Способ обнаружения взрывчатого вещества в контролируемом предмете

Реферат

 

Изобретение относится к радиационным методам исследования. Способ включает первоначальное облучение контролируемого предмета, идентификацию изделий, находящихся в выявленных областях, определение размеров и положения в контролируемом предмете неидентифицированного изделия, определение предполагаемой массы обнаруживаемого взрывчатого вещества, соответствующей размерам неидентифицированного изделия, на основании размеров неидентифицированного изделия и средней плотности существующих взрывчатых веществ, последующее облучение содержащей неидентифицированное изделие области тепловыми нейтронами, испускаемыми управляемым излучателем тепловых нейтронов с изменяемой диаграммой направленности на основе дейтерий-дейтериевой реакции, снабженным замедлителем нейтронов, регистрацию двух типов гамма-квантов, последующий расчет и принятие решения о наличии взрывчатого вещества в контролируемом предмете. Техническим результатом изобретения является снижение лучевого воздействия на объект, увеличение чувствительности и качества изображения исследуемого предмета. 9 з.п. ф-лы, 11 ил.

Область техники Предлагаемое изобретение относится к области нейтронно-радиационного анализа материалов и может быть использовано для обнаружения азотосодержащих взрывчатых веществ в контролируемых предметах без их вскрытия в целях борьбы с терроризмом и организованной преступностью.

Предшествующий уровень Противодействие незаконному обороту взрывчатых веществ и террористическим актам с их использованием стало одной из основных задач деятельности служб безопасности цивилизованных стран в борьбе с международным терроризмом и организованной преступностью.

Одно из направлений этого противодействия связано с организацией в необходимых случаях в аэропортах, в государственных и дипломатических учреждениях, на атомных электростанциях контроля таких предметов, как портфели, сумки, баулы, чемоданы, аудио- и видеоаппаратура, компьютеры, мобильные телефоны и тому подобное, а также почтовых отправлений, поскольку именно они наиболее часто используются преступниками для скрытых закладок взрывчатых веществ при совершении террористических актов или их незаконной транспортировке.

Необходимость контроля больших потоков почтовых отправлений или проведения досмотра ручной клади и багажа пассажиров прежде всего на авиационном транспорте, в условиях ограниченного времени, отводимого для контроля или досмотра, требует применения способов и реализующих их технических средств, не предусматривающих вскрытие и визуальный досмотр каждого контролируемого предмета, но обеспечивающих оперативное обнаружение взрывчатых веществ с высокой вероятностью правильного обнаружения при малом числе ложных тревог.

Среди многочисленных известных способов обнаружения взрывчатых веществ в контролируемых предметах практическое применение в настоящее время нашли три группы способов.

Первая группа объединяет способы, использующие для обнаружения взрывчатых веществ рентгеновское излучение и включающие облучение контролируемого предмета рентгеновским излучением с энергией 100-150 кэВ, регистрацию прошедшего через контролируемый предмет рентгеновского излучения и идентификацию взрывчатого вещества на основании величины ослабления рентгеновского излучения материалами, содержащимися в контролируемом предмете, в зависимости от атомных номеров входящих в их состав химических элементов (Patrick Flanagan, " Technology vs. terror", EUSA, 1989, N 7, pp. 46-49, 51), (рекламные проспекты и информационные листы фирмы EG&G Astrophisics Research Corporation, Лонг-Бич, Калифорния, США и фирмы In Vision Technologies, Фостер Сити, Калифорния, США).

Поскольку современные взрывчатые вещества, в особенности пластиковые, состоят преимущественно из химических элементов с малым атомным номером, они слабо поглощают рентгеновское излучение с энергией 100-150 кэВ. Это обстоятельство затрудняет эффективное обнаружение взрывчатых веществ в случаях нетрадиционной формы их исполнения или маскировки путем размещения, например, в кусках мыла или электронной аппаратуре. Практика применения способов обнаружения с использованием рентгеновского излучения показала, что с их помощью взрывчатые вещества могут быть обнаружены не более чем в 40-60% случаев.

