Усовершенствованная система для обработки, хранения и транспортировки сжиженного природного газа
Реферат
Изобретение относится к системе для обработки, хранения и транспортировки газа при высоком давлении и криогенной температуре. Система содержит резервуар для хранения сжиженного природного газа под давлением при давлении от 1035 кПа до 7590 кПа и при температуре от -123oС до -62oС. Резервуар изготовлен из сверхпрочной низколегированной стали, весовое содержание никеля в которой составляет менее 9%, обладающей пределом прочности на растяжение, превышающим 830 МПа, и температурой перехода от пластичного разрушения к хрупкому меньше -73oС, причем соединения между отдельными листами обладают достаточными пределом прочности и вязкостью при указанных условиях давления и температуры, чтобы содержать сжиженный природный газ. Техническим результатом изобретения является создание экономичной системы для обработки, хранения и транспортировки природного газа. 11 с. и 11 з.п. ф-лы, 10 ил., 3 табл.
Область применения изобретения Настоящее изобретение относится к усовершенствованной системе для обработки, хранения и транспортировки сжиженного природного газа (СПГ) и, в частности, к новой системе для обработки, хранения и транспортировки СПГ при по существу повышенных давлениях и температурах по сравнению с обычными системами СПГ.
Предпосылки изобретения В нижеприведенном описании изобретения определены различные термины. Для удобства представлен словарь терминов непосредственно перед формулой изобретения. Многие месторождения природного газа расположены в отдаленных областях, находящихся на больших расстояниях от любых рынков сбыта газа. В некоторых случаях для транспортировки добытого природного газа к рынку сбыта можно использовать трубопровод. Когда транспортировка по трубопроводу невозможна, добытый природный газ обычно перерабатывается в СПГ для транспортировки к рынку. Обычно СПГ перевозят на специально построенных танкерах, затем хранят и повторно испаряют на ввозном терминале, находящемся вблизи рынка. Оборудование, используемое для сжижения, транспортировки, хранения и повторного испарения природного газа, обычно является дорогостоящим; стоимость типичного проекта обычного СПГ может составлять от 5 до 10 млрд. долларов, включая стоимость подготовки месторождения. Для осуществления типичного проекта СПГ "широкого применения" требуется, чтобы запасы природного газа составляли минимум около 280 Гм3, и потребителями СПГ являются в основном крупные предприятия. Запасы природного газа, разведанные в отдаленных областях, нередко составляют менее 280 Гм3. Чтобы обработка, хранение и транспортировка природного газа в виде СПГ были экономически целесообразными, даже когда базовые запасы природного газа отвечают минимуму в 280 Гм3, необходимо, чтобы все участники проекта, т.е. поставщик СПГ, перевозчик СПГ, крупный потребитель СПГ, были связаны весьма долговременными обязательствами на 20 лет и более. Когда потенциальные потребители СПГ имеют доступ к альтернативному источнику газа, например магистральному газу, цепочка доставки обычного СПГ нередко становится неконкурентоспособной. На фиг.1 схематически изображена станция обычного СПГ, которая производит СПГ при температурах примерно -162oС и при атмосферном давлении. Поток обычного природного газа поступает на станцию обычного СПГ под давлением примерно от 4830 кПа до 7600 кПа, при температуре примерно от 21oС до 38oС. Для снижения температуры природного газа до более низкой выходной температуры, составляющей примерно -162oС, станции обычного двухрядного СПГ требуется мощность охлаждения примерно до 350000 лошадиных сил. В процессе обычной обработки СПГ из природного газа следует практически полностью, по существу до уровней частей на миллион (ч/млн), удалить воду, двуокись углерода, соединения серы, например сероводород, другие кислотные газы, n-пентан и более тяжелые углеводороды, включая бензол, иначе эти соединения будут замерзать, создавая проблемы закупорки в рабочем оборудовании. На станции СПГ для удаления двуокиси углерода и кислотных газов требуется оборудование очистки газа. В оборудовании для очистки газов обычно используется восстановительный процесс химического и/или физического растворителя и требуются значительные капитальные затраты. Кроме того, эксплуатационные расходы на станции являются высокими по сравнению с расходами на другое оборудование. Для удаления водяных паров требуются сушилки с сухой прослойкой, например