Способ раскисления и легирования стали

Реферат

 

Изобретение относится к черной металлургии, конкретнее к раскислению и легированию стали в процессе выпуска из конвертера в сталеразливочный ковш. Технический результат заключается в регламентации и упорядочении режимов присадки в ковш ферросплавов и легирующих материалов, в повышении степени усвоения углерода, марганца, алюминия из ферросплавов и легирующих материалов, а также в повышении эффективности удаления продуктов раскисления из жидкой стали. Способ раскисления и легирования стали включает выплавку стали в конвертере, выпуск ее из конвертера в сталеразливочный ковш, подачу в ковш в процессе выпуска раскислителей и легирующих материалов в виде ферросплавов и алюминия тремя порциями. Первую порцию из кремнийсодержащих ферросплавов и науглероживателя с весовым соотношением 1:(0,1-10,0) вводят с начала выпуска под струю стали до наполнения ковша в пределах 0,2-0,3 высоты его рабочей полости. Весовой расход М1 в кг/т выплавляемой стали кремнийсодержащих ферросплавов в первой порции устанавливают по соотношению М1121)t/С1, где С1 - содержание углерода в стали перед выпуском из конвертера, мас.%; С2 - необходимое содержание углерода в стали после ее выпуска из конвертера, мас. %; t - температура стали в конвертере перед выпуском, oС; К1 - коэффициент, равный (8,2-17,0)10-5, кг/тoС. Вторую порцию из марганецсодержащих и/или из кремнийсодержащих материалов с весовым расходом в пределах 1,0-30,0 кг/т выплавляемой стали вводят при наполнении ковша в пределах 0,25-0,6 высоты его рабочей полости. Третью порцию из алюминия вводят при наполнении ковша в пределах 0,4-0,8 высоты его рабочей полости. Весовой расход алюминия М2 в кг/т выплавляемой стали устанавливают по соотношению М22AlТ/а, где Al - необходимое содержание алюминия в стали после ее выпуска из конвертера, мас.%; Т - масса выплавляемой стали, т; а - величина усвоения сталью алюминия, равная 15-30%; К2 - коэффициент, равный 2,5-10,0, безразмерный. В качестве кремнийсодержащего ферросплава могут использовать ферросилиций, силикокальций, в качестве марганецсодержащего ферросплава - ферромарганец, силикомарганец. Отношение подаваемых во второй порции весовых количеств кремнийсодержащих и марганецсодержащих ферросплавов устанавливают в пределах 1:(1-10). 6 з.п. ф-лы, 1 табл.

Изобретение относится к черной металлургии, конкретнее к процессам выплавки стали в конвертере, ее раскисления и легирования в процессе выпуска из конвертера в сталеразливочный ковш.

Наиболее близким по технической сущности является способ paскисления и легирования стали, включающий выплавку стали в конвертере, выпуск стали из конвертера в сталеразливочный ковш с отсечкой шлака, подачу в ковш в процессе выпуска раскислителей и легирующих материалов в виде ферросплавов и алюминия.

(См. Справочник конвертерщика. Якушев А.М. - Челябинск: Металлургия, Челябинское отделение, 1990, стр. 276-285).

Недостатком известного способа является отсутствие необходимой регламентации режимов подачи в ковш ферросплавов и легирующих материалов во время выпуска расплава из конвертера. В результате не обеспечивается необходимая степень усвоения сталью углерода, марганца, алюминия из ферросплавов и легирующих материалов. При этом не обеспечивается необходимое удаление продуктов раскисления из жидкой стали.

Технический эффект при использовании изобретения заключается в регламентации и упорядочении режимов присадки в ковш ферросплавов и легирующих материалов, в повышении степени усвоения углерода, марганца, алюминия из ферросплавов и легирующих материалов, а также в повышении эффективности удаления продуктов раскисления из жидкой стали.

Указанный технический эффект достигают тем, что способ раскисления и легирования стали включает выплавку стали в конвертере, выпуск стали из конвертера в сталеразливочный ковш, подачу в ковш в процессе выпуска раскислителей и легирующих материалов в виде ферросплавов и алюминия.