Вторая группа способов основана на том, что большинство взрывчатых веществ относятся к классу высоколетучих органических соединений, характеризующихся высоким давлением паров. Данные способы предусматривают проведение с использованием методов газовой хромотографии или спектрометрии подвижности ионов химического анализа выделяемых контролируемым предметом паров взрывчатого вещества и его частиц, которые в микроскопических количествах могут находиться на поверхности контролируемого предмета. По результатам этого анализа принимается решение о наличии в контролируемом предмете взрывчатого вещества ( Hughes D. Thermedics Begins Production Of Bomb Detection Unit. - Aviation Week & Space Technology, June 19, 1989). Подобный способ реализован, например, в системе обнаружения взрывчатых веществ и наркотиков IONSCAN 350 производства фирмы Barringer Instruments Ltd, Канада (Intersec. The Journal of International Security, Vol. 3, No. 6, November 1993).

Реализующие указанные способы технические средства имеют высокую чувствительность, но не позволяют обнаруживать обладающие наибольшей мощностью пластиковые взрывчатые вещества из-за их очень низкого давления паров. Кроме того, эти способы не обеспечивают обнаружение всех видов взрывчатых веществ, если они размещены в герметичной упаковке или в упаковке, подвергнутой специальной обработке.

Третья группа способов обнаружения взрывчатых веществ основана на определении наличия основных химических элементов, входящих в его состав, с использованием нейтронно-радиационного анализа. Относящиеся к этой группе известные способы обнаружения взрывчатых веществ и реализующие их установки (US 5114662, 1992, US 5144140, 1992, US 5388128, 1995, ЕР 0295429, 1992, ЕР 0297249, 1993) предусматривают помещение контролируемого предмета в камеру с радиационной защитой, облучение его тепловыми нейтронами, регистрацию испускаемого контролируемым предметом вторичного гамма-излучения с энергией квантов 10,8 МэВ, получение на основании результатов регистрации вторичного гамма-излучения распределения концентрации азота в контролируемом предмете и определение наличия в нем взрывчатого вещества по факту повышенной концентрации азота.

Как известно, все современные взрывчатые вещества содержат довольно большое количество азота, составляющее от 9 до 35 мас.% при плотности взрывчатых веществ от 1,25 до 2,00 г/см3. При облучении взрывчатого вещества тепловыми нейтронами с энергией около 0,025 эВ происходит радиационный захват тепловых нейтронов ядрами атомов азота-14, в результате чего образуются ядра атомов азота-15 в возбужденном состоянии (их число зависит от массы взрывчатого вещества, плотности потока тепловых нейтронов и сечения реакции захвата). При переходе в основное состояние в среднем около 14% ядер атомов азота-15 испускают гамма-кванты с энергией 10,8 МэВ.

Однако при радиационном захвате тепловых нейтронов гамма-кванты с энергией 10,8 МэВ испускают не только взрывчатые вещества, но и все другие находящиеся в контролируемом предмете азотосодержащие материалы, например шерсть, кожа, нейлон, шелк, а также заполняющий контролируемый предмет и окружающий его воздух.

В то же время большинство не относящихся к взрывчатым веществам азотосодержащих материалов имеют в сравнении с взрывчатыми веществами существенно больший объем при одинаковом содержании в них азота. Таким образом, имеющаяся информация о распределении концентрации азота в контролируемом предмете позволяет отличить компактное взрывчатое вещество от других азотосодержащих материалов, не относящиеся к взрывчатым веществам.

Вместе с тем указанные известные способы обеспечивают достаточно грубую картину распределения концентрации азота внутри контролируемого предмета по той причине, что каждый детектор гамма-излучения регистрирует гамма-кванты, испускаемые из всего облучаемого тепловыми нейтронами объема контролируемого предмета, включая гамма-кванты от азота окружающего воздуха, также облучаемого тепловыми нейтронами. К тому же при непрерывном перемещении контролируемого предмета транспортером через камеру с радиационной защитой зарегистрированное число гамма-квантов может быть обусловлено испусканием их из всех облученных азотосодержащих материалов, в том числе и из не относящихся к взрывчатым веществам, распределенным вдоль длины контролируемого предмета. Это, во-первых, затрудняет определение места расположения взрывчатого вещества в контролируемом предмете и, во-вторых, повышает вероятность ложных тревог.