молекулярные фильтры. Для удаления углеводородов, которые нередко создают проблемы закупорки, обычно используются газопромывочная колонна и фракционирующее оборудование. В станции обычного СПГ также удаляют ртуть, поскольку она может вызывать отказы оборудования, выполненного из алюминия. Кроме того, после очистки удаляют большую часть азота, который может присутствовать в природном газе, поскольку азот при транспортировке обычного СПГ не будет оставаться в жидкой фазе, а наличие паров азота в емкостях с СПГ в пункте доставки является нежелательным. Емкости, трубы и другое оборудование, используемое в станциях СПГ, обычно изготовляют, по меньшей мере, частично из алюминия или никелевой стали (например, с весовым содержанием никеля 9%), чтобы обеспечить необходимую вязкость на излом при чрезвычайно низких температурах обработки. Помимо обычной станции, дорогостоящие материалы, обладающие хорошей вязкостью на излом при низких температурах, включая алюминий и промышленную никелевую сталь (например, с весовым содержанием никеля 9%), обычно используются для содержания СПГ на кораблях, перевозящих СПГ, и на ввозных терминалах. Никелевые стали, которые принято использовать для изготовления конструкций, работающих при криогенных температурах, например стали, весовое содержание никеля в которых превышает примерно 3%, характеризуются низкими ТППРХ (мера вязкости, согласно приведенному ниже определению), но в то же время имеют относительно низкие пределы прочности на растяжение. Обычно коммерчески доступные стали с весовым содержанием Ni 3.5%, 5.5% и 9% имеют ТППРХ соответственно около -100oС, -155oС и -175oС и пределы прочности на растяжение соответственно около 485 МПа, 620 МПа и 830 МПа. Чтобы добиться такого сочетания предела прочности и вязкости, эти стали подвергаются дорогостоящей обработке, например двойному отжигу. В случае применения при криогенных температурах в промышленности в настоящее время используются эти промышленные никелевые стали из-за их хорошей вязкости при низких температурах, но при этом следует учитывать их относительно низкие пределы прочности на растяжение. При проектировании конструкций, несущих нагрузку при криогенных температурах, обычно закладывается избыточная толщина стали. Таким образом, использование таких никелевых сталей в конструкциях, несущих нагрузку при криогенных температурах, приводит к удорожанию проекта из-за высокой стоимости стали в сочетании с требуемой толщиной стали. На обычном корабле, перевозящем СПГ, для хранения СПГ при транспортировке применяются большие сферические резервуары, называемые сферами Мосса. Стоимость каждого подобного корабля в настоящее время превышает примерно 230 млн. долларов. Для осуществления обычного проекта производства СПГ на Ближнем Востоке и транспортировки его на Дальний Восток может потребоваться 7 или 8 таких кораблей, суммарная стоимость которых составит примерно от 1.6 до 2.0 млрд. долларов. Из рассмотренных выше обстоятельств следует, что необходимо иметь более экономичную систему для обработки, хранения и транспортировки СПГ к рынкам сбыта, чтобы отдаленные запасы природного газа могли более успешно конкурировать с альтернативными источниками энергии. Кроме того, необходима система для коммерциализации малых отдаленных запасов природного газа, которые в противном случае было бы невыгодно разрабатывать. Кроме того, необходима более экономичная система газификации и доставки, чтобы сделать СПГ более экономически привлекательным для мелких потребителей. Следовательно, основные задачи настоящего изобретения состоят в том, чтобы обеспечить более экономичную систему для обработки, хранения и транспортировки СПГ от отдаленных месторождений к рынкам сбыта и существенно снизить пороговый размер как запаса, так и рынка, необходимый для того, чтобы проект СПГ был экономически оправдан. Для достижения этих задач необходимо обрабатывать СПГ при более высоких давлениях и температурах, чем это осуществляется на станции обычного СПГ, т.