, замещенного циклопентадиена, индена, замещенного индена, флуорена и замещенного флуорена. В качестве заместителей следует назвать от одного до четырех в циклопентадиеновом или наконденсированном бензольном кольце. Этими заместителями могут быть алкил с 1-20 атомами углерода, такой как метил, этил, пропил, изопропил, бутил или изобутил, гексил, октил, децил, додецил, гексадецил, октадецил, эйкозил, алкокси с 1-20 атомами углерода, такой, метокси, этокси, пропокси, изопропокси, бутокси или изобутокси, гексокси, октилокси, децилокси, додецилокси, гексадецилокси, октадецилокси, эйкозилокси, галоид, такой как фтор, хлор или бром, арил с 6-12 атомами углерода, такой как фенил, алкилфенил с 1-4 атомами углерода в алкильной части, такой как толил, этилфенил, изопропилфенил, изобутилфенил, трет.-бутилфенил, ксилил, галоидфенил, такой как фтор-, хлор-, бромфенил, нафтил или бифенилил, силил с тремя органическими остатками, такой как триметилсилил, ферроценил, а также D или А, такие как определено выше. Кроме того, наконденсированные ароматические кольца могут быть частично или полностью гидрированы так, что сохраняется только двойная связь, которая является общей как для наконденсированного, так и для циклопентадиенильного кольца. Бензольные кольца, кроме того, могут содержать одно или два дополнительных наконденсированных бензольных кольца, как в индене или флуорене. И еще помимо этого, циклопентадиеновое или циклопентадиенильное кольцо и наконденсированное бензольное кольцо могут совместно содержать дополнительное наконденсированное бензольное кольцо. Такие циклопентадиеновые кольца в виде анионов являются превосходными лигандами для переходных металлов, причем каждый циклопентадиенильный карбанион указанного незамещенного или замещенного типа компенсирует положительный заряд металла, находящегося в центре комплекса. Отдельными примерами таких карбанионов являются: циклопентадиенил, метил-циклопентадиенил, 1,2-диметил-циклопентадиенил, 1,3-диметил-циклопентадиенил, инденил, фенилинденил, 1,2-диэтил-циклопентадиенил, тетраметил-циклопентадиенил, этил-циклопентадиенил, н-бутил-циклопентадиенил, н-октил-циклопентадиенил, -фенилпропил-циклопентадиенил, тетрагидроинденил, пропил-циклопентадиенил, трет.-бутил-циклопентадиенил, бензил-циклопентадиенил, дифенилметил-циклопентадиенил, триметилгермил-циклопентадиенил, триметилстаннил-циклопентадиенил, трифторметил-циклопентадиенил, триметилсилил-циклопентадиенил, пентаметил-циклопентадиенил, флуоренил, тетрагидрофлуоренил или октагидрофлуоренил, бензоаннелированные по шестичленному циклу флуоренилы и инденилы, N,N-димeтилaминo-циклопентадиенил, диметилфосфино-циклопентадиенил, метокси-циклопентадиенил, диметилборанил-циклопентадиенил, (N,N-диметиламинометил)-циклопентадиенил.

Наряду с обязательно имеющейся первой донорно-акцепторной связью между D и А, могут образоваться дополнительные донорно-акцепторные связи, если в качестве заместителей соответствующих циклопентадиеновых систем имеются дополнительные D и/или А. Все донорно-акцепторные связи отличаются изображенной выше обратимостью. В случае нескольких D или А они могут занимать различные из названных положений. В соответствии с этим, изобретение охватывает как мостиковые состояния молекул (Iа), так и безмостиковые состояния (Iб). Количество D- и А-групп может быть одинаковым или различным. В предпочтительном варианте СрI и СрII связаны только одним донорно-акцепторным мостиком.

Наряду с D/A-мостиками согласно изобретению могут также существовать ковалентные мостики. В этом случае D/A-мостики повышают пространственную жесткость и термостойкость катализатора. При чередовании замкнутой и разомкнутой D/A-связи становятся доступными цепи полимеров с более высокой и более низкой стереорегулярностью. Такие цепи у сополимеров могут иметь различные химические составы.

