Устройство для дистанционного обнаружения тринитротолуол- мин в пластиковых корпусах
Реферат
Использование: в области ядерно-магнитных измерений для дистанционного обнаружения тринитротолуол-мин (ТНТ-мин) в пластиковых корпусах. Технический результат заключается в повышении степени достоверности обнаружения ТНТ-мин. Устройство содержит полутороидальный соленоид, подключенный к мощному импульсному источнику тока частотой квадрупольного резонанса тринитротолуол-мины, обеспечивающему облучение ТНТ-мины импульсами магнитного поля и поляризацию протонов в ней. Насыщающая катушка подключена к мощному импульсному генератору радиочастотного магнитного поля, обеспечивающему возрастание температуры ТНТ-мины. Приемная катушка подключена к импульсному спектрометру ядерного магнитного резонанса, обеспечивающему детектирование ТНТ-мины селективно по частоте квадрупольного резонанса. Оси полутороидального соленоида и приемной катушки взаимно перпендикулярны, а приемная и насыщающая катушки соосны. 3 з.п.ф-лы, 2 ил.
Изобретение относится к ядерно-магнитным измерениям, к импульсной аппаратуре локального двойного ядерного квадрупольного-ядерного магнитного (ЯКР-ЯМР) резонанса и предназначено для дистанционного обнаружения тринитротолуол-мин (ТНТ-мин) в пластиковых корпусах.
Известны системы импульсной аппаратуры локального ядерного магнитного (ЯМР) резонанса для обнаружения ТНТ-мин с большой облучающей катушкой и с ферритовыми приемными катушками (1-3). Недостатками известных систем является невозможность дистанционного обнаружения ТНТ-мин, влияние металлических деталей. Они позволяют обнаруживать ТНТ-мины, только накапливая сигнал ЯКР 14 N от ТНТ-мин в течение 5-10 мин. Целью изобретения является устранение указанных недостатков, а также повышение степени достоверности обнаружения ТНТ-мин в пластиковых корпусах. Поставленная цель достигается тем, что согласно изобретению устройство для дистанционного обнаружения ТНТ-мин в пластиковых корпусах содержит полутороидальный соленоид, подключенный к мощному импульсному источнику тока частотой квадрупольного резонанса ТНТ-мины, обеспечивающему облучение ТНТ-мины импульсами магнитного поля и поляризацию протонов в ней, насыщающую катушку, подключенную к мощному импульсному генератору радиочастотного магнитного поля, обеспечивающему возрастание температуры ТНТ-мины, и приемную катушку, подключенную к импульсному спектрометру ядерного магнитного резонанса, обеспечивающему детектирование ТНТ-мины селективно по частоте квадрупольного резонанса, причем, оси полутороидального соленоида и приемной катушки взаимно перпендикулярны, а приемная и насыщающая катушки соосны. Полутороидальный соленоид может быть помещен в жидкий азот. Указанные мощный импульсный источник тока частотой квадрупольного резонанса ТНТ-мины, мощный импульсный генератор радиочастотного магнитного поля, импульсный спектрометр ядерного магнитного резонанса, полутороидальный соленоид, приемная и насыщающая катушки могут быть соединены через программный блок между собой и с компьютером. При этом, мощный импульсный источник тока, мощный импульсный генератор радиочастотного магнитного поля, импульсный спектрометр ядерного магнитного резонанса, программный блок и компьютер могут быть размещены на передвижной тележке, а полутороидальный соленоид, насыщающая катушка и приемная катушка могут составлять выносную головку, соединенную с тележкой кабелем длиной 7 м. При комнатной температуре сигналы ядерного квадрупольного резонанса от тринитротолула очень слабы и с помощью прямого импульсного метода ЯКР не наблюдаются. На фиг. 1 приведено устройство для дистанционного обнаружения ТНТ-мин в пластиковых корпусах. Устройство для дистанционного обнаружения ТНТ-мин в пластиковых корпусах содержит полутороидальный соленоид 1, подключенный к схеме электронного циклирования магнитного поля, представляющей собой мощный импульсный источник 5 тока, который вырабатывает импульсы тока I=1000 А на частоте Q = 841 кГц квадрупольного резонанса ТНТ-мины 4. Импульс тока подается в полутороидальный соленоид 1, вызывая магнитное поле в нем. Полутороидальный соленоид 1 обращен своими концами к земле. Замыкающееся между концами полутороидального соленоида 1 магнитное поле параллельно поверхности земли. Облучение ТНТ-мины 4 импульсами магнитного поля Но на частоте квадрупольного резонанса тринитротолуола Q = 841 кГц полутороидальным соленоидом 1 вызывает поляризацию магнитных моментов протонов в ее веществе. Квадрупольная система, представляющая собой совокупность квадрупольных ядер азота в веществе ТНТ-мины, насыщается с помощью насыщающей катушки 2 от мощного импульсного генератора 6 радиочастотным