е. при давлениях, превышающих атмосферное давление, и температурах, превышающих -162oС. Хотя общая концепция обработки, хранения и транспортировки СПГ при повышенных давлениях и температурах отражена в справочниках промышленных нормативов, в этих справочниках в основном идет речь об изготовлении транспортировочных резервуаров из никелевой стали (например, с весовым содержанием никеля 9%) или алюминия, и, хотя оба материала отвечают проектным требованиям, стоимость их достаточно высокая. Например, на стр. 162-164 книги "Природный газ морем. Развитие новой технологии" ("Natural Gas by Sea. The Development of a New Technology"), изданной Витерби и Ко. Лтд. (Witherby & Со. Ltd.), первое издание 1979 г. , второе издание 1993 г., Роджер Фукс (Roger Ffooks) обсуждает переоборудование корабля типа Либерти Сигальфа (Sigaipha) для перевозки либо СГПС (сжиженного газа в промежуточном состоянии) при 1380 кПа и -115oС, либо СжатПГ (сжатого природного газа), обработанного при 7935 кПа и -60oС. Г-н Фукс указывает, что несмотря на техническую пригодность ни одна из двух концепций не находит "покупателя" - главным образом, в силу высокой стоимости хранилища. Согласно статье по теме, обозначенной г-ном Фуксом, для работы со СжатПГ, т. е. при -60oС, требуется разработать низколегированную, свариваемую, закаленную и отпущенную сталь, обладающую хорошим пределом прочности (760 МПа) и хорошей вязкостью на излом в условиях эксплуатации. (Смотри "Новый процесс для транспортировки природного газа" ("A new process for the transportation of natural gas", P. Дж. Брукер (R.J.Broeker), Международная конференция по СПГ, Чикаго, 1968 г.) В этой статье указано также, что для работы с СГПС, т.е. при значительно более низкой температуре, -115oС, наименее дорогостоящим сплавом является алюминиевый сплав. Кроме того, г-н Фукс рассматривает на стр.164 проект океанского транспорта типа Феникс, работающий при значительно более низком давлении, примерно 414 кПа, с цистернами, которые можно делать из 9-процентной никелевой стали или из алюминиевого сплава; и указывает, что концепция не кажется достаточно приемлемой в техническом или финансовом плане, чтобы стать коммерческой. Смотри также (1) патент США 3,298,805, в котором описано использование стали с 9%-ным содержанием никеля или высокопрочного алюминиевого сплава для производства резервуаров для транспортировки сжатого природного газа; и (2) патент США 4,182,254, в котором описаны цистерны из 9%-ной никелевой или подобной стали для транспортировки СПГ при температурах от -100oС до -140oС и давлениях от 4 до 10 атмосфер (т. е. от 407 кПа до 1014 кПа); патент США 3,232,725, в котором рассмотрена транспортировка природного газа в состоянии текучей среды в одной плотной фазе при низкой температуре, а именно -62oС или в некоторых случаях -68oС, и при давлениях, по меньшей мере, на 345 кПа выше давления газа, соответствующего точке начала кипения при рабочих температурах, с использованием резервуаров, изготовленных из таких материалов, как 1- или 2-процентная никелевая сталь, подвергнутая закалке и отпуску для обеспечения максимального предела прочности на растяжение, достигающего 828 МПа; и (4) статью Ч.П. Беннета (С. Р. Bennett) "Морская транспортировка СПГ при промежуточной температуре" ("Marine Transportation of LNG at Intermediate Temperature"), СМЕ, март 1979 г., в которой описано конкретное исследование транспортировки СПГ при давлении 3.1 МПа и температуре -100oС с использованием цистерны для хранения, изготовленной из стали с 9% Ni или закаленной и отпущенной стали с 31/2% Ni, стенки которой имеют толщину 24 см. Хотя эти концепции отражены в справочниках промышленных нормативов, насколько это известно, обработка, хранение и транспортировка СПГ при давлениях, значительно превышающих атмосферное, и температурах, существенно превышающих -162oС, в настоящее время в промышленных масштабах не производятся. Причина, скорее всего, в том, что до сих пор никто не исследовал экономическую систему для обработки, хранения и транспортировки СПГ при таких давлениях и температурах. Поэтому задача настоящего изобретения состоит в обеспечении усовершенствованной, экономичной системы для обработки, хранения и транспортировки СПГ при давлениях и температурах, существенно увеличенных по сравнению с обычными системами СПГ. Краткое содержание изобретения В соответствии с задачами настоящего изобретения предусмотрен резервуар для хранения сжиженного природного газа под давлением (СПГД) при давлении, находящемся в широком диапазоне, примерно от 1035 кПа до 7590 кПа, и при температуре, находящейся в широком диапазоне, от -123oС до -62oС, причем резервуар изготовлен из материалов, содержащих сверхпрочную низколегированную сталь, весовое содержание никеля в которой составляет менее 9%, и обладающих достаточными пределом прочности и вязкостью на излом, чтобы содержать сжиженный природный газ под давлением. Сталь имеет сверхвысокую прочность, например предел прочности