Способ определения спонтанной клеточной цитотоксичности
Реферат
Изобретение относится к медицине и может быть использовано в иммунологии, вирусологии, онкологии, трансплантологии. Способ заключается в следующем: из периферической крови пациента выделяют мононуклеары, приготавливают клетки-мишени, в качестве которых используют тучные клетки крыс, смешивают мононуклеары и клетки-мишени в соотношении 20-30:1, центрифугируют полученную смесь, инкубируют в течение 30 мин, после чего осуществляют учет результатов цитотоксической реакции путем подсчета количества дегранулировавших тучных клеток крыс в процентах от общего количества тучных клеток крыс в смеси мононуклеаров и тучных клеток крыс. При значении указанного показателя 25-35% определяют нормальную спонтанную клеточную цитотоксичность, при значении менее 25% определяют пониженную спонтанную клеточную цитотоксичность, а при значении указанного показателя свыше 35% определяют повышенную спонтанную клеточную цитотоксичность. Способ позволяет повысить точность прогноза. 1 з.п.ф-лы, 7 табл.
Изобретение относится к области медицины, а именно к иммунологии, вирусологии, онкологии, трансплантологии, и может быть использовано для оценки иммунного статуса здоровых и больных людей; для оценки уровня противовирусной и противоопухолевой защиты организма; для прогнозирования кризов отторжения трансплантатов.
Известны способы определения спонтанной клеточной цитотоксичности (СКЦ) с использованием в качестве клеток-мишеней для цитотоксических клеток мышей искусственно культивируемых опухолевых клеток, в частности клеток мышиных опухолей Р815, EL4, BW5147, меченных радиоактивным изотопом. Известные способы-аналоги включают следующие операции: выделение мононуклеаров из периферической крови; приготовление клеток-мишеней, включая мечение их радиоактивным изотопом; смешивание мононуклеаров и клеток-мишеней и учет результатов цитотоксической реакции по выходу используемого радионуклида. В качестве радиоактивных изотопов используют 31Сr, 3[H]-пролин, 125[I]-дезоксиуридин, 3[H]-уридин и т.п. [1, 2]. Известные способы-аналоги не обеспечивают достижения технического результата заявленного способа в связи со следующим. Опухолевые линии, применяемые для определения СКЦ у мышей, как правило, не используются для определения СКЦ у человека [2] . По мнению авторов изобретения, это может быть обусловлено отсутствием специфических рецепторов на указанных клетках-мишенях, вследствие чего воздействие цитотоксических клеток человека на морфологические и функциональные свойства этих клеток-мишеней практически не проявляется. Известны способы определения СКЦ с использованием в качестве клеток-мишеней для цитотоксических клеток человека искусственно культивируемых опухолевых клеток лимфомы мыши УАС-1 [3] и миелоидной перевиваемой клеточной линии К-562 [4]. Наиболее близким к заявленному решению по совокупности существенных признаков является способ определения СКЦ с использованием в качестве клеток-мишеней миелоидной перевиваемой клеточной линии К-562 [4]. Способ, принятый за прототип, осуществляли следующим образом. У пациента из вены брали кровь в количестве 6 мл в пенициллиновые флаконы с 0,2 мл 5% ЕДТА и разделяли в градиенте плотности фиколл/верографина (d=1,077). Полученную взвесь мононуклеарных клеток (мононуклеаров) один раз отмывали в 8 мл фосфатного буфера и два раза - в растворе Хенкса с 5% бычьей сывороткой. Конечную концентрацию клеток доводили до 5х106/мл среды RPMI-1640 с добавлением 10% бычьей сыворотки. Приготовление клеток-мишеней осуществляли следующим образом. Клеточную линию К-562 выращивали на культуральной среде RPMI-1640, которую обогащали "добавками": 500 мл RPMI-1640 +20 mM глютамина+20 mM Hepes (Serva) +100 ед/мл пенициллина +10 ед/мл стрептомицина или гентамицина; как сывороточную добавку использовали инактивированную бычью сыворотку. В стерильный пенициллиновый флакон помещали 0,6 мл перевиваемой клеточной суспензии (содержащей 3х105 клеток), 0,6 мл инактивированной бычьей сыворотки и 1,8 мл среды RPMI-1640; флаконы инкубировали в течение 4 суток при 37oС. На 4-е сутки культивирования, когда концентрация клеток достигала 5х105 в 1 мл, клетки перевивали в свежую среду. Клетки 2-го или 3-го дня культивирования осаждали центрифугированием при 150g в течение 5 мин, ресуспендировали в свежей среде RPMI-1640 с добавлением 10% бычьей сыворотки. 