Поскольку принятие решения о наличии в контролируемом предмете взрывчатых веществ только по наличию азота может приводить к ложным тревогам, для уменьшения их числа целесообразно использовать дополнительную информацию.

Известно, что все взрывчатые вещества имеют не только большую плотность азота, но и плотность кислорода, величина которой для основных видов взрывчатых веществ лежит в диапазоне примерно от 0,80 до 1,15 г/см3, в то время как фактически все известные материалы, не являющиеся взрывчатыми веществами, но провоцирующие ложные тревоги, например нейлон, шелк, шерсть, кожа, меламин и другие, имеют относительно большую плотность азота и низкую плотность кислорода. Таким образом, представляется возможным, используя ядерные взаимодействия, например быстрых нейтронов с энергией 14 МэВ с ядрами кислорода, зарегистрировать вторичное гамма-излучение с энергией квантов 6,1 МэВ и получить дополнительную информацию о плотности кислорода в контролируемом предмете. Совместное рассмотрение полученных результатов регистрации интенсивности вторичного гамма-излучения от азота и кислорода даст возможность принять решение о наличии или отсутствии в контролируемом предмете взрывчатого вещества.

Поэтому ряд других известных способов обнаружения взрывчатых веществ и реализующих их установок, основанных на нейтронно-радиационном анализе материалов (US 5080856, 1992, US 5200626, 1993), предусматривают помещение контролируемого предмета в камеру с радиационной защитой, одновременное облучение контролируемого предмета тепловыми нейтронами с энергией около 0,025 эВ и быстрыми нейтронами с энергией около 14 МэВ, получаемыми с использованием управляемых импульсных источников быстрых нейтронов, регистрацию мгновенного гамма-излучения с энергией квантов 10,8 МэВ, испускаемого при радиационном захвате тепловых нейтронов ядрами атомов азота-14, и гамма-излучения с энергией квантов 6,1 МэВ, испускаемого ядрами атомов кислорода-16 в возбужденном состоянии, образовавшихся в результате взаимодействия быстрых нейтронов с энергией около 14 МэВ со стабильными ядрами атомов кислорода-16, получение на основе результатов регистрации гамма-излучения сведений о концентрации азота и кислорода в контролируемом предмете и принятие решения о наличии в нем взрывчатого вещества по факту повышенной концентрации азота и кислорода и по величине их соотношения.

Дополнительная регистрация гамма-излучения с энергией квантов 6,1 МэВ повышает информативность способа и, следовательно, вероятность правильного обнаружения взрывчатого вещества при осуществлении этого способа. Однако регистрация гамма-излучения с такой энергией квантов без предварительного выключения управляемого импульсного источника быстрых нейтронов осложняется наличием гамма-излучения с энергиями квантов в диапазоне 5-7 МэВ, испускаемого при ядерных взаимодействиях тепловых и быстрых нейтронов с ядрами атомов целого ряда других химических элементов, таких как хлор, марганец, натрий, железо, поскольку требует применения детекторов с очень высокой разрешающей способностью. Этот недостаток устраняется при отключении управляемого импульсного источника быстрых нейтронов или при удалении контролируемого предмета из камеры с радиационной защитой на время, соизмеримое с периодом полураспада кислорода-16, что, однако, приводит к увеличению общего времени контроля.

Кроме того, при облучении контролируемого предмета быстрыми нейтронами требуется дополнительная радиационная защита камеры для обеспечения действующих национальных требований по защите персонала и населения от воздействия ионизирующего излучения, что приводит к увеличению массы и габаритов реализующего этот способ устройства, а также увеличивается величина поглощенной дозы излучения, что может вызвать ухудшение потребительских свойств содержащихся в контролируемом предмете промышленных изделий, например электронной аппаратуры и фотографических материалов.