на растяжение (согласно приведенному ниже определению) свыше 830 МПа, и ТППРХ (согласно приведенному ниже определению), меньшую примерно -73oС. Для минимизации стоимости предпочтительно, чтобы весовое содержание никеля в стали было меньше примерно 5%. Кроме того, предусмотрена система для обработки и транспортировки СПГД. Система, отвечающая настоящему изобретению, производит СПГД при давлениях, находящихся в широком диапазоне, примерно от 1035 кПа до 7590 кПа, и при температурах, находящихся в широком диапазоне, примерно, от -123oС до -62oС, и использует резервуары, отвечающие настоящему изобретению, для хранения и транспортировки СПГД. Настоящее изобретение предусматривает систему для обработки природного газа для производства СПГД, для хранения СПГД и для транспортировки СПГД по местонахождению пользователя. Система, отвечающая настоящему изобретению, включает в себя (1) станцию обработки для преобразования природного газа в СПГД при давлении примерно от 1035 кПа до 7590 кПа, и при температуре примерно от -123oС до -62oС, в которой станция обработки состоит, по существу, из (а) приемной аппаратуры для приема потока природного газа и удаления из природного газа жидких углеводородов; (b) сушильной аппаратуры для удаления из природного газа водяных паров в количестве, достаточном для того, чтобы предотвратить замерзание природного газа при температурах и давлениях СПГД; и (с) аппаратуры сжижения для преобразования природного газа в СПГД; (2) резервуары хранения, изготовленные из материалов, содержащих сверхпрочную низколегированную сталь, весовое содержание никеля в которой составляет менее 9%, и имеющих предел прочности на растяжение свыше 830 МПа и ТППРХ, меньшую примерно -73oС; (3) вывозной терминал, (а) включающий резервуары хранения для хранения СПГД и аппаратуру для переправки СПГД в транспортировочные резервуары хранения, находящиеся на борту транспортного судна, или, как вариант, (b) состоящий, по существу, из аппаратуры для переправки СПГД в транспортировочные резервуары хранения, находящиеся на борту транспортировочного судна; (4) транспортировочные суда, включающие транспортировочные резервуары хранения для транспортировки СПГД к ввозному терминалу и, как вариант, включающие бортовое испарительное оборудование для преобразования СПГД в газ; и (5) ввозной терминал, (а) включающий ввозные резервуары хранения (в котором ввозные резервуары хранения установлены на суше, на плавучем основании или на стационарном прибрежном сооружении), аппаратуру для переправки СПГД из транспортировочных резервуаров хранения в ввозные резервуары хранения и аппаратуру для испарения СПГД для доставки к трубопроводам или пользовательской аппаратуре, или, как вариант, (b) состоящий, по существу, из ввозной аппаратуры (в котором ввозная аппаратура установлена на суше, на плавучем основании или на стационарном прибрежном сооружении), включающей испарительное оборудование, для приема СПГД из транспортировочных резервуаров хранения и для преобразования СПГД в газ и доставки газа к трубопроводам или пользовательской аппаратуре, или, как вариант, (с) состоящий, по существу, из аппаратуры для переправки газа, преобразованного из СПГД посредством бортового испарительного оборудования, к трубопроводам или пользовательской аппаратуре в доке или через соединения прибрежной швартовки например, одноякорной швартовки (ОЯШ). Описание чертежей Преимущества настоящего изобретения будут более понятны со ссылкой на нижеследующее подробное описание и прилагаемые чертежи, на которых фиг. 1 (уровень техники) представляет собой схему иллюстративной станции для обработки обычного СПГ; фиг.2 представляет собой схему иллюстративной станции для обработки СПГД согласно настоящему изобретению; фиг. 3А представляет собой вид с торца иллюстративного корабля для транспортировки СПГД согласно настоящему изобретению; фиг. 3Б представляет собой вид сбоку иллюстративного корабля для транспортировки СПГД согласно настоящему изобретению; фиг. 3В представляет собой вид сверху иллюстративного корабля для транспортировки СПГД согласно настоящему изобретению; фиг.4А представляет собой вид с торца иллюстративного корабля для транспортировки СПГД согласно настоящему изобретению, имеющего бортовой испаритель СПГД; фиг. 4Б представляет собой вид сбоку иллюстративного корабля для транспортировки СПГД согласно настоящему изобретению, имеющего бортовой испаритель СПГД; фиг.4В представляет собой вид сверху иллюстративного корабля для