Сталь углеродистая низколегированная для электросварных труб повышенной коррозионной стойкости
Реферат
Изобретение относится к металлургии, а именно к производству углеродистых и низколегированных сталей для электросварных труб повышенной коррозионной стойкости, которые могут быть использованы для строительства трубопроводов, транспортирующих агрессивные в коррозионном отношении жидкости, в частности водные среды, содержащие ионы хлора, сероводород, углекислый газ, механические примеси и другие компоненты. Техническим результатом данного изобретения является повышение коррозионной стойкости, прочности и вязкости стали для электросварных труб при сохранении свариваемости и стоимостных показателей. Сталь содержит, мас.%: углерод - 0,05-0,25, марганец - 0,20-1,70, кремний - 0,20-0,80, хром - 0,01-1,00, никель - 0,01-0,60, медь - 0,01-0,50, фосфор - не более 0,035, сера - не более 0,025, алюминий - 0,01-0,06, железо и неизбежные примеси - остальное. Содержание серы и марганца соответствует соотношению MnS<0,015, где Mn и S - содержание марганца и серы соответственно, мас.%. Плотность коррозионно-активных неметаллических включений в стали составляет не более 5 штук в 1 мм3. Сталь дополнительно может содержать кальций в количестве 0,0001-0,008%. Сталь содержит в структуре свободный феррит с номером зерна не менее 8. 2 з.п.ф-лы, 1 табл.
Изобретение относится к металлургии, а именно к производству углеродистых и низколегированных сталей для электросварных труб повышенной коррозионной стойкости, которые могут быть использованы для строительства трубопроводов, транспортирующих агрессивные в коррозионном отношении жидкости, в частности водные среды, содержащие ионы хлора, сероводород, углекислый газ, механические примеси и другие компоненты. Такие трубы могут быть использованы для строительства трубопроводов систем нефтесбора и для других назначений. Обычные стали в таких условиях могут быть подвержены общей и локальной коррозии, коррозионному растрескиванию под напряжением, водородному охрупчиванию, коррозионной эрозии, что приводит к сквозным коррозионным повреждениям трубопровода. Поэтому основными требованиям, предъявляемыми к таким сталям, должны быть их высокая стойкость против различных видов коррозионного и коррозионно-механического разрушения при достаточной прочности, необходимой для трубопроводов, работающих под давлением, а также удовлетворительной свариваемости и вязкости. Учитывая, что рассматриваемые трубопроводы имеют значительную протяженность, что требует использования значительных объемов труб, стоимость такой металлопродукции должна быть сравнительно низкой, что исключает возможность использования сталей, содержащих значительные количества дорогостоящих легирующих элементов.
Известны традиционно применяемые для электросварных труб углеродистые стали типа стали 20 с техническими характеристиками по ГОСТ 1050, содержащей, %: 0,17-0,24 углерода; 0,17-0,35 кремния; 0,35-0,65 марганца; не более 0,25 хрома; не более 0,04 серы; не более 0,035 фосфора; не более 0,25 меди; не более 0,25 никеля и не более 0,08 мышьяка. Стали имеют достаточную прочность и свариваемость при низкой стоимости. Однако коррозионная стойкость их не отвечает требованиям потребителей. Сроки безаварийной эксплуатации трубопроводов из них значительно ниже нормативных. Для теплотрасс и трубопроводов систем нефтесбора реальные сроки эксплуатации во многих случаях не превышают 1-3 лет. Известны нормализованные стали с феррито-перлитной структурой, стойкие против водородного охрупчивания (Зикеев В.Н. Легирование и структура конструкционных сталей, стойких к водородному охрупчиванию. // Металловедение и термическая обработка металлов. 