Поэтому наибольшую эффективность обеспечивают способы обнаружения взрывчатого вещества и реализующие их установки (US 5078952, 1992, US 5153439, 1992, US 5200626, 1993, ЕР 0336634, 1993, WO 91/14938), основанные на совместном использовании рентгенографии и нейтронно-радиационного анализа материалов посредством облучения контролируемого предмета тепловыми нейтронами или тепловыми и быстрыми нейтронами одновременно. Указанные известные способы обнаружения взрывчатых веществ в общей для них части включают первоначальное помещение контролируемого предмета в рентгеновскую установку, облучение контролируемого предмета рентгеновским излучением, регистрацию прошедшего через контролируемый предмет рентгеновского излучения для формирования одного или более рентгеновских изображений контролируемого предмета, последующее помещение контролируемого предмета в камеру с радиационной защитой, облучение контролируемого предмета тепловыми нейтронами или одновременное облучение контролируемого предмета тепловыми и быстрыми нейтронами, регистрацию испускаемого контролируемым предметом вторичного гамма-излучения с энергией квантов 10,8 МэВ, испускаемого при радиационном захвате тепловых нейтронов ядрами атомов азота-14, либо регистрацию вторичного гамма-излучения с энергией квантов 10,8 МэВ и вторичного гамма-излучения с энергией квантов 6,1 МэВ, испускаемого ядрами атомов кислорода-16 в возбужденном состоянии, образовавшихся в результате взаимодействия быстрых нейтронов со стабильными ядрами атомов кислорода-16, и принятие решения о наличии взрывчатого вещества в контролируемом предмете на основании анализа как рентгеновского изображения контролируемого предмета, так и распределения в нем азота или азота и кислорода.

Совместное использование рентгенографии и нейтронно-радиационного анализа материалов обеспечивает повышение вероятности правильного обнаружения взрывчатого вещества, однако не освобождает указанные известные способы от приведенных выше недостатков, присущих каждой из указанных групп способов в отдельности.

Кроме того, использование всех перечисленных известных способов обнаружения взрывчатого вещества в контролируемом предмете, основанных на нейтронно-радиационном анализе материалов, предусматривает облучение ими всего объема контролируемого предмета. Это, во-первых, требует применения источника с большим потоком быстрых нейтронов для достижения заданных характеристик обнаружения, что ведет к увеличению массы и габаритов реализующей этот способ установки из-за необходимости введения дополнительной радиационной защиты, и повышает стоимость установки. Во-вторых, это приводит к необходимости облучения нейтронами областей контролируемого предмета, в которых нет взрывчатого вещества, но могут находиться не относящиеся к взрывчатым веществам азотосодержащие материалы, которые в результате облучения тепловыми нейтронами будут испускать гамма-излучение с энергией квантов 10,8 МэВ, что повышает вероятность ложных тревог. И, в-третьих, не являющееся необходимым облучение нейтронами областей контролируемого предмета, не содержащих взрывчатого вещества, приводит к увеличению величины поглощенной дозы излучения содержащимися внутри контролируемого предмета изделиями, например электронной аппаратурой и фотографическими материалами, что может вызвать ухудшение их потребительских свойств.

Наиболее близким по технической сущности к предлагаемому изобретению следует считать способ обнаружения оружия и взрывчатых веществ в контролируемых предметах (RU 2065156, 1996, G 01 N 23/222, 23/223), основанный на совместном использовании методов рентгенографии и нейтронно-радиационного анализа материалов. Указанный известный способ обнаружения оружия и взрывчатых веществ в контролируемых предметах включает первоначальное облучение контролируемого предмета рентгеновским излучением, регистрацию прошедшего через контролируемый предмет рентгеновского излучения, выявление по рентгеновскому изображению контролируемого предмета областей с плотностями неорганических и органических материалов, превышающими соответствующие установленные пороговые значения, определение в этих областях геометрической формы изделий с плотностью неорганических материалов, превышающей установленное пороговое значение, последующее облучение областей контролируемого предмета с плотностью органических материалов, превышающей установленное пороговое значение, тепловыми нейтронами, испускаемыми излучателем тепловых нейтронов на основе радионуклидного источника на основе калифорния-252, регистрацию вторичного гамма-излучения с энергией квантов 10,8 МэВ, испускаемого облучаемыми областями контролируемого предмета, и использование в качестве информативных параметров для обнаружения оружия и взрывчатых веществ величины ослабления рентгеновского излучения контролируемым предметом в зависимости от атомных номеров химических элементов, входящих в состав находящихся в контролируемом предмете материалов, и длины волны рентгеновского излучения, геометрической формы областей с плотностью неорганических материалов, превышающей установленное пороговое значение, и интенсивности зарегистрированного вторичного гамма-излучения.