транспортировки СПГД согласно настоящему изобретению, имеющего бортовой испаритель СПГД; фиг. 5А представляет собой график критической глубины трещины для данной длины трещины как функцию РВТ (раскрытие в вершине трещины), соответствующую вязкости на излом и остаточному напряжению; и фиг.5Б иллюстрирует геометрию (длину и глубину) трещины. Хотя изобретение будет описано применительно к этим преимущественным вариантам реализации, следует понимать, что изобретение не ограничивается ими. Напротив, предполагается, что изобретение охватывает все альтернативы, модификации и эквиваленты, которые могут быть включены в сущность и объем изобретения, определенные прилагаемой формулой изобретения. Подробное описание изобретения Резервуары хранения СПГД Основным элементом станции СПГД и транспортных судов согласно настоящему изобретению являются резервуары хранения, предназначенные для хранения и транспортировки СПГД, осуществляемые при давлении, находящемся в широком диапазоне, примерно от 1035 кПа до 7590 кПа, и при температуре, находящейся в широком диапазоне, примерно от -123oС до -62oС. Резервуары для хранения СПГД изготовляют из материалов, содержащих сверхпрочную низколегированную сталь, которая обладает достаточными пределом прочности и вязкостью на излом для условий эксплуатации системы СПГД согласно настоящему изобретению, включая давления и температуры. Сталь имеет предел прочности на растяжение, превышающий 830 МПа, предпочтительно свыше примерно 860 МПа и более предпочтительно свыше примерно 900 МПа. В некоторых вариантах применения предпочтительно применять сталь, имеющую предел прочности на растяжение свыше примерно 930 МПа, или свыше примерно 965 МПа, или свыше примерно 1000 МПа. Предпочтительно также, чтобы ТППРХ стали была ниже примерно -73oС. Кроме того, предусмотрен резервуар для хранения сжиженного природного газа под давлением при давлении примерно от 1725 кПа до 4830 кПа и при температуре примерно от -112oС до -79oС, в котором упомянутый резервуар (1) изготовлен из материалов, содержащих сверхпрочную низколегированную сталь, весовое содержание никеля в которой составляет менее 9%, и (2) обладает пределом прочности и вязкостью на излом, достаточными, чтобы содержать сжиженный природный газ под давлением. Предпочтительно, чтобы сверхпрочные низколегированные стали, используемые для изготовления резервуаров согласно этому изобретению, содержали небольшое количество дорогостоящих легирующих элементов, например никеля. Предпочтительно, чтобы весовое содержание никеля составляло менее 9%, более предпочтительно - менее примерно 7% и еще более предпочтительно - менее примерно 5%. Более предпочтительно, чтобы такие стали содержали минимальное количество никеля, необходимое для обеспечения необходимой вязкости на излом. Предпочтительно, чтобы весовое содержание никеля в таких сверхпрочных низколегированных сталях составляло менее примерно 3%, более предпочтительно - менее примерно 2% и еще более предпочтительно - менее примерно 1%. Предпочтительно, чтобы такие стали были свариваемыми. Благодаря применению этих сверхпрочных низколегированных сталей изготовление резервуаров для транспортировки СПГД требует существенно более низких затрат в расчете на кг стали, чем требуется при доступных в настоящее время альтернативах с использованием алюминия или промышленной никелевой стали (с 9%-ным весовым содержанием никеля). Предпочтительно, чтобы сталь, используемая для изготовления резервуаров хранения согласно этому изобретению, не подвергалась отпуску. Однако при изготовлении резервуаров хранения согласно этому изобретению можно использовать и отпущенную сталь, если она обладает необходимыми пределом прочности и вязкостью на излом. Как известно специалистам в данной области, при проектировании резервуаров хранения для транспортировки текучих сред под давлением, при криогенных температурах, например, СПГД, для оценки вязкости на излом и контроля излома можно использовать испытание по Шарпи с помощью V-образного надреза (V-НШ), в частности посредством использования температуры перехода от пластичного разрушения к хрупкому (ТППРХ). ТППРХ разграничивает два режима излома в конструкционных сталях. При температурах ниже ТППРХ отрицательный результат испытания по Шарпи с помощью V-образного надреза, обусловлен в основном низкоэнергичным (хрупким) изломом по плоскости спайности, тогда как при температурах выше ТППРХ отрицательный результат обусловлен в основном высокоэнергичным пластичным