В качестве донорных групп используют, прежде всего, такие, у которых донорный атом D является элементом 5, 6 или 7 главной подгруппы периодической системы элементов (Менделеева) и имеет, по меньшей мере, одну свободную электронную пару, причем донорный атом в случае элементов 5. главной подгруппы находится в состоянии связи с заместителями, а в случае элементов 6. главной подгруппы может находиться в таком состоянии; донорные атомы 7 главной подгруппы не несут заместителей. Это поясняется на примере фосфора Р, кислорода О и хлора Сl в качестве донорных атомов, причем "зам." означают подобные вышеупомянутые заместители, а "-Ср" представляет собой связь с пентадиенилсодержащим карбанионом, линия со стрелкой, которая в формуле (I) имеет указанное значение координационной связи, и прочие линии означают имеющиеся электронные пары: В качестве акцепторных групп прежде всего используют такие, акцепторный атом А которых является элементом 3 из главной подгруппы периодической системы элементов (Менделеева), таким как бор, алюминий, галлий, индий и таллий, находится в состоянии связи с заместителями и имеет дефицит электронов.

D и А связаны координационной связью, которую также называют дативной связью, причем D принимает положительный (частичный) заряд, а А -отрицательный (частичный) заряд.

Вследствие этого имеется различие между донорным атомом D и донорной группой или между акцепторным атомом А и акцепторной группой. Координационная D-->A-связь устанавливается между донорным атомом D и акцепторным атомом А. Донорная группа представляет собой единое целое из донорного атома D, возможно, имеющихся заместителей и из имеющихся электронных пар; соответственно, акцепторная группа представляет собой единое целое из акцепторного атома А, заместителей и имеющегося дефицита электронов.

Связь между донорным или акцепторным атомом и циклопентадиенил-содержащим карбанионом может быть прервана группами-спейсерами, то есть могут образоваться системы: D-спейсер-Ср или А-спейсер-Ср. В третьем из приведенных выше примеров формул =C(R)- представляет собой один такой спейсер между О и Ср. Спейсерами, например, являются: диметилсилил, диэтилсилил, ди(н-пропил)силил, диизопропилсилил, ди(н-бутил)силил, ди(трет.-бутил)силил, ди(н-гек-сил)силил, метилфенилсилил, этилметилсилил, дифенилсилил, ди(п-трет.-бутил-фенэтилсилил), н-гексилметилсилил, циклопентаметиленсилил, циклотетраметиленсилил, циклотриметиленсилил, диметилгерманил, диэтилгерманил, фениламино, трет.-бутиламино, метиламино, трет.-бутилфосфино, этилфосфино, фенилфосфино, метилен, диметилметилен (изопропилиден), диэтилметилен, этилен, диметилэтилен, диэтилэтилен, дипропилэтилен, пропилен, диметилпропилен, ди-этилпропилен, 1,1-диметил-3,3-диметилпропилен, тетраметилдисилоксан, 1,1,4,4-тетраметилдисилилэтилен, дифенилметилен. В предпочтительном варианте D или А связаны с циклопентадиенилсодержащим карбанионом без спейсера.

D или А независимо друг от друга могут находиться в циклопентадиеновом (циклопентадиенильном) кольце или в наконденсированном бензольном кольце или в другом заместителе колец СрI и СрII. В случае нескольких D или А они могут занимать различные из вышеупомянутых положений.