1982, 5, с. 18-23). Стали содержат, %: углерод в количестве не более 0,12, марганец - не более 1,7, никель - не более 1, хром - не более 0,5, определенное количество (в сумме не более 0,2) элементов из группы: ванадий, ниобий, алюминий и азот, не более 0,1-0,2 редкоземельных металлов или кальция, не более 0,5 меди, не более 0,2-0,3 сурьмы и не более 0,01 серы. Использование таких сталей с определенной микроструктурой позволяет обеспечить высокий уровень стойкости против водородного охрупчивания при удовлетворительной прочности и свариваемости. Однако они не обладают требуемой стойкостью против локальной коррозии в виде язв и питтингов, которая представляет наибольшую опасность для многих видов трубопроводов. Известна сталь с высокой коррозионной стойкостью для нефте- и газопроводных труб, содержащая 0,01-1,2% кремния, 0,02-3,0% марганца, 7,5-14,0% хрома, 0,005-0,5% алюминия при ограничении содержания углерода, азота, фосфора и серы с добавками меди, никеля, кобальта, молибдена или вольфрама (Патент США 5820707, опубл. 13.10.1998, НКИ 148/593). Высокая стоимость такой стали из-за повышенного содержания хрома и других легирующих элементов ограничивает ее использование для труб массового назначения. Прототипом заявленного изобретения является изобретение (Акцепт. заявка Японии 56-098451 МПК С 22 С 38/16, публикация 07.08.1981 г.): "Сталь для электросварных труб, обладающая стойкостью к точечной коррозии". Согласно изобретению сталь содержит, %: <0,008 серы; 0,1-0,5 меди; 0,0001-0,001 кальция; <0,20 углерода; <0,5 кремния; <1,0 марганца; <0,03 фосфора; 0,1 алюминия, причем при наличии >0,2 меди сталь содержит и никель в количестве вдвое меньшем содержания меди, остальное - железо и неизбежные примеси, в том числе хром. Сталь имеет высокую стойкость против общей и питтинговой коррозии в некоторых средах. Однако стойкость против локальной коррозии в водных средах, содержащих ионы хлора, и в некоторых других недостаточно высока. Кроме того, ограниченное содержание углерода и марганца не всегда позволяет достигать требуемый уровень прочности. Задача, решаемая с помощью данного изобретения, заключается в обеспечении коррозионной стойкости, прочности, вязкости и свариваемости стали и электросварных труб при их низкой стоимости. Техническим результатом данного изобретения является повышение коррозионной стойкости, прочности и вязкости стали для электросварных труб при сохранении свариваемости и стоимостных показателей. Технический результат достигается тем, что известная сталь, содержащая углерод, марганец, кремний, хром, никель, медь, фосфор, серу, алюминий, железо и неизбежные примеси, согласно изобретению содержит компоненты в следующем соотношении, мас.%: Углерод - 0,05-0,25 Марганец - 0,20-1,70 Кремний - 0,20-0,80 Хром - 0,01-1,00 Никель - 0,01-0,60 Медь - 0,01-0,50 Фосфор - не более 0,035 Сера - не более 0,025 Алюминий - 0,01-0,06 Железо и неизбежные примеси - Остальное причем содержание серы и марганца соответствует соотношению: MnS<0,015, при этом плотность коррозионно-активных неметаллических включений в стали составляет не более 5 штук в 1 мм3, также сталь содержит кальций в количестве 0,0001-0,008%, а также сталь содержит в структуре свободный феррит с номером зерна не менее 8. Содержание углерода и марганца в предлагаемых пределах позволяет получать требуемый уровень прочности стали без снижения ее коррозионной стойкости. Содержание кремния и алюминия в предлагаемых пределах определяет необходимую степень раскисленности стали при незначительном количестве оксидов, отрицательно влияющих на коррозионную стойкость стали. Присутствие в стали хрома, никеля