изломом. Резервуары хранения и транспортировки, выполненные из сварных сталей для вышеупомянутых вариантов применения при криогенных температурах и для других вариантов эксплуатации под нагрузкой при криогенных температурах, во избежание хрупкого излома должны иметь ТППРХ, определяемые испытанием по Шарпи с помощью V-образного надреза, значительно меньшие температуры эксплуатации конструкции. В зависимости от проекта, условий эксплуатации и/или требований, предъявляемых ассоциацией, устанавливающей применяемую классификацию, необходимый температурный сдвиг ТППРХ может составлять от 5oС до 30oС в сторону понижения от температуры эксплуатации. Как известно специалистам в данной области, условия эксплуатации, принимаемые во внимание при проектировании резервуаров хранения из сварной стали, предназначенных для транспортировки криогенных текучих сред под давлением, помимо прочего, включают рабочие давление и температуру, а также дополнительные напряжения, которые, наиболее вероятно, существуют в стали и сварных узлах (см. словарь). Для определения вязкости на излом стали и сварных узлов можно использовать стандартные параметры механики излома, известные специалистам в данной области, например, (1) коэффициент интенсивности критического напряжения (Кик), который является мерой вязкости на излом при плоской деформации, и (2) раскрытие в вершине трещины (РВТ), которое можно использовать как меру вязкости на упруго-пластичный излом. Технические нормы и правила, обычно применяемые при проектировании стальных конструкций, например, представленные в публикации Британского института стандартов (БИСт) "Руководство по способам оценки приемлемости трещин в конструкциях, сваренных плавлением", которую часто называют "PD 6493:1991", можно использовать для определения максимально допустимых размеров трещин для резервуаров, исходя из вязкости на излом стали или сварных узлов (включающих в себя ЗТВ) и напряжений, существующих в резервуаре. Специалисты в данной области могут разработать программу контроля излома, чтобы смягчить зарождение излома посредством (1) надлежащего проектирования резервуара для минимизации существующих напряжений, (2) надлежащего контроля качества изготовления для минимизации дефектов, (3) надлежащего контроля нагрузок и давлений, приложенных к резервуару в течение его срока службы, и (5) надлежащей программы обследования для надежного обнаружения трещин и дефектов в резервуаре. Преимущественная философия проектирования системы согласно настоящему изобретению называется "утечка перед разрушением", что известно специалистам в данной области. Эти соображения обычно называются "известными принципами механики излома". Ниже приведен неограничительный пример применения этих известных принципов механики излома в процедуре расчета критической глубины трещины при данной длине трещины для использования в программе контроля излома, чтобы предотвращать зарождение излома в сосуде высокого давления, например в резервуаре хранения согласно этому изобретению. На фиг.5 показана трещина, длина которой обозначен как 315 и глубина которой обозначена как 310. PD6493 используется для расчета значений для графика 300 критического размера трещины, изображенного на фиг.5А, на основании следующих проектных условий: Диаметр сосуда - 4.57 м Толщина стенок сосуда - 25.4 мм Проектируемое давление - 3445 кПа Допустимое окружное напряжение - 333 МПа Применительно к данному примеру предполагается наличие поверхностной трещины длиной 100 мм, например осевой трещины в прямолинейном сварном шве. Согласно фиг. 5А график 300 показывает значение критической глубины трещины как функцию РВТ, определяющего вязкость на излом, и остаточного напряжения для уровней остаточного напряжения, составляющих 15, 50 и 100 процентов от предела текучести. Остаточные напряжения могут возникать при изготовлении и сварке; и PD6493 рекомендует использовать значение остаточного напряжения, составляющее 100 процентов от предела текучести в сварных швах (включая ЗТВ сварного шва), если только сварные швы не подвергаются снятию напряжения с использованием таких методик, как послесварочная термическая обработка (ПСТО) или механическое снятие напряжения. На сновании РВТ, определяющего вязкость на излом стали сосуда высокого давления при минимальной температуре эксплуатации, изготовление сосуда можно регулировать для снижения остаточных напряжений, и для обнаружения и измерения трещин при сравнении с критическим размером трещины можно применять