Заместителями у донорных атомов N, P, As, Sb, Bi, О, S, Se или Те и у акцепторных атомов В, AI, Ga, In или TI, например, являются: циклоалкил с 1-12 атомами углерода, такой как метил, этил, пропил, изопропил, циклопропил, бутил, изобутил, трет.-бутил, циклобутил, пентил, неопентил, циклопентил, гексил, циклогексил, изомерные гептилы, октилы, нонилы, децилы, ундецилы, додецилы; соответствующие им алкоксигруппы с 1-12 атомами углерода; винил, бутенил, аллил; арил с 6-12 атомами углерода, такой как фенил, нафтил или бифенилил, бензил, которые могут быть замещены галоидом, одной или двумя алкильными группами с 1-4 атомами углерода, алкоксигруппами с 1-4 атомами углерода, сульфонатом, нитрогруппой или галоидалкилгруппой, алкилкарбоксигруппой с 1-6 атомами углерода в алкильной части, алкилкарбонилом с 1-6 атомами углерода в алкильной части или цианогруппой (например, перфторфенил, м,м'-бис(трифторметил)-фенил, триалкилсилил с 1-20 атомами углерода в каждой алкильной группе, три-арилсилил с 6-12 атомами углерода в каждой арильной группе и аналогичные известные специалисту заместители); аналогичные арилоксигруппы; инденил; галоид, такой как фтор, хлор, бром и йод, 1-тиенил, дизамещенная аминогруппа, такая как диалкиламино с 1-12 атомами углерода в каждой алкильной группе, дифениламино, триалкилсилил с 1-12 атомами углерода в каждой алкильной группе, NаSО3-арил, такой как NаSО3-фенил и NаSO3-толил, фенилэтинил; алифатический и ароматический силил с 1-20 атомами углерода, алкильные заместители которого, наряду с вышеупомянутыми, дополнительно могут представлять собой октил, децил, додецил, стеарил или эйкозил, а арильные заместители - фенил, толил, ксилил, нафтил или бифенилил; такими замещенными силильными группами, которые связаны с донорным или с акцепторным атомом, например, являются (триметилсил)метил, алкил(фенил)амино с 1-12 атомами углерода в каждой алкильной части, (алкилнафтил)амино с 1-12 атомами углерода в каждой алкильной части, ди(алкилфенил)амино с 1-12 атомами углерода в каждой алкильной части, арилокси с вышеуказанными арильными группами с 6-12 атомами углерода, перфторалкил с 1-8 атомами углерода, перфторфенил. Предпочтительными заместителями являются: алкил с 1-6 атомами углерода, циклоалкил с 5-6 атомами углерода, фенил, толил, алкокси с 1-6 атомами углерода, арилокси с 6-12 атомами углерода, винил, аллил, бензил, перфторфенил, фтор, хлор, бром, диалкиламино с 1-6 атомами углерода в каждой алкильной группе, дифениламине.

Донорными группами являются такие, у которых свободная электронная пара локализована на N, P, As, Sb, Bi, О, S, Se, Те, F, Cl, Br, I; из них предпочтительными являются N, P, О, S. В качестве примеров донорных групп следует назвать: (CH3)2N-, (C2H5)2N-, (С3H7)2N-, (C4H9)2N-, (C6H5)2N-, (СН3)2Р-, (С2Н5)2Р-, (С3Н7)2Р-, (изо-С3Н7)2P-, (С4Н9)2Р-, (трет. -С4H9)Р-, (цикло-С6Н11)2Р-, (С6Н5)2Р-, (СН3)(С6Н5)Р-, (СН3О)2Р-, (С2Н5О)2Р-, (С6Н5О)2Р-, (СН36Н4О)2Р-, ((СН3)2N) 2P-, метилсодержащие фосфиногруппы, СН3О-, СН3S-, С6Н5S-, -С(С6Н5)=O, -С(СН3)=O, -OSi(СН3)3, -OSi(СН3)2-трет. -бутил, в которых N и Р несут по одной свободной электронной паре, а О и S - по две свободных электронных пары, причем в обоих упомянутых последними примерах дважды связанный кислород связан через группу-спейсер, а также через такие системы, как пирролидоновое кольцо, причем роль спейсера играют также отличные от N члены цикла.

Акцепторными группами являются такие, у которых не хватает одной электронной пары у В, AI, Ga, In или TI, предпочтительно у В, AI или Ga; в качестве примеров следует назвать: (СН3)2В-, (С2Н5)2В-, Н2В, (С6Н5)2В-, (СН3)(С6Н5)В-, (винил)2В-, (бензил)2В-, Сl2В-, (СН3О)2В-, Cl2Al-; (СН3)2А1-, (изо-С4Н9)2А1-, (С1)(С2Н5)А1-, (СН3)2Gа-, (С3Н7)2Gа-, ((CH3)3Si-CH2)2Ga-, (винил)2Gа-, (С6Н5)2Gа-, (СН3)2In-, ((СН3)3Si-СН2)2In-, (циклопентадиенил)2In.