и меди положительно влияет на стойкость стали против общей коррозии и против питтинговой коррозии в некоторых средах. Ограничение содержания фосфора и серы связано с необходимостью обеспечить определенный уровень вязкости стали и труб. Дополнительное ограничение содержания серы в зависимости от содержания марганца позволяет избежать присутствия в стали значительного количества сульфидов марганца, отрицательно влияющих на вязкость стали и на ее стойкость против питтинговой коррозии. Ограничение плотности коррозионно-активных неметаллических включений, выявляемых специальными методами (Реформатская И.И., Подобаев А.Н., Флорианович Г.М. и Ащеулова И.И. Оценка стойкости низкоуглеродистых трубных сталей при коррозии в условиях теплотрасс. Защита металлов, 1999 г., т. 35, 1, с. 8-16, заявка РФ на изобретение 99 - 101963/28 "Способ контроля качества стальных изделий (его варианты)" от 03.02.99, решение о выдаче патента 20.12.99), в наибольшей степени ускоряющих локальную коррозию в водных средах, содержащих ионы хлора, а также процессы коррозионной эрозии, позволяет существенно уменьшить скорости указанных процессов и повысить долговечность трубопроводов. Присутствие в стали кальция в указанных пределах обеспечивает модифицирование сульфидных включений, что повышает характеристики вязкости стального проката и труб. Наличие в стали мелкозернистого структурно свободного феррита с номером зерна не менее 8, определяемого по ГОСТ 5639, позволяет дополнительно повысить стойкость стали против локальной коррозии и ее вязкость. Примеры конкретного выполнения способа Четыре варианта сталей - 1 углеродистая и 3 низколегированные были выплавлены в 300-тонном кислородном конвертере ОАО "Северсталь" и разлиты в слябы сечением 2501450 мм, которые затем прокатывали на непрерывном широкополосном стане "2000" на полосы толщиной 6 мм. Были опробованы следующие варианты: вариант 1 - углеродистая сталь, содержащая 0,19% углерода; 0,35% кремния; 0,48% марганца; 0,009% фосфора; 0,015% серы; 0,10% хрома; 0,05% никеля; 0,15% меди и 0,05% алюминия; остальное - железо и примеси при значении MnS= 0,0072, плотности коррозионно-активных неметаллических включений - 2 штуки в 1 мм3, имеющая феррито-перлитную структуру с номером зерна феррита - 9 (соответствует п.1 и п.3 формулы изобретения), вариант 2 - низколегированная сталь, содержащая, %: 0,10 углерода; 0,30 кремния; 1,47 марганца; 0,010 фосфора; 0,004 серы; 0,07 хрома; 0,08 никеля; 0,10 меди; 0,04 алюминия и кальция - 0,003, остальное - железо и примеси при значении MnS= 0,006, плотности коррозионно-активных неметаллических включений - 2-3 штуки в 1 мм3, имеющая феррито-перлитную структуру с номером зерна феррита 10 (ГОСТ 5639) (соответствует п.2 формулы изобретения); вариант 3 - низколегированная сталь, содержащая, %: 0,09 углерода, 0,58 кремния, 1,0 марганца, 0,014 фосфора, 0,011 серы, 0,01 хрома, 0,10 никеля, 0,20 меди, 0,05 алюминия, 0,001 кальция, остальное - железо и примеси при значении MnS= 0,011, плотности коррозионно активных неметаллических включений 10-12 штук в 1 мм3, имеющая феррито-перлитную структуру с номером зерна феррита 10 (не соответствует формуле изобретения п.1 по плотности коррозионно активных неметаллических включений; соответствует прототипу); вариант 4 - низколегированная сталь, содержащая, %: 0,11 углерода, 0,23 кремния, 1,49 марганца, 0,015 фосфора, 0,015 серы, 0,03 хрома, 0,08 никеля, 0,09 меди, 0,05 алюминия, остальное - железо и примеси при значении MnS= 0,022, плотности коррозионно активных неметаллических включений 2 штуки в 1 мм3, имеющая феррито-перлитную структуру с номером зерна феррита 6 (не соответствует формуле изобретения