Способ производства холоднокатаной полосы
Реферат
Изобретение относится к металлургии, конкретнее к технологии прокатки и термической обработки металлов, и может быть использовано при производстве высокопрочной холоднокатаной полосы из углеродистой стали в нагартованном состоянии. Технический результат, достигаемый изобретением, состоит в повышении стабильности механических свойств и увеличении выхода годной полосы. Используют углеродистую сталь следующего состава, мас.%: углерод 0,30-0,45; кремний 0,01-0,05; марганец 0,85-1,35; алюминий 0,01-0,04; хром не более 0,10; никель не более 0,05; медь не более 0,10; молибден не более 0,05; сера не более 0,02; фосфор не более 0,02; железо остальное. Сляб нагревают до температуры 1260-1320oС, прокатывают в полосу с температурой конца прокатки 820-880oС, охлаждают до температуры 550-590oС и сматывают в рулон. После травления полосу подвергают холодной прокатке с суммарным обжатием 60-73%. 1 з.п.ф-лы, 4 табл.
Изобретение относится к металлургии, конкретнее к технологии прокатки металлов, и может быть использовано при производстве высокопрочной полосы из углеродистой стали в нагартованном состоянии.
Холоднокатаная полоса для изготовления упаковочной ленты из углеродистой стали, поставляемая в нагартованном состоянии, должна соответствовать следующему комплексу механических свойств (табл.1). Известен способ производства высокопрочной полосы из углеродистой стали, включающий нагрев сляба, горячую прокатку полосы, охлаждение и смотку в рулон, травление, холодную прокатку. При этом углеродистая сталь имеет следующий состав, мас. %: Углерод - 0,1-0,3 Кремний - 0,25-2,0 Марганец - 1,5-2,5 Фосфор - Менее 0,01 Сера - Менее 0,03 Алюминий - 0,02-0,10 Кальций - 0,0002-0,003 Железо и примеси - Остальное [1] Данный способ не обеспечивает получения заданных свойств холоднокатаной полосы в нагартованном состоянии. Известен также способ производства высокопрочной холоднокатаной полосы из углеродистой стали следующего состава, мас.%: Углерод - До 0,2 Кремний - До 2,0 Марганец - 0,3-2,0 Фосфор - До 0,03 Сера - До 0,02 Алюминий - 0,015-0,2 Азот - 0,004-0,02 Ванадий - 0,004-0,02 Титан - 0,01-0,1 Ниобий - 0,01-0,1 Железо - Остальное Согласно известному способу сляб нагревают и подвергают горячей прокатке при температуре выше точки Аr3. Затем полосу охлаждают и сматывают в рулон при температуре 700oС. После травления горячекатаную полосу подвергают холодной прокатке с суммарным обжатием 30% [2]. Недостаток известного способа состоит в том, что холоднокатаная полоса имеет нестабильные механические свойства, что приводит к повышенной ее отбраковке. Наиболее близким по своей технической сущности и достигаемым результатам к предлагаемому изобретению является способ производства холоднокатаной полосы из углеродистой стали, включающий нагрев сляба до температуры аустенитизации, горячую прокатку полосы с температурой конца прокатки 850-900oС, охлаждение до температуры 550-750oС и смотку в рулон. Затем горячекатаную полосу подвергают травлению и холодной прокатке с суммарным обжатием 42-75%. Углеродистая сталь, из которой изготавливают ленту, имеет следующий химический состав, мас.%: Углерод - Не более 0,10 Марганец - 0,25-0,45 Кремний - 0,03 Фосфор - Не более 0,025 Сера - Не более 0,03 Никель - Не более 0,10 Медь - Не более 0,15 Хром - Не более 0,10 Железо - Остальное [3] При использовании известного способа производства не обеспечивается стабильное получение требуемых механических свойств холоднокатаной полосы в нагартованном состоянии, что снижает выход годной полосы. Техническая задача, решаемая изобретением, состоит в повышении стабильности механических свойств и увеличении выхода годной полосы. Поставленная техническая задача решается тем, что в известном способе производства холоднокатаной полосы из углеродистой стали, включающем нагрев сляба, горячую прокатку, охлаждение и смотку полосы в рулон, травление и холодную прокатку, согласно предложению сляб нагревают до температуры 1260-1320oС, горячую прокатку завершают при температуре 820-880oС, охлаждение полосы ведут до температуры 550-590oС, а холодную прокатку осуществляют с суммарным обжатием 60-73%. Необходимый комплекс механических свойств полосы в нагартованном состоянии и высокая стабильность свойств достигается, в частности, при использовании стали следующего химического состава, мас.