1х106 клеток метили 250 мк Ku51Cr(Na2CrO4) (92,5xl05 Бк) с удельной активностью 2-5 мКи/мМ (7,4-18,5х107 Бк) в объеме 0,5 мл; помещали в термостат и инкубировали в течение 1 ч при 37oС. Клетки трижды отмывали в среде Хенкса с 5% бычьей сывороткой, центрифугируя при 150g в течение 5 мин; конечную концентрацию клеток доводили до 1х105 в 1 мл среды RPMI-1640 с 10% бычьей сывороткой. Соединяли клетки-мишени и мононуклеары. При этом клетки-мишени по 0,1 мл (1х104 клеток) раскапывали в лунки круглодонной панели фирмы "Cook" с учетом необходимого количества проб и объема опыта. Мононуклеары по 0,1 мл (0,5х106 клеток) раскапывали так, чтобы для каждой пробы исследуемой крови приходился свой ряд лунок; как опытные, так и контрольные пробы тестировали в триплете; к контрольным пробам вместо 0,1 мл суспензии мононуклеаров добавляли 0,1 мл культуральной среды, соотношение клеток-мишеней и мононуклеаров в опытных пробах соответствовало 1: 50. На этапе раскапывания мишеней по 0,1 мл суспензии клеток заливали в центрифужные пробирки и хранили до окончания опыта; они служили для определения максимального включения 51Cr (M). Панель помещали в инкубатор (37oС) с подачей 5% CO2 и относительной влажностью 100%, где инкубировали 16 ч. По окончании инкубации из лунок забирали 0,1 мл супернатанта, замеряли активность опытных проб вместе с контрольными пробами на -счетчике. Учет результатов реакции осуществляли следующим образом. Цитотоксическая активность мононуклеаров (СКЦ) выражалась в% с учетом общего включения 51Сr и его спонтанного выхода: где А - удвоенное среднее значение выхода 51Сr в трех опытных лунках; В - то же, но в контрольных лунках; С - 80% от общего включения 51Сr в 1х104 клеток (М)-мишеней. Спонтанный выход 51Сr (В) при такой постановке опыта в среднем составлял 16% от значения С (1% в час). При значении указанного показателя, составляющем в среднем (53,63,7)% (уровень цитотоксической активности у здоровых людей), определяли нормальную цитотоксическую активность (СКЦ). При значениях указанного показателя, достоверно сниженных по сравнению с нормой, определяли пониженную цитотоксическую активность (СКЦ). При значениях указанного показателя, достоверно превышающих средние значения цитотоксической активности у здоровых людей, определяли повышенную цитотоксическую активность (СКЦ). Способ-прототип [4] не позволяет получить технический результат, достигаемый при использовании заявленного способа, по следующим причинам. Известно, что клетки живого организма, обладающие СКЦ (называемые далее в тексте "цитотоксические мононуклеары" или "клетки-эффекторы"), принадлежат, главным образом, к нормальным киллерам и обладают способностью разрушать чужеродные клетки, клетки, пораженные вирусом, а также опухолевые клетки. В настоящее время вследствие невозможности оценки цитотоксических реакций in vivo определение СКЦ производят путем постановки лабораторных реакций с использованием клеток-мишеней, в норме не содержащихся в организме [2]. Известно, что применяемые в способе-прототипе [4] искусственно культивируемые опухолевые клетки миелоидной линии имеют мелкие гранулы [5], выход которых из клеток в ходе цитотоксической реакции практически невозможно учитывать с помощью микроскопии. Известно также, что обусловленные воздействием цитотоксических мононуклеаров процессы, результатом которых являются значимые морфологические изменения в клетках-мишенях, протекают в течение длительного периода времени (инкубация от 16 ч до 5-ти - 6-ти суток) [2]. Кроме того, у опухолевых клеток-мишеней, по мнению авторов заявленного решения, отсутствуют особые специфические высокочувствительные рецепторы к перфоринам и цитокинам, продуцируемым клетками-эффекторами. В этой связи учет морфологических изменений в опухолевых клетках принципиально возможен только путем подсчета погибших под действием мононуклеаров клеток-мишеней. Однако описания подобного способа определения СКЦ в просмотренной научно-медицинской и патентной литературе авторы изобретения не обнаружили. Это может быть обусловлено тем, что практическая реализация подобного подхода с помощью