программу обследования (как для первоначального обследования, так и для обследования в ходе эксплуатации). В этом примере, если сталь имеет вязкость, выражаемую в РВТ, равном 0.025 мм при минимальной температуре эксплуатации (которое измеряется с использованием лабораторных образцов), и остаточные напряжения снижены до 15 процентов от предела текучести стали, то значение критической глубины трещины составляет около 4 мм (см. точку 320 на фиг.5А). Применяя аналогичные процедуры расчета, которые хорошо известны специалистам в данной области, можно определить критическую глубину трещины для той или иной длины трещины, а также для той или иной геометрии трещины. Используя эту информацию, можно разработать программу контроля качества и программу обследования (методики, обнаруживаемые размеры трещин, частота), чтобы гарантировать, что трещины обнаруживаются и устраняются до того, как достигнут критической глубины трещины или до приложения проектируемых нагрузок. На основании опубликованных эмпирических корреляций между V-НШ, Кик и РВТ, характеризующего вязкость на излом, можно видеть, что вязкость, выражаемая РВК, равна 0.025 мм, в общем, коррелирует со значением V-НШ около 37 Дж. Этот пример не предполагает каким-либо образом ограничивать это изобретение. Резервуары хранения предпочтительно из отдельных листов сверхпрочной низколегированной стали. Предпочтительно, чтобы соединения, включая сварные соединения резервуаров хранения имели такие же предел прочности и вязкость на излом, что и листы из сверхпрочной низколегированной стали. В некоторых случаях на участках резервуара, где наблюдаются более низкие напряжения, допустимо несовпадение пределов прочности примерно от 5% до 10%. Соединения с преимущественными свойствами можно выполнять с применением любых методик соединения, способных обеспечить необходимое соотношение между пределом прочности и вязкостью при низких температурах. В разделе Примеры описаны иллюстративные методики соединения. Особенно преимущественные методики соединения включают газоэлектрическую сварку металлическим электродом (ГЭСМЭ) и дуговую сварку вольфрамовым электродом в среде инертного газа (ДСВЭСИГ). Для определенных условий эксплуатации (которые описаны в разделе Примеры) можно использовать дуговую сварку под флюсом (ДСФ), электроннолучевую сварку (ЭЛС) и сварку лазерным лучом (СЛЛ). Станция СПГД Вышеописанные резервуары хранения обеспечивают возможность осуществить способ обработки СПГД согласно настоящему изобретению, в соответствии с которым СПГД производят при давлении, находящемся в широком диапазоне примерно от 1035 кПа до 7590 кПа, и при температуре, находящейся в диапазоне примерно от -123oС до -62oС. Производить и транспортировать СПГД предпочтительно под давлением, находящимся в диапазоне примерно от 1725 кПа до 7590 кПа, и при температуре находящейся в диапазоне примерно от -112oС до -62oС. Более предпочтительно производить и транспортировать СПГД под давлением в диапазоне примерно от 2415 кПа до 4830 кПа и при температуре примерно от -101oС до -79oС. Еще более предпочтительно, чтобы нижние границы диапазонов давления и температуры для СПГД составляли около 2760 кПа и около -96oС. В границах преимущественных диапазонов идеальные сочетания температуры и давления зависят от состава сжижаемого природного газа и от экономических соображений. Специалист в данной области может определить влияние параметров состава, обратившись к справочникам промышленных нормативов и/или произведя вычисления равновесной точки образования первого пузырька. Кроме того, специалист в данной области может определить и проанализировать влияние различных экономических соображений, обратившись к справочникам промышленных нормативов. Например, одно экономическое соображение состоит в том, что чем ниже температура СПГД, тем большая мощность требуется для охлаждения; однако снижение температуры при повышении давления СПГД также приводит к возрастанию плотности СПГД, а также к уменьшению объема, подлежащего транспортировке. С повышением температуры СПГД при увеличении давления для резервуаров хранения и транспортировки требуется больше стали, но при этом снижаются расходы на охлаждение и возрастает эффективность станции. В нижеприведенном описании основной упор делается на различия в экономической состоятельности системы согласно настоящему изобретению при сравнении с обычной системой обработки СПГ. На фиг.2 изображена схема иллюстративной станции для обработки СПГД согласно