п.1 и п.3 по значению MnS и по номеру зерна структурно-свободного феррита). Из стального проката указанных вариантов формовкой и сваркой токами высокой частоты изготавливали прямошовные трубы и трубные образцы диаметром 219 и 159 мм. Для сталей всех вариантов при изготовлении труб и трубных образцов отмечена удовлетворительная свариваемость. На образцах, отобранных от проката и от труб, проводили комплексные механические и коррозионные испытания - на растяжение по ГОСТ 1497, на ударную вязкость при минус 40oС по ГОСТ 9455, а также специальные коррозионные испытания по методикам, разработанным НИФХИ им. Л.Я. Карпова: методика 1 - определяли скорость развития питтингов в горячей воде (паре) при (13515)oC, содержащей 50 мг/л хлор-иона, 50 мг/л сульфат-иона и 20 мг/л кислорода, рН 8,5-9,5, длительность натурных испытаний - 10 месяцев (использовали методику определения скорости локальной коррозии, предложенную в работе Липовских В.М., Кашинского В.И., Реформатской И.И., Флорианович Г. М. , Подобаева А.Н. и Ащеуловой И.И. Зависимость коррозионной стойкости теплопроводов из углеродистой стали от водного режима теплосети. Защита металлов, 1999, т. 35, 6, с. 653-655); методика 2 - определяли потери массы образцов в результате коррозионных натурных испытаний в водной среде, содержащей 0,17 моль/л NaCl, 0,13 моль/л КCl, 8 моль/л NaHCO3 и 0,8 моль/л Na2SO4, в течение 90 суток. Результаты определения предела текучести, временного сопротивления, ударной вязкости при минус 40oС, а также скорости локальной и общей коррозии (методики 1 и 2 соответственно) для рассмотренных четырех вариантов сталей представлены в таблице. Видно, что варианты 1 и 2, соответствующие формуле изобретения, обеспечивают высокие механические характеристики и коррозионную стойкость стального проката и труб. При наличии в стали значительного количества коррозионно-активных неметаллических включений - 10-12 штук в 1 мм3 для варианта 3 скорость локальной коррозии возрастает более чем в 3 раза, скорость общей коррозии - в 1,5-2 раза. Пониженная коррозионная стойкость стали в присутствии коррозионно активных неметаллических включений и является основной причиной досрочных выходов из строя трубопроводов систем нефтесбора и теплотрасс. Повышенное значение произведения MnS для стали варианта 4, а также присутствие в ее структуре крупнозернистого феррита является причиной пониженной коррозионной стойкости стали по сравнению с вариантами 1 и 2. Кроме того, такая структура приводит к пониженным значениям ударной вязкости. Таким образом, использование настоящего способа существенно повышает механические свойства и коррозионную стойкость углеродистых и низколегированных сталей при сохранении их свариваемости и стоимости. В конечном итоге это приведет к значительному повышению срока безаварийной эксплуатации трубопроводов.Формула изобретения
1. Сталь углеродистая низколегированная для электросварных труб повышенной коррозионной стойкости, содержащая углерод, марганец, кремний, хром, никель, медь, фосфор, серу, алюминий, железо и неизбежные примеси, отличающаяся тем, что она содержит компоненты в следующем соотношении, мас.%: Углерод - 0,05 - 0,25 Марганец - 0,20 - 1,70 Кремний - 0,20 - 0,80 Хром - 0,01 - 1,00 Никель - 0,01 - 0,60 Медь - 0,01 - 0,50 Фосфор - не более 0,035 Сера - не более 0,025 Алюминий - 0,01 - 0,06 Железо и неизбежные примеси - Остальное причем содержание серы и марганца соответствует условию MnS<0,015,3. 2. Сталь по п.1, отличающаяся тем, что она содержит кальций в количестве 0,0001-0,008%. 3. Сталь по п.1 или 2, отличающаяся тем, что она содержит в структуре феррит с номером зерна не менее 8.РИСУНКИ
Рисунок 1