стандартных лабораторных приемов и лабораторного оборудования будет характеризоваться относительно высокой субъективностью и относительно низкой точностью определения (вследствие возможности массовой спонтанной гибели клеток-мишеней в процессе длительной инкубации), даже при использовании соответствующих специальных красителей для выявления погибших клеток-мишеней. В основу способа-прототипа [4] положен учет преимущественно функциональных изменений опухолевых клеток-мишеней под действием цитотоксических клеток человека. Оценку цитотоксического эффекта осуществляют путем мечения клеток-мишеней радиоактивным хромом-51. Известно [3, 2], что цитотоксический эффект проявляется только при непосредственном контакте клеток-эффекторов и клеток-мишеней в результате продуцирования клетками-эффекторами различных цитокинов и перфоринов с последующим высвобождением указанных медиаторов. В способе-прототипе этот контакт осуществляется после спонтанного оседания всех клеток смеси на дно пробирки, которое завершается через 3-5 часов. После оседания клеток смеси и возникновения контакта между клетками-мишениями и цитотоксическими клетками начинается продукция и высвобождение цитотоксических медиаторов, а также воздействие их на клетки-мишени, что занимает 12-140 часов. Таким образом, для проявления цитотоксического эффекта в отношении опухолевых клеток требуется инкубация в течение не менее 16 часов, что обусловливает длительность процедуры определения. Кроме того, необходимым условием для обеспечения контакта клеток-эффекторов и клеток-мишеней и соответственно для получения выраженного цитотоксического эффекта в отношении опухолевых клеток согласно способу-прототипу является относительно высокое соотношение между мононуклеарами и клетками-мишенями (50:1). Осуществление указанного условия на практике приводит к необходимости работы с относительно большим объемом крови, что в свою очередь исключает возможность получения крови для исследования из пальца пациента (используют только венозную кровь). В процессе инкубации смеси мононуклеаров и опухолевых клеток-мишеней под влиянием цитотоксических мононуклеаров изменяется проницаемость клеточных мембран клеток-мишеней, в результате чего происходит высвобождение из клеток-мишеней 51Сr. Однако даже при соблюдении предусмотренных методикой способа-прототипа оптимальных условий смешивания и инкубации смеси отсутствие у опухолевых клеток-мишеней особых специфических высокочувствительных рецепторов к медиаторам клеток-эффекторов может в ряде случаев приводить к недостаточной выраженности функциональных изменений клеток-мишеней в ходе цитотоксической реакции. В частности повышение проницаемости клеточных мембран может оказаться недостаточным для выхода 51Сr (по данным авторов изобретения в смеси остается 40-80% клеток-мишеней с неповрежденными мембранами). В этих случаях будет иметь место относительно низкий специфический (т.е. обусловленный влиянием цитотоксических мононуклеаров) выход 51Сr в опыте, что приведет к получению ложнозаниженных результатов цитотоксической реакции. Кроме того, при использовании 51Сr в качестве индикатора цитотоксического эффекта по ряду причин (качество клеток-мишеней, качество инкубационных сред и посуды, недостаточная квалификация среднего медицинского персонала и т.п.) может наблюдаться повышенный спонтанный (неспецифический) выход указанного радионуклида в контроле (16-50%). Это существенно затрудняет учет результатов цитотоксической реакции, обусловливая ложнозаниженные результаты определения, а в ряде случаев (при спонтанном выходе 51Сr в контроле более 20%) делает учет результатов реакции практически невозможным. Относительно низкие прочностные характеристики мембран опухолевых клеток-мишеней обусловливают относительно высокую вероятность повреждения этих клеток в результате пипетирования, центрифугирования (на стадии приготовления клеток-мишеней), внесения растворов в смесь мононуклеаров и клеток-мишеней и т. д. Это находит отражение в относительно высоком спонтанном (неспецифическом) выходе 51Сr в опыте, который, по данным авторов изобретения, может в ряде случаев достигать 30-40%, что приводит к ложнозавышенным результатам определения. Все это обусловливает относительно низкую точность