Как отмечалось выше, при переходе из возбужденного состояния в основное в среднем лишь 14 ядер атомов азота из 100 ядер атомов, захвативших тепловые нейтроны, испускают гамма-квант с энергией 10,8 МэВ, а остальные испускают два или более гамма-квантов с энергиями меньших значений, то есть всего лишь около 14% массы содержащегося во взрывчатом веществе азота будут испускать гамма-излучение, интенсивность которого используется в качестве одного из основных информативных признаков. Указанное обстоятельство приводит, с одной стороны, к увеличению минимальной массы взрывчатого вещества, которую можно обнаружить с использованием способа-прототипа, а с другой стороны, к необходимости снижения установленного порогового значения интенсивности вторичного гамма-излучения с энергией квантов 10,8 МэВ для обеспечения требуемой вероятности правильного обнаружения взрывчатого вещества, что вызывает рост вероятности ложной тревоги из-за наличия в контролируемом предмете других азотосодержащих материалов, отличных от взрывчатых веществ.

Поэтому способ-прототип, согласно которому участки контролируемого предмета с плотностью органических материалов выше установленного порогового значения облучают тепловыми нейтронами, не позволяет снизить вероятность ложных тревог, поскольку о наличии взрывчатого вещества судят только лишь по величине интенсивности гамма-излучения с энергией квантов 10,8 МэВ при радиационном захвате тепловых нейтронов ядрами атомов азота-14. В этом случае присутствие в контролируемом предмете азотосодержащих материалов, не являющихся взрывчатыми веществами, но содержащих азот в количествах, аналогичных его содержанию во взрывчатых веществах, может приводить к ошибочным решениям.

Поскольку число регистрируемых гамма-квантов существенно зависит от взаимного расположения облучаемой нейтронами области контролируемого предмета, испускающей вторичное гамма-излучение, и детектора гамма-излучения, прежде всего от расстояния между ними, на результаты регистрации гамма-квантов оказывает значительное влияние положение данной области в пределах объема контролируемого предмета. Отсутствие в способе-прототипе учета их взаимного расположения приведет к искажению результатов регистрации гамма-излучения, что при принятии решения о наличии взрывчатого вещества в контролируемом предмете может вызвать пропуск взрывчатого вещества, тем самым снижая вероятность правильного обнаружения.

Использование в способе-прототипе неизменного однократно установленного порогового значения для суммарной интенсивности гамма-излучения, рассчитанного для достаточно широкого диапазона изменения возможных масс обнаруживаемого взрывчатого вещества, требует установления очень низкого порогового значения, достаточного для обнаружения с заданной вероятностью правильного обнаружения взрывчатого вещества, в том числе и минимальной массы. Применение такого низкого порогового значения, соответствующего минимальной массе взрывчатого вещества, будет приводить к ложным тревогам, вызываемым гамма-излучением, испускаемым не являющимися взрывчатыми веществами азотосодержащими материалами и азотом воздуха, существенно повышая их вероятность.

Кроме того, применение при реализации способа-прототипа имеющего неизменную диаграмму направленности излучателя тепловых нейтронов с излучающей поверхностью, которая дает достаточно широкий расходящийся пучок тепловых нейтронов, не позволяет осуществлять облучение тепловыми нейтронами небольшой по размерам области контролируемого предмета с плотностью органических материалов, превышающей установленное пороговое значение, а приводит к неизбежному облучению нейтронами смежных с ней областей контролируемого предмета, в которых могут находиться не относящиеся к взрывчатым веществам азотосодержащие материалы, а также воздух. Указанное обстоятельство приводит к испусканию гамма-излучения не относящимися к взрывчатым веществам азотосодержащими материалами и азотом воздуха, находящимися в смежных с облучаемой областью областями контролируемого предмета, что также повышает вероятность ложных тревог.