Кроме того, используют такие донорные и акцепторные группы, которые содержат хиральные центры или в которых два заместителя образуют цикл с D-или А-атомом. Примерами этого являются или Предпочтительными донорно-акцепторными мостиками между СрI и СрII являются, например, следующие: M означает переходный металл из 3, 4, 5 или 6 подгруппы периодической системы элементов (Менделеева), включая лантаниды и актиниды; к примеру, следует назвать: Se, Y, La, Sm, N, Lu, Ti, Zr, Hf, Th, V, Nb, Та, Cr. Предпочтительными являются Ti, Zr, Hf, V, Nb и Та.

При образовании металлоценовой структуры согласно вышеуказанной формуле (I) каждый положительный заряд переходного металла М компенсируется одним циклопентадиенилсодержащим карбанионом. Еще остающиеся на центральном атоме М положительные заряды насыщаются дополнительными, чаще всего, одновалентными анионами, два из которых, одинаковые или различные, также могут быть связаны друг с другом (дианионы ), например, одновалентные или двухвалентные отрицательно заряженные остатки из одинаковых или различных, линейных или разветвленных, насыщенных или ненасыщенных углеводородов, аминов, фосфинов, тиоспиртов, спиртов или фенолов. Простые анионы, такие как СR3, NR2,PR2,OR, SR и так далее, могут быть связаны насыщенными или ненасыщенными углеводородными или силановыми мостиками, при этом образуются дианионы, а количество атомов мостика может составлять 0, 1, 2, 3, 4, 5, 6, предпочтительно от 0 до 4, особенно предпочтительно 1 или 2. Мостиковые атомы, кроме атомов водорода, могут еще нести дополнительные углеводородные заместители R. Примерами мостиков между простыми анионами являются -СН2-, -СН2-СН2-, -(СH2)3-, СН= СН, -(СН= СН)2-, -СН= СН-СН2-, СН2-СН=СН-СН2-, -Si-(СН3)2-, С(СН3)2-. Примерами Х являются: гидрид, хлорид, метил, этил, фенил, фторид, бромид, иодид, н-пропил, изопропил, н-бутил, амил, изоамил, гексил, изобутил, гептил, октил, нонил, децил, цетил, метокси, этокси, пропокси, бутокси, фенокси, диметиламино, ди-этиламино, метилэтиламино, ди(трет.-бутил)амино, дифениламино, дифенилфосфино, дициклогексилфосфино, диметилфосфино, метилиден, этилиден, пропилиден, дианион этиленгликоля. Примерами дианионов являются 1,4-дифенил-1,3-бутадиендиил, 3-метил-1,3-пентадиендиил, 1,4-дибензил-1,3-бутадиендиил, 2,4-гексадиендиил, 1,3-пентадиендиил, 1,4-дитолил-1,3-бутадиендиил, 1,4-бис(три-метилсилил-1,3)-бутадиендиил, 1,3-бутадиендиил. Особенно предпочтительными являются 1,4-дифенил-1,3-бутадиендиил, 1,3-пентадиендиил, 1,4-дибензил-1,3-бутадиендиил, 2,4-гексадиендиил, 3-метил-1,3-пентадиендиил, 1,4-дитолил-1,3-бутадиендиил и 1,4-бис(триметилсилил)-1,3-бутадиендиил. Другими примерами дианионов являются дианионы с гетероатомами структуры, или причем мостик имеет указанное выше значение. В дополнение к этому, особенно предпочтительными для компенсации заряда являются слабые или некоординирующие анионы вышеуказанного типа.

Активирование с помощью таких объемных анионов удается, например, путем взаимодействия D/A-металлоцена с трис-(пентафторфенил)-бораном, трифенилбораном, трифенилалюминием, тритил-тетракис-(пентафторфенил)-боратом или N,N-диалкилфениламмоний-тетракис-(пентафторфенил)-боратом или с соответствующими фосфониевыми или сульфониевыми солями боратов, или с солями (щелочноземельных) щелочных металлов, таллиевыми или серебряными солями боратов, карборанов, тозилатов, трифлатов, перфторкарбоксилатов, таких как трифторацетат, или с соответствующими кислотами. При этом предпочтительно используют D/A-металлоцены, анионный эквивалент которых Х представляет собой алкильную, арильную или бензильную группы. Такие производные можно также получать "in situ" таким образом, что D/A-металлоцены подвергают взаимодействию с другими анионными эквивалентами X, такими как фтор, хлор, бром, OR, NR2 и так далее, прежде всего, с алкиленом алюминия, литийорганическими соединениями этиленовой природы или соединениями Гриньяра, либо с алкиленом цинка или свинца. Получаемые из них продукты взамодействия можно активировать вышеназванными боранами или боратами без предварительного выделения.