определения СКЦ с помощью способа-прототипа. И наконец, предусмотренное методикой способа-прототипа [4] применение 51Сr предполагает работу с материалом, меченным указанным радионуклидом, что требует специально оборудованной лаборатории и специально обученного персонала. Задачей изобретения является создание способа определения СКЦ, обеспечивающего возможность суправитального, раннего и выраженного морфологического проявления цитотоксического эффекта при исключении возможности спонтанного лизиса клеток-мишеней, механических повреждений их мембран и спонтанного выхода радиоактивного изотопа из клеток-мишеней, за счет использования клеток, обладающих особыми, специфическими высокочувствительными рецепторами к медиаторам, продуцируемым цитотоксическими клетками человека, крупными цитоплазматическими гранулами, способными к экзоцитозу, и относительно высокой механической прочностью мембран. Поставленная задача решается тем, что в способе определения СКЦ, включающем выделение мононуклеаров из периферической крови пациента, приготовление клеток-мишеней, смешивание мононуклеаров и клеток-мишеней, инкубирование смеси мононуклеаров и клеток-мишеней с последующим учетом результатов цитотоксической реакции, согласно изобретению в качестве клеток-мишеней используют тучные клетки крыс. Смешивают мононуклеары и тучные клетки крыс в соотношении 20-30:1. Непосредственно после смешивания мононуклеаров и тучных клеток крыс дополнительно центрифугируют полученную смесь. Инкубирование смеси мононуклеаров и тучных клеток крыс производят в течение 30 мин. Учет результатов цитотоксической реакции осуществляют путем подсчета количества дегранулировавших тучных клеток крыс в процентах от общего количества тучных клеток крыс в смеси мононуклеаров и тучных клеток крыс и при значении указанного показателя, составляющем менее 25%, определяют пониженную СКЦ, при значении указанного показателя 25-35% определяют нормальную СКЦ, а при значении указанного показателя свыше 35% определяют повышенную СКЦ. Наиболее эффективно, когда в ходе учета результатов цитотоксической реакции непосредственно перед подсчетом количества дегранулировавших тучных клеток крыс в смеси мононуклеаров и тучных клеток крыс производят перемешивание клеточного осадка и супернатанта смеси мононуклеаров и тучных клеток крыс. Выбор оптимальных режимов и условий осуществления действий заявленного способа, обеспечивающих наибольшую эффективность изобретения при его реализации, осуществляли следующим образом. Для установления диагностически значимых диапазонов цитотоксической активности клеток крови человека в норме и при патологии были проведены сравнительные исследования СКЦ у следующих пациентов: - у практически здоровых детей; - у детей с дефектами противовирусного иммунитета, что, как известно [3, 6, 7], является свидетельством сниженных функций нормальных киллеров - главных клеток, отвечающих за СКЦ; - у детей с выраженной реакцией "хозяин против трансплантата", клинически проявляющейся отторжением пересаженной ткани, что, как известно [1, 6, 3] , обусловлено значительным повышением активности цитотоксических клеток. Распределение пациентов по группам выглядело следующим образом: I группа - практически здоровые дети в возрасте от 3 до 16 лет - 26 человек; II группа - дети (в возрасте от 3 до 16 лет) с частыми острыми респираторными вирусными заболеваниями /ОРВИ/ (более 8 раз в год), подтвержденными с помощью вирусологических методов обследования (иммунофлуоресцентные методы исследования мазков - отпечатков со слизистой носа и зева, исследования парных сывороток на антитела к респираторным вирусам) - 31 чел.; III группа - ожоговые больные (в возрасте от 3 до 16 лет) с кризом отторжения пересаженного кожного лоскута - 6 чел. СКЦ в каждой из указанных групп определяли с использованием заявленного способа и способа-прототипа [4]. При этом в ходе определения СКЦ и заявленным способом и способом-прототипом для обеспечения адекватности условий постановки экспериментов кровь каждого пациента исследовали в трех параллельных опытах с тремя параллельными контролями (3 опытные и 3 контрольные пробы). При определении СКЦ по методике способа-прототипа активность опытных и контрольных проб замеряли на счетчике радиоактивности "