Помимо этого, способ-прототип не обеспечивает высокого уровня радиационной безопасности, так как при его осуществлении используется радионуклидный источник нейтронов, что может приводить к радиоактивному загрязнению окружающей среды при аварийных ситуациях, вызванных взрывом или пожаром, а также к облучению населения при хищении источника. Облучение многих областей контролируемого предмета с плотностью органических материалов выше установленного порогового значения приводит также к неоправданному повышению наведенной тепловыми нейтронами активности в изделиях, содержащихся в контролируемых предметах, и поглощенной в них дозы облучения, что может приводить к снижению потребительских свойств этих изделий.

В случае необходимости проверки на наличие небольших масс взрывчатого вещества в малогабаритных контролируемых предметах, например почтовых бандеролях и такой ручной клади пассажиров, как сумки, портфели, видеокамеры, фотоаппараты, переносные компьютеры, мобильные телефоны и тому подобное, при помещении их для облучения нейтронами в камеру с радиационной защитой, размеры которой предусмотрены для контроля багажа или почтовых отправлений существенно больших габаритов, в ее внутренней полости может оказаться значительный объем воздуха, не вытесненный контролируемым предметом. При облучении его тепловыми нейтронами он также будет испускать гамма-излучение, которое при существенности объема невытесненного воздуха не позволит обнаружить небольшую массу взрывчатого вещества из-за значительной фоновой составляющей гамма-излучения азота воздуха, находящегося в камере с радиационной защитой.

Кроме того, способ-прототип не предусматривает идентификацию изделия, находящегося в области контролируемого предмета с плотностью органических материалов, превышающей установленное значение, по рентгеновскому изображению. Отсутствие такой информации о наличии в облучаемой тепловыми нейтронами области компактного изделия с плотностью органических материалов, превышающей установленное значение, приводит к снижению вероятности правильного обнаружения взрывчатого вещества и не позволяет снизить вероятность ложной тревоги.

По этой же причине способ-прототип предусматривает при нейтронно-радиационном анализе облучение тепловыми нейтронами всех областей контролируемого предмета с плотностью органических материалов, превышающей установленное значение, что существенно увеличивает общее время обнаружения взрывчатого вещества.

Недостатками способа-прототипа являются недостаточно высокая вероятность правильного обнаружения взрывчатого вещества, высокая вероятность ложной тревоги, повышенное значение минимальной массы взрывчатого вещества, которую способ позволяет обнаружить, значительное общее время обнаружения взрывчатого вещества, недостаточно высокий уровень радиационной безопасности, а также высокая вероятность снижения в результате контроля потребительских свойств некоторых видов промышленных изделий, содержащихся в контролируемом предмете.

Раскрытие изобретения Целями предлагаемого изобретения являются повышение вероятности правильного обнаружения взрывчатого вещества, снижение вероятности ложных тревог, уменьшение минимальной массы взрывчатого вещества, которую способ позволяет обнаружить, сокращение общего времени обнаружения взрывчатого вещества, повышение уровня радиационной безопасности и уменьшение вероятности снижения потребительских свойств находящихся в контролируемом предмете изделий.

Поставленные цели достигаются согласно изобретению тем, что предлагаемый способ обнаружения взрывчатого вещества в контролируемом предмете, включающий в соответствии с прототипом первоначальное облучение контролируемого предмета рентгеновским излучением, регистрацию прошедшего через контролируемый предмет рентгеновского излучения, выявление областей контролируемого предмета с плотностью органических материалов, превышающей установленное значение, на основании величины ослабления рентгеновского излучения, идентификацию изделий, находящихся в выявленных областях контролируемого предмета с плотностью органических материалов, превышающей установленное значение, на основании анализа зарегистрированного рентгеновского излучения, последующее облучение выявленных областей контролируемого предмета с плотностью органических материалов, превышающей установленное значение, тепловыми нейтронами, регистрацию гамма-квантов с энергией 10,8 МэВ, испускаемых облученными областями контролируемого предмета, отличается от прототипа тем, что выявляют содержащую неидентифицированное изделие область контролируемого предмета с плотностью органических материалов, превышающей установленное значение, определяют размеры и положение неидентифицированного изделия в контролируемом предмете на основании анализа зарегистрированного рентгеновского излучения, определяют предполагаемую массу обнаруживаемого взрывчатого вещества, соответствующую размерам неидентифицированного изделия, определяют и формируют диаграмму направленности излучателя тепловых нейтронов, соответствующую размерам неидентифицированного изделия, облучают тепловыми нейтронами только содержащую неидентифицированное изделие область контролируемого предмета, одновременно с регистрацией гамма-квантов с энергией 10,8 МэВ регистрируют каскадные гамма-кванты, регистрацию гамма-квантов осуществляют, по меньшей мере, двумя детекторами гамма-излучения, подсчитывают пары каскадных гамма-квантов, зарегистрированных одновременно, определяют суммарную интенсивность гамма-излучения, испускаемого контролируемым предметом, определяют пороговое значение для суммарной интенсивности гамма-излучения на основании предполагаемой массы обнаруживаемого взрывчатого вещества, соответствующей размерам неидентифицированного изделия, и принимают решение о наличии взрывчатого вещества в контролируемом предмете при превышении порогового значения суммарной интенсивностью гамма-излучения.