%: Углерод - 0,30-0,45 Кремний - 0,01-0,05 Марганец - 0,85-1,35 Алюминий - 0,01-0,04 Хром - Не более 0,10 Никель - Не более 0,05 Медь - Не более 0,10 Молибден - Не более 0,05 Сера - Не более 0,020 Фосфор - Не более 0,020 Железо - Остальное Сущность изобретения состоит в следующем. Нагрев сляба из углеродистой стали до температуры 1260-1320oС обеспечивает аустенитизацию и полное растворение карбидов в аустените. При указанной температуре нагрева не происходит чрезмерный рост аустенитного зерна, окисление и ослабление границ зерен. Горячая прокатка полосы в температурном интервале от 1260-1320 до 820-880oС обеспечивает измельчение и динамическую рекристаллизацию аустенитных зерен. При последующем охлаждении полос до температуры смотки 550-590oС происходит контролируемый процесс превращения аустенита в ферритно-перлитную смесь, упрочненную частицами карбидов. Таким образом, в процессе горячей прокатки одновременно с получением заданных размеров полосы достигается формирование оптимального фазового состава и морфологии фаз для последующей холодной прокатки. Холодная прокатка с суммарным обжатием 60-73% позволяет осуществить наклеп ферритно-перлитной микроструктуры стали, измельчить зерно, создать мартенсит деформации и за счет этого обеспечить заданные стабильные показатели прочности, твердости и пластичности стальной полосы в нагартованном состоянии. Использование стали предложенного химического состава позволяет получить заданные свойства при любом сочетании температурно-деформационных параметров и их колебании в пределах указанных диапазонов, неизбежно существующих в реальных производственных процессах. Это дополнительно способствует увеличению выхода годной полосы. Экспериментально установлено, что увеличение температуры нагрева сляба выше 1320oС приводит к росту аустенитных зерен, что отрицательно сказывается на свойствах готовой полосы. Снижение температуры нагрева менее 1260oС снижает пластичность полосы ниже допустимой. При температуре конца прокатки выше 880oС не достигается требуемая прочность и твердость нагартованной полосы. Снижение температуры конца прокатки ниже 820oС ведет к образованию мелкозернистой структуры, переупрочнению и охрупчиванию полосы. Увеличение температуры смотки выше 590oС ведет к образованию разнобалльной структуры, возрастанию неравномерности механических свойств. Уменьшение температуры смотки ниже 550oС приводит к росту твердости и прочности выше допустимого уровня. При холодной прокатке с обжатием 60-73% обеспечивается увеличение твердости и прочности до заданных значений и наиболее полное их выравнивание по длине ленты. Если обжатие в процессе прокатки составляет менее 60%, то прочностные свойства нагартованной полосы ниже допустимого уровня, выход годной полосы снижается вследствие влияния колебаний химического состава стали и режимов горячей прокатки на равномерность свойств. При суммарном обжатии более 73% относительное удлинение ниже допустимого, полоса приобретает хрупкость. Углерод является основным упрочняющим. При содержании углерода менее 0,30% прочностные свойства нагартованной полосы ниже допустимого уровня. Увеличение содержания углерода более 0,45% приводит к потере пластичности и охрупчиванию полосы. Кремний раскисляет и упрочняет сталь. Снижение содержания кремния менее 0,01% увеличивает окисленность стали, снижает прочностные свойства полосы. Увеличение концентрации кремния сверх 0,05% охрупчивает полосу, что недопустимо. Марганец оказывает упрочняющее, раскисляющее и десульфурирующее действие. При содержании марганца менее 0,85% не