Раскислители и легирующие материалы подают тремя порциями. Первая порция состоит из кремнийсодержащих ферросплавов и науглероживателя с весовым соотношением 1:(0,1-10,0), которая вводится с начала выпуска под струю стали до наполнения ковша в пределах 0,2-0,3 высоты его рабочей полости. Весовой расход кремнийсодержащих ферросплавов в первой порции устанавливают по соотношению: М112 - С1)t/С1, где M1 - весовой расход кремнийсодержащих ферросплавов, кг/т выплавляемой стали; С1 - содержание углерода в стали перед выпуском из конвертера, мас.%; С2 - необходимое содержание углерода в стали после ее выпуска из конвертера, мас.%; t - температура стали в конвертере перед выпуском, oС; K1 - коэффициент, характеризующий физико-химические закономерности раскисления и легирования стали, равный (8,2-17,0)10-5, кг/тoС.

Вторая порция состоит из марганецсодержащих и/или из кремнийсодержащих ферросплавов с весовым расходом в пределах 1,0-30,0 кг/т выплавляемой стали, которая вводится при наполнении ковша в пределах 0,25-0,6 высоты его рабочей полости.

Третья порция состоит из алюминия, которая вводится при наполнении ковша в пределах 0,4-0,8 высоты его рабочей полости. Весовой расход алюминия устанавливают по соотношению: М22AlТ/а, где М2 - весовой расход алюминия в третьей порции, кг/т выплавляемой стали; Al - необходимое содержание алюминия в стали после ее выпуска из конвертера, мас.%; Т - масса выплавляемой стали, т; а - величина усвоения сталью алюминия, разная 15-30%; К2 - коэффициент, характеризующий влияние массы стали на ее раскисление алюминием, равный 2,5-10,0, безразмерный.

В качестве кремнийсодержащего ферросплава используют ферросилиций с содержанием кремния в пределах 30-80 мас. %, остальное железо. В качестве кремнийсодержащего ферросплава используют силикокальций с содержанием кремния 40-70 мас. % и кальция 10-40 мас.%, остальное железо. В качестве кремнийсодержащих материалов используют силикокальций и ферросилиций с весовым соотношением в пределах 1: (1-10). В качестве марганецсодержащего ферросплава используют ферромарганец с содержанием марганца в пределах 50-95 мас. %, остальное железо. В качестве марганецсодержащих ферросплавов используют силикомарганец с содержанием кремния в пределах 10-25 мас.% и марганца в пределах 50-75 мас.%, остальное железо. Отношение подаваемых во второй порции весовых количеств кремнийсодержащих и марганецсодержащих ферросплавов устанавливают в пределах 1:(1-10).

Заявляемая технология раскисления и легирования стали позволяет наиболее эффективно связывать растворенный кислород и удалять продукты раскисления из жидкой стали.

Предложенный способ наиболее эффективно применим для сталей следующего химического состава, мас. %: С= 0,05-0,30; Si=0,05-1,5; Мn=0,10-2,0; Al= 0,01-0,1.

Диапазон значений весового соотношения кремнийсодержащих материалов и науглероживателя в пределах 1: (0,5-10,0) объясняется физико-химическими закономерностями процесса раскисления, легирования и науглероживания стали. При меньших значениях не будет происходить необходимое науглероживание стали. При больших значениях не будет обеспечиваться необходимый химический состав стали по содержанию углерода.

Диапазон значений расхода марганец- и/или кремнийсодержащих материалов в пределах 1,0-30,0 кг/т выплавляемой стали объясняется физико-химическими закономерностями раскисления и легирования стали. При меньших значениях не будет обеспечиваться необходимый химический состав стали. При больших значениях будет происходить перерасход ферросплавов.

Диапазон значений коэффициента К1 в пределах (8,2-17,0)10-5 объясняется физико-химическими закономерностями легирования стали. При меньших значениях расход ферросплавов будет недостаточным. При больших значениях будет происходить перерасход ферросплавов.

Диапазон значений коэффициента К2 в пределах 2,5-10,0 объясняется физико-химическими закономерностями раскисления стали алюминием. При меньших значениях сталь будет недостаточно раскислена. При больших значениях будет происходить перерасход алюминия.