Индекс n, в зависимости от заряда переходного металла М, принимает значение ноль, один, два, три или четыре, предпочтительно ноль, один или два. Вышеуказанные металлы побочных групп в зависимости, в частности, от их принадлежности к побочным группам, могут принимать значения валентностей зарядов именно от двух до шести, предпочтительно от двух до четырех, два из которых в каждом случае компенсируются карбанионами металлоценового соединения. Согласно этому, в случае La+3 индекс n принимает значение один, а в случае Zr4+ - значение два; у Sm2+ n равно нулю.

В способе получения металлоценовых соединений формулы (I) можно подвергать взаимодействию друг с другом или по одному соединению вышеуказанных формул (II, где К означает М') и (III, где L означает MXn+1), или по одному соединению вышеуказанных формул (II, где К означает MXn+1) и (III, где L означает М'), или по одному соединению вышеуказанных формул (IV) и (V), или по одному соединению вышеуказанных формул (VI) и (III, где L означает MXn+1), или по одному соединению вышеуказанных формул (II, где К означает MXn+1) и (IX), или по одному соединению вышеуказанных формул (X) и (V) с выделением или отщеплением соединений: щелочной металл-Х, щелочноземельный металл-Х2, силил-Х, гермил-Х или НХ в апротонном растворителе при температурах от -78 до +120oС, предпочтительно от -40 до +70oС, и молярном соотношении (II, где К означает М'):(III, где L означает MXn+1) или (II, где К означает MXn+1):(III, где L означает М'), или (IV):(V), или (VI):(III, где L означает MXn+1), или (II, где К означает MXn+1):(IX), или (X):(V) 1:0,5-2, предпочтительно 1: 0,8-1,2, особенно предпочтительно 1:1. В случаях взаимодействия (VI) с (III, где L означает MXn+1), или (II, где К означает MXn+1) с (IX), или (X) с (V) можно отказаться от апротонного растворителя, если (VI), (IX) или (X) в условиях реакции является жидким. Примерами таких выделяющихся или отщепляемых соединений являются: хлориды таллия и лития, бромид, фторид и иодид лития, хлорид и бромид натрия, хлорид и фторид калия, хлорид и бромид магния, хлорид и фторид кальция, триметилхлорсилан, триэтилхлорсилан, три-(н-бутил)-хлорсилан, трифенилхлорсилан, триметилхлоргерман, триметилхлорстаннан, диметиламин, диэтиламин, дибутиламин и другие соединения из вышеприведенного примера замещения, известные специалисту.

Таким образом, соединения формулы (II, где К означает М') или (II, где К означает MXn+1) представляют собой карбанионы с циклопентадиенильным кольцом, которые содержат 1-3 ковалентно связанные донорные группы, используемые для образования D/A-мостиковой связи, а в качестве противоиона для отрицательного заряда циклопентадиенильного кольца содержат катион. Соединения формулы (VI) являются незаряженными циклопентадиеновыми кольцами с 1-3 донорными группами, также используемыми для образования D/A-мостиковой связи, но с легко отщепляемыми уходящими группами E(R1R2R3), такими как силил-, германил- или станнил-группы или водород, вместо ионных групп.

Второй компонент для образования металлоценовых соединений согласно изобретению, а именно соединение формулы (III, где L означает MXn+1) или (III, где L означает М'), также представляет собой карбанион с циклопентадиенильным кольцом, который является одинаковым или различным с циклопентадиенильным кольцом соединения (II, где К означает М') или (II, где К означает MXn+1), однако вместо донорных групп он несет 1-3 акцепторные группы, используемые для образования D/A-мостиковой связи. Соответственно, соединения формулы (IX) являются незаряженными циклопентадиеновыми кольцами с 1-3 используемыми для образования D/A-мостиковой связи акцепторными группами и с также легко отщепляемыми уходящими группами F(R4R5R6).