магнитным полем частотой 841 кГц, что приводит к выравниванию заселенностей уровней ядер азота и повышению спиновой температуры квадрупольной системы. После включения магнитного поля Но полутороидального соленоида 1 эта высокая спиновая температура передается протонной системе при пересечении уровней энергии. В приемной катушке 2 наводится сигнал индукции на частоте протонов. Приемная катушка 3 подключена к импульсному спектрометру 7 ядерного магнитного резонанса, и уменьшение сигнала ядерного магнитного резонанса соответствует появлению ядерного квадрупольного резонанса на частоте Q в нулевом магнитном поле Но. Оси полутороидального соленоида 1 и приемной катушки 3 взаимно перпендикулярны. Приемная 3 и насыщающая 2 катушки соосны. На фиг. 2 представлено соотношение импульсов магнитного поля и ответных импульсов протонов и показано, что устройство для дистанционного обнаружения ТНТ-мин насыщается между импульсами тока. В этом заключается метод электронного циклирования поля Но. Изменение интенсивности сигнала протонов вещества ТНТ-мины за счет насыщения квадрупольной системы позволяет продетектировать вещество ТНТ-мины селективно по квадрупольной частоте Q, что характерно только для данного вещества, то есть обнаружить ТНТ-мину. Мощный импульсный источник 5 тока частотой квадрупольного резонанса ТНТ-мины 1, мощный импульсный генератор 6 радиочастотного магнитного поля, импульсный спектрометр 7 ядерного магнитного резонанса, полутороидальный соленоид 1, приемная 3 и насыщающая 2 катушки могут быть соединены через программный блок 8 между собой и с компьютером 9. Программный блок 8 задает временную последовательность всего устройства, вырабатывая видеоимпульсы тока для включения в заданные моменты времени отдельных его частей. При этом, мощный импульсный источник 5 тока, мощный импульсный генератор 6 радиочастотного магнитного поля, импульсный спектрометр 7 ядерного магнитного резонанса, программный блок 8 и компьютер 9 могут быть размещены на передвижной тележке, а полутороидальный соленоид 1, насыщающая катушка 2 и приемная катушка 3 могут составлять выносную измерительную головку, соединенную с тележкой кабелем длиной 7 м. Головка перемещается над грунтом, в котором могут находиться ТНТ-мины на глубине до 15 см. Для повышения тока и уменьшения сопротивления полутороидальный соленоид 1 может быть помещен в жидкий азот. Использование изобретения сократит время обнаружения ТНТ-мин до 10 с, повысит достоверность обнаружения до 97-99% и позволит получить выигрыш в чувствительности примерно в 30 раз. Источники информации 1. Гречишкин B.C. и др. Оптимальные условия наблюдения локального ЯКР. ВИНИТИ, 4791-В88, 1988 (прототип). 2. V.S. Grechishkin, NQR Device for Detecting Plastic Explosives, Mines and Drugs. Appl. Phys. A 55, 505-507 (прототип). 3. V.S. Grechishkin, Application of Multipulse Sequences in Remote NQR. Appl. Phys. A 58, 63-65, 1994 (прототип).Формула изобретения
1. Устройство для дистанционного обнаружения тринитротолуол-мин в пластиковых корпусах, содержащее полутороидальный соленоид, подключенный к мощному импульсному источнику тока частотой квадрупольного резонанса тринитротолуол-мины, обеспечивающему облучение тринитротолуол-мины импульсами магнитного поля и поляризацию протонов в ней, насыщающую катушку, подключенную к мощному импульсному генератору радиочастотного магнитного поля, обеспечивающему возрастание температуры тринитротолуол-мины, и приемную катушку, подключенную к импульсному спектрометру ядерного магнитного резонанса, обеспечивающему детектирование тринитротолуол-мины селективно по частоте квадрупольного резонанса, причем оси полутороидального соленоида и приемной катушки взаимно перпендикулярны, а приемная и насыщающая катушки соосны. 2. Устройство по п. 1, отличающееся тем, что полутороидальный соленоид помещен в жидкий азот. 3. Устройство по п. 1 или 2, отличающейся тем, что указанные мощный импульсный источник тока частотой квадрупольного резонанса тринитротолуол-мины, мощный импульсный генератор радиочастотного магнитного поля и импульсный спектрометр ядерного магнитного резонанса, полутороидальный соленоид, приемная и насыщающая катушки соединены через программный блок между собой и с компьютером. 4. Устройство по п. 3, отличающееся тем, что указанные мощный импульсный источник тока, мощный импульсный генератор радиочастотного магнитного поля, импульсный спектрометр ядерного магнитного резонанса, программный блок и компьютер размещены на передвижной тележке, полутороидальный соленоид, насыщающая катушка и приемная катушка составляют выносную головку, соединенную с тележкой кабелем длиной 7 м.РИСУНКИ
Рисунок 1, Рисунок 2