Диапазон значений высоты наполнения рабочей полости ковша при подаче 1, 2 и 3 порций соответственно в пределах 0,2-0,3; 0,25-0,6 и 0,4-0,8 объясняется физико-химическими закономерностями усвоения ферросплавов и легирующих материалов жидкой сталью по мере наполнения ковша расплавом. При меньших значениях будет происходить снижение усвоения сталью подаваемых ферросплавов и легирующих материалов. При больших значениях ферросплавы и легирующие материалы не будут успевать растворяться за время выпуска стали из конвертера.

Анализ научно-технической и патентной литературы показывает отсутствие совпадения отличительных признаков заявляемого способа с признаками известных технических решений. На основании этого делается вывод о соответствии заявляемого технического решения критерию "изобретательский уровень".

Ниже дан вариант осуществления изобретения, не исключающий другие варианты в пределах формулы изобретения.

Способ раскисления и легирования стали осуществляют следующим образом.

Пример. В конвертере выплавляют углеродистую сталь с содержанием мас.%: углерода 0,05-0,3; алюминия 0,01-0,1; кремния 0,05-1,5; марганца 0,1-2,0. После выплавки стали ее выпускают из конвертера в сталеразливочный ковш соответствующей емкости с отсечкой шлака. В процессе выпуска стали в ковш подают раскислители и легирующие материалы в виде ферросплавов и алюминия.

Раскислители и легирующие материалы подают тремя порциями. Первая порция состоит из кремнийсодержащих материалов и науглероживателя в виде коксика с весовым соотношением 1: (0,1-10,0), которая вводится с начала выпуска под струю стали до наполнения ковша в пределах 0,2-0,3 высоты его рабочей полости. Весовой расход кремнийсодержащих материалов в первой порции устанавливают по соотношению: М112 - С1)t/C1, где М1 - весовой расход кремнийсодержащих материалов, кг/т выплавляемой стали; С1 - содержание углерода в стали перед выпуском из конвертера, мас.%; С2 - необходимое содержание углерода в стали после ее выпуска из конвертера, мас.%; t - температура стали в конвертере перед выпуском, oС; K1 - коэффициент, характеризующий физико-химические закономерности раскисления и легирования стали, равный (8,2-17,0)10-5, кг/тoС.

Вторая порция состоит из марганецсодержащих и/или из кремнийсодержащих материалов с весовым расходом в пределах 1,0-30,0 кг/т выплавляемой стали, которая вводится при наполнении ковша в пределах 0,25-0,6 высоты его рабочей полости.

Третья порция состоит из алюминия в виде кусков, которая вводится при наполнении ковша в пределах 0,4-0,8 высоты его рабочей полости. Весовой расход алюминия устанавливают по соотношению: М22AlТ/а, где М2 - весовой расход алюминия в третьей порции, кг/т выплавляемой стали; Al - необходимое содержание алкания в стали после ее выпуска из конвертера, мас.%; а - величина усвоения сталью алюминия, равная 15-30%; Т - масса выплавляемой стали, т; К2 - коэффициент, характеризующий влияние массы стали на ее раскисление алюминием, равный 2,5-10,0, безразмерный.

В качестве кремнийсодержащего ферросплава используют ферросилиций с содержанием кремния в пределах 30-80 мас. %, остальное железо. В качестве кремнийсодержащего ферросплава возможно использовать силикокальций с содержанием кремния 40-70 мас.% и кальция 10-40 мас.%, остальное железо. В качестве кремнийсодержащих материалов используют силикокальций и ферросилиций с весовым соотношением в пределах 1:(1-10). В качестве марганецсодержащего ферросплава используют ферромарганец с содержанием марганца в пределах 50-95 мас. %, остальное железо. В качестве марганецсодержащих ферросплавов используют силикомарганец с содержанием кремния в пределах 10-25 мас.% и марганца в пределах 50-75 мас.%, остальное железо. Отношение подаваемых во второй порции весовых количеств кремнийсодержащих и марганецсодержащих ферросплавов устанавливают в пределах 1:(1-10).