настоящему изобретению. Для сравнения на фиг. 1 изображена схема иллюстративной станции для обработки обычного СПГ. Согласно фиг.1 иллюстративная станция для обработки обычного СПГ включает оборудование 62 для приема подаваемого газа, оборудование 52 для очистки газа, оборудование 56 для просушки/удаления ртути, оборудование 63 для охлаждения, оборудование 64 для промывки подаваемого газа, оборудование 65 для фракционирования, оборудование 66 для сжижения и оборудование 54 устранения азота. Хотя на станции обработки согласно настоящему изобретению можно успешно использовать стандартное оборудование сжижения природного газа, некоторые этапы, необходимые в обычной станции СПГ, можно исключить и для охлаждения природного газа требуется значительно меньше энергии. Таким образом, в процессе СПГД природный газ, который в обычном процессе СПГ затрачивался бы на выработку энергии, можно преобразовывать в СПГД, годный для продажи. Согласно фиг.2 этапы обработки СПГД предпочтительно включают в себя (1) аппаратуру 10 для приема природного газа для удаления жидких углеводородов, (2) сушильную аппаратуру 12 и (3) аппаратуру для сжижения 14. Для производства хладагента подпитки, используемого в аппаратуре для сжижения 14, можно использовать расширительную установку 16 и фракционирующую цепочку 18. Альтернативно, хладагенты, необходимые для сжижения 14, могут частично или полностью поступать из какого-то другого источника. Для достижения нужной низкой температуры СПГД можно использовать общеизвестные процессы охлаждения. Такие процессы могут включать, например, цикл охлаждения с однокомпонентным хладагентом, с многокомпонентным хладагентом, каскадный цикл охлаждения или сочетание этих циклов. Кроме того, в процессе охлаждения можно использовать расширительные турбины. Значительное снижение мощности, необходимой для охлаждения в станции СПГД согласно настоящему изобретению при сравнении с обычной станцией СПГ приводит к значительному снижению капитальных затрат, соответственно к снижению эксплуатационных затрат и увеличению эффективности и надежности, что обуславливает увеличение экономичности производства сжиженного природного газа. На станции для производства СПГД согласно настоящему изобретению процесс отличается от обычного процесса СПГ следующим образом. Согласно фиг.1 и 2, поскольку температуры сжижения на станции СПГД 8 (фиг.2) выше, чем на обычной станции СПГ 50 (фиг.1) (которая производит обычный СПГ при температуре около -162oС и при атмосферном давлении), оборудование 52 очистки газа (фиг. 1) для удаления замерзающих компонентов, например двуокиси углерода, n-пентана плюс и бензола, которое необходимо в обычной станции СПГ 50, как правило, не требуется для станции СПГД 8, поскольку эти природные компоненты не должны замерзать, и поэтому не должны вызывать проблемы закупорки оборудования станции СПГД вследствие более высоких рабочих температур. Если в природном газе, обрабатываемом на станции СПГД 8, содержится очень высокое количество двуокиси углерода, соединений серы, n-пентана плюс или бензола, то при необходимости для их удаления можно добавить оборудование для очистки. Кроме того, на обычной станции СПГ 50 необходимо удалять азот (с помощью аппаратуры 54 устранения азота), поскольку азот не остается в жидкой фазе при транспортировке обычного СПГ, который находится при атмосферном давлении. На станции СПГД 8 не требуется удалять умеренные количества азота во входном газе, поскольку при рабочих давлениях и температурах процесса СПГД азот остается в жидкой фазе вместе с сжиженными углеводородами. Кроме того, на обычной станции СПГ 50 удаляется ртуть (с помощью оборудования 56 для удаления ртути). Поскольку станция СПГД 8 работает при значительно более высоких температурах, чем обычная станция СПГ 50, и, соответственно, при изготовлении резервуаров, труб и другого оборудования станции СПГД 8 нет необходимости использовать алюминий, на станции СПГД 8 обычно не требуется оборудование для удаления ртути. Возможность исключения оборудования, необходимого для очистки газа, устранения азота и удаления ртути, когда позволяет состав природного газа, обеспечивает значительные технические и экономические преимущества. При преимущественных рабочих давлениях и температурах согласно настоящему изобретению в наиболее холодных рабочих областях станции СПГД 8 можно использовать трубы и аппаратуру, изготовленные из стали с весовым содержанием никеля около 3%, тогда как в том же оборудовании обычн