достигается требуемая прочность нагартованной полосы. Увеличение концентрации марганца более 1,35% переупрочняет полосу, ведет к потере пластичности. Алюминий введен для раскисления. При содержании алюминия менее 0,01% ухудшается пластичность полосы, она становится склонной к старению. Увеличение содержания алюминия более 0,04% способствует графитизации стали и падению прочности полосы. Хром, никель, медь и молибден упрочняют сталь, но при концентрации более 0,10% хрома, 0,05% никеля, 0,10% меди и 0,05% молибдена имеет место падение пластичности нагартованной полосы ниже допустимого уровня. Сера и фосфор являются вредными примесями, ухудшающими механические свойства нагартованной полосы. Однако при концентрации серы не более 0,020% и фосфора не более 0,020% их действие проявляется слабо, а увеличение концентрации каждого из этих элементов ухудшает пластичность и охрупчивает полосу. Пример реализации способа Для производства холоднокатаной полосы используют непрерывно литые слябы сечением 250х1710 мм, массой 15 т из углеродистой стали следующего химического состава, мас.%: С - 0,38 Si - 0,03 Mn - 1,05 Al - 0,025 Cr - 0,03 Ni - 0,01 Cu - 0,03 Mo - 0,009 S - 0,013 P - 0,015 Fe - Остальное Слябы загружают в газовую нагревательную печь с шагающими балками и производят разогрев до температуры Тн=1290oС. Очередной сляб выталкивают на печной рольганг непрерывного широкополосного стана 2000 и осуществляют его горячую прокатку в полосу толщиной 1,8 мм, температуру конца прокатки поддерживают равной Ткп=870oС. На отводящем рольганге стана производят охлаждение полосы до температуры Тсм=570oС, затем полосу сматывают в рулон. Горячекатаную полосу в дальнейшем подвергают сернокислотному травлению и холодной прокатке на пятиклетевом стане кварто 1700 до конечной толщины 0,62 мм с суммарным обжатием Для получения упаковочной ленты холоднокатаные полосы разрезают вдоль с помощью дисковых ножниц. В табл. 2 дан химический состав сталей, в табл.3 - режимы производства упаковочной ленты, а в табл.4 - свойства холоднокатаных нагартованных полос и выход годного. Из табл.2-4 следует, что при реализации предложенного способа (варианты 2-4) обеспечивается повышение стабильности механических свойств и увеличение выхода годной нагартованной полосы. При запредельных значениях заявленных параметров (варианты 1,5) и реализации способа-прототипа (вариант 6) стабильность механических свойств и выход годной полосы снижаются. Технико-экономические преимущества предложенного способа заключаются в том, что при его реализации достигается повышение стабильности механических свойств нагартованной полосы при колебаниях технологических режимов производства и содержаний химических элементов в стали. В качестве базового объекта принят способ-протитоп. Использование предложенного способа обеспечит повышение рентабельности производства холоднокатаной нагартованной полосы на 15-20%. Источники информации 1. Заявка 61-272321 (Япония), МПК С 21 D 9/46, С 21 D 8/02, 1986 г. 2. Заявка 56-130430 (Япония), МПК С 21 D 9/48, С 21 D 8/02, 1981 г. 3. С.С. Гусева и др. Непрерывная термическая обработка автолистовой стали. М., Металлургия, 1979 г., с. 9-15.Формула изобретения
1. Способ производства холоднокатаной полосы из углеродистой стали, включающий нагрев сляба, горячую прокатку, охлаждение и смотку полосы в рулон, травление и холодную прокатку, отличающийся тем, что сляб нагревают до температуры 1260-1320oС, горячую прокатку завершают при температуре 820-880oС, охлаждение полосы ведут до температуры 550-590 oС, а холодную прокатку осуществляют с суммарным обжатием 60-73% 2. Способ по п. 1, отличающийся тем, что сталь имеет следующий химический состав, мас. %: Углерод - 0,30-0,45 Кремний - 0,01-0,05 Марганец - 0,85-1,35 Алюминий - 0,01-0,04 Хром - Не более 0,10 Никель - Не более 0,05 Медь - Не более 0,10 Молибден - Не более 0,05 Сера - Не более 0,020 Фосфор - Не более 0,020 Железо - ОстальноеРИСУНКИ
Рисунок 1, Рисунок 2, Рисунок 3