В таблице приведены примеры осуществления способа с различными технологическими параметрами.

В первом примере вследствие несоблюдения необходимых технологических параметров происходит перерасход алюминия из-за малого количества кремнийсодержащих материалов в 1-й порции, сталь загрязнена глиноземом из-за большого расхода алюминия.

В пятом примере вследствие несоблюдения технологических параметров происходит перерасход ферросплавов, сталь переокислена вследствие малого расхода алюминия.

В оптимальных примерах 2-4 вследствие соблюдения технологических параметров повышается степень усвоения углерода, марганца, алюминия из ферросплавов и легирующих материалов, а также повышается эффективность удаления продуктов раскисления из жидкой стали.

Применение изобретения позволяет повысить усвоение С, Мn, Аl, содержащихся в ферросплавах и легирующих материалах, на 2-10%.

Формула изобретения

1. Способ раскисления и легирования стали, включающий выплавку стали в конвертере, выпуск стали из конвертера в сталеразливочный ковш, подачу в ковш в процессе выпуска раскислителей и легирующих материалов в виде ферросплавов и алюминия, отличающийся тем, что раскислители и легирующие материалы подают тремя порциями, при этом первая порция состоит из кремнийсодержащих ферросплавов и науглероживателя с весовым соотношением 1:(0,1-10,0), которая вводится с начала выпуска под струю стали до наполнения ковша в пределах 0,2-0,3 высоты его рабочей полости, весовой расход кремнийсодержащих ферросплавов в первой порции устанавливают по соотношению М1121)t/С1, где М1 - весовой расход кремнийсодержащих ферросплавов, кг/т выплавляемой стали; С1 - содержание углерода в стали перед выпуском из конвертера, мас.%; С2 - необходимое содержание углерода в стали после ее выпуска из конвертера, мас.%; t - температура стали в конвертере перед выпуском, oС; К1 - коэффициент, характеризующий физико-химические закономерности раскисления и легирования, равный (8,2-17,0)10-5, кг/тoС, вторая порция состоит из марганецсодержащих и/или из кремнийсодержащих ферросплавов с весовым расходом в пределах 1,0-30,0 кг/т выплавляемой стали, которая вводится при наполнении ковша в пределах 0,25-0,6 высоты его рабочей полости, третья порция состоит из алюминия, которая вводится при наполнении ковша в пределах 0,4-0,8 высоты его рабочей полости, при этом весовой расход алюминия устанавливают по соотношению М22AlТ/а, где М2 - весовой расход алюминия в третьей порции, кг/т выплавляемой стали; Al - необходимое содержание алюминия в стали после ее выпуска из конвертера, мас.%; Т - масса выплавляемой стали, т; а - величина усвоения сталью алюминия, равная 15-30%; К2 - коэффициент, характеризующий влияние массы стали на ее раскисление алюминием, равный 2,5-10,0, безразмерный.

2. Способ по п.1, отличающийся тем, что в качестве кремнийсодержащего ферросплава используют ферросилиций с содержанием кремния в пределах 30-80 мас.%, остальное - железо.

3. Способ по п.1, отличающийся тем, что в качестве кремнийсодержащего ферросплава используют силикокальций с содержанием кремния в пределах 40-70 мас.% и кальция в пределах 10-40 мас.%, остальное - железо.

4. Способ по п. 1, отличающийся тем, что в качестве кремнийсодержащих ферросплавов используют силикокальций и ферросилиций с весовым соотношением 1:(1-10).

5. Способ по п.1, отличающийся тем, что в качестве марганецсодержащего ферросплава используют ферромарганец с содержанием марганца в пределах 50-95 мас.%, остальное - железо.

6. Способ по п.1, отличающийся тем, что в качестве марганецсодержащих ферросплавов используют силикомарганец с содержанием кремния в пределах 10-25 мас.% и марганца в пределах 50-75 мас.%, остальное - железо.

7. Способ по п.1, отличающийся тем, что соотношение подаваемых во второй порции весовых количеств кремнийсодержащих и марганецсодержащих ферросплавов устанавливают в пределах 1:(1-10).

РИСУНКИ

Рисунок 1