При этом определение предполагаемой массы обнаруживаемого взрывчатого вещества, соответствующей размерам неидентифицированного изделия, выполняют на основании размеров неидентифицируемого изделия и средней плотности существующих взрывчатых веществ, облучение контролируемого предмета тепловыми нейтронами осуществляют основанным на дейтерий-дейтериевой реакции управляемым излучателем тепловых нейтронов с изменяемой диаграммой направленности, снабженным замедлителем нейтронов, регистрируют каскадные гамма-кванты с энергией 5,534 МэВ и 5,266 МэВ, суммарную интенсивность гамма-излучения определяют путем суммирования чисел регистрации гамма-квантов с энергией 10,8 МэВ каждым из детекторов гамма-излучения, умноженных на весовой коэффициент показаний детектора, и чисел зарегистрированных одновременно каждой парой детекторов гамма-излучения пар каскадных гамма-квантов, умноженных на весовой коэффициент показаний пары детекторов, причем весовой коэффициент показаний детектора определяют экспериментально с учетом положения облучаемой нейтронами области контролируемого предмета относительно детектора гамма-излучения, а весовой коэффициент показаний пары детекторов определяют в виде среднего арифметического весовых коэффициентов показаний детекторов, входящих в указанную пару. Кроме того, перед облучением тепловыми нейтронами уменьшают массу окружающего контролируемый предмет воздуха путем его вытеснения, например, газовой средой, не содержащей азота.

Регистрация испускаемых облученной областью контролируемого предмета не только гамма-квантов с энергией 10,8 МэВ, но и каскадных гамма-квантов с энергией 5,534 МэВ и 5,266 МэВ с использованием, по меньшей мере, двух детекторов гамма-излучения, подсчет пар каскадных гамма-квантов, зарегистрированных одновременно, определение суммарной интенсивности гамма-излучения и сравнение последней с пороговым значением обеспечивают повышение вероятности правильного обнаружения взрывчатого вещества или понижение значения минимальной массы взрывчатого вещества, которую способ позволяет обнаружить, что подтверждается следующими соображениями.

Как отмечалось, при переходе из возбужденного состояния в основное в среднем лишь 14% ядер атомов азота, захвативших тепловые нейтроны, испускают гамма-кванты с энергией 10,8 МэВ, однако в среднем еще 19% ядер атомов азота осуществляют этот переход в две стадии через промежуточное возбужденное состояние, в котором находятся не более 10-15 с. При таком двухстадийном переходе в основное состояние ядро атома азота вследствие малости времени нахождения в промежуточном возбужденном состоянии испускает практически одновременно в различных направлениях два каскадных гамма-кванта с энергиями соответственно 5,534 и 5,266 МэВ. Поскольку входящие в пару каскадные гамма-кванты испускаются в различных направлениях, их регистрация оказывается возможной, как правило, двумя детекторами гамма-излучения.

Дополнительная регистрация каскадных гамма-квантов с энергиями 5,534 МэВ и 5,266 МэВ увеличивает величину регистрируемой суммарной интенсивности гамма-излучения, которое испускают в среднем не 14%, а 33% ядер атомов азота, захвативших тепловые нейтроны, и, следовательно, повышает информативность способа. Поэтому совместная регистрация гамма-квантов с энергией 10,8 МэВ и каскадных гамма-квантов с энергиями 5,534 МэВ и 5,266 МэВ повышает вероятность правильного обнаружения при заданных значениях вероятности ложных тревог и минимальной массы взрывчатого вещества, которую необходимо обнаружить.