Абсолютно аналогичным образом соединения формул (IV) или (X) представляют собой исходные вещества с заранее образованной D*А-связью, которые означают карбанионы-противокатионные соединения или незаряженные циклопентадиеновые кольца с в совокупности возможными 1-3 D А-связями, и которые реакцией с соединениями формулы (V) дают металлоценовые соединения (I).

Оба исходных вещества способа согласно изобретению, а именно (II, где К означает М') и (III, где L означает MXn+1), или (II, где К означает MXn+1) и (III, где L означает М'), или (IV) и (V), или (VI) и (III, где L означает MXn+1), или (II, где К означает MXn+1) и (IX), или (X) и (V) спонтанно реагируют при их соединении с одновременным образованием донорно-акцепторной группы D- А- или комплексированием катиона металла М с отщеплением М'Х, или E(R1R2R3)X, или F(R4R5R6)X, или НХ. При изображении донорно-акцепторной группы заместители у D и А для наглядности опускали.

М' является катионным эквивалентом (щелочноземельного) щелочного металла, такого как литий, натрий, калий, 1/2 Mg, 1/2 Ca, 1/2 Sr, 1/2 Ва, или таллий.

Растворители для способа согласно изобретению являются апротонными, полярными или неполярными, такими как алифатические и ароматические углеводороды или алифатические и ароматические галоидуглеводороды. В принципе, используют также и другие апротонные растворители, известные специалисту, однако в целях упрощения обработки такие растворители со слишком высокими температурами кипения являются менее предпочтительными. Типичными примерами растворителей являются: н-гексан, циклогексан, пентан, гептан, петролейный эфир, толуол, бензол, хлорбензол, метиленхлорид, диэтиловый эфир, тетрагидрофуран, простой диметиловый эфир этиленгликоля.

Исходные вещества формул (II, где К означает М'), (III, где L означает MXn+1), (II, где К означает MXn+1) и (III, где L означает М') для способа согласно изобретению могут быть получены известными в литературе способами или способами-аналогами. Так, например, аналогично описанному в J. of Organometallic Chem. , (1971), 29, 227, распространенный триметилсилил-циклопентадиен сначала подвергается взаимодействию с бутиллитием и затем - с триметилсилилхлоридом с образованием бис(триметилсилил)-циклопентадиена. Его можно снова подвергать взаимодействию с трихлоридом бора (аналогично описанному в J. of Organometallic Chem., (1979), 169, 327), который в заключение можно подвергать взаимодействию с тетрахлоридом титана с образованием трихлорида дихлорборилциклопентадиенилтитана аналогично описанному в J. of Organometallic Chem., (1979), 169, 373. Это названное последним соединение уже представляет собой прототип соединений формулы (III, где L означает MXn+1); его можно далее селективно подвергать взаимодействию с триметилалюминием, причем оба атома хлора, связанные с атомом бора, замещаются метальными группами, и при этом образуется еще одно соединение формулы (III, где L означает MXn+1). Аналогично описаниям способа в J. Am. Chem. Soc., (1983) 105, 3882 и в Organometallics, (1982), 1, 1591 распространенный реагент циклопентадиенилталлий можно подвергать взаимодействию с хлордифенилфосфином и далее - с бутиллитием, при этом получают прототип соединений формулы (II, где К означает М').

В качестве дополнительного примера следует упомянуть образование диметилстаннил-дифенилфосфин-индена путем взаимодействия индена сначала с бутиллитием, как это уже указано выше, и затем - с хлордифенилфосфином; дальнейшее превращение, сначала вновь с бутиллитием и затем - с хлортрибутилоловом, приводит к упомянутому соединению, которое в результате последующего взаимодействия с тетрахлоридом циркония приводит к образованию трихлорида дифенилфосфино-инденил-циркония как представителя соединений формулы (II, где К означает MXn+1). Подобные синтезы и способы получения известны специалисту, работающему в области химии металлоорганических и элементоорганических соединений и опубликованы в многочисленных литературных источниках, из которых выше в качестве примеров приведены лишь некоторые.

Металлоценовые соединения согласно изобретению исключительно пригодны в качестве катализаторов в процессах гомо- и сополимеризации одного или нескольких олефинов с 2-40 атомами углерода или для сополимеризации одного или нескольких олефинов с 2-40 атомами углерода с одним и