Однако непосредственная регистрация каскадных гамма-квантов с энергиями 5,534 МэВ и 5,266 МэВ, подобная регистрации гамма-квантов с энергией 10,8 МэВ, практически неосуществима из-за наличия гамма-излучения с энергиями квантов в диапазоне 5-6 МэВ, испускаемого при взаимодействии тепловых нейтронов с ядрами атомов целого ряда других химических элементов, например серы, хлора и натрия. Вследствие этого при непосредственной регистрации каскадных гамма-квантов будет регистрироваться гамма-излучение не только от азота, но также, например, от серы, хлора и натрия, что может приводить к ложным тревогам.

Именно поэтому предлагаемый способ обнаружения взрывчатого вещества в контролируемом предмете предусматривает проверку совпадения во времени моментов регистрации двух гамма-квантов с энергиями соответственно 5,534 МэВ и 5,266 МэВ двумя детекторами гамма-излучения для определения факта того, что указанные два гамма-кванта являются парой каскадных гамма-квантов, испущенных именно одним из ядер атомов азота в результате двухстадийного перехода из возбужденного состояния в основное, а не ядрами атомов других химических элементов.

Выявление содержащей неидентифицированное изделие области контролируемого предмета с плотностью органических материалов, превышающей установленное значение, определение размеров и положения неидентифицированного изделия в контролируемом предмете, определение и формирование диаграммы направленности излучателя тепловых нейтронов, соответствующей размерам неидентифицированного изделия, облучение тепловыми нейтронами только содержащей неидентифицированное изделие области контролируемого предмета, регистрация гамма-квантов несколькими детекторами гамма-излучения, по меньшей мере, двумя, находящимися на различных расстояниях от облучаемой тепловыми нейтронами области контролируемого предмета, и определение суммарной интенсивности гамма-излучения, испускаемого контролируемым предметом, с учетом весовых коэффициентов показаний детекторов и весовых коэффициентов показаний пар детекторов, значения которых зависят от взаимного положения детекторов гамма-излучения и облучаемой тепловыми нейтронами области контролируемого предмета, обеспечивают увеличение информации, используемой при обнаружении взрывчатого вещества, за счет корректного учета результатов регистрации гамма-квантов детекторами гамма-излучения при определении суммарной интенсивности гамма-излучения и, следовательно, повышение вероятности правильного обнаружения.

При этом определение положения неидентифицированного изделия в контролируемом предмете на основании анализа зарегистрированного рентгеновского излучения позволяет определять весовой коэффициент показаний детектора гамма-излучения на основании взаимного расположения неидентифицированного изделия и детектора гамма-излучения и определять суммарную интенсивность гамма-излучения путем суммирования чисел регистрации гамма-квантов с энергией 10,8 МэВ каждым из детекторов гамма-излучения, умноженных на указанный весовой коэффициент показаний детектора, и чисел зарегистрированных одновременно каждой из пар детекторов гамма-излучения пар каскадных гамма-квантов, умноженных на весовой коэффициент показаний пары детекторов, определяемый в виде среднего арифметического весовых коэффициентов показаний детекторов, входящих в данную пару.

Поскольку предлагаемый способ предусматривает регистрацию гамма-квантов несколькими детекторами гамма-излучения, по меньшей мере двумя, результат регистрации гамма-квантов каждым из них будет иметь свой вес, определяемый положением каждого детектора относительно облучаемой тепловыми нейтронами области контролируемого предмета с неидентифицированным изделием.

Поэтому предлагаемый способ предусматривает экспериментальное определение при калибровке весовых коэффициентов показаний детекторов, которые учитывают расстояние между детектором гамма-излучения и облучаемой тепловыми нейтронами области контролируемого предмета с неидентифицированным изделием, а также собственную эффективность и анизотропию чувствительности детектора гамма-излучения, рассеяние гамма-квантов, размеры и массу взрывчатого вещества, используемого при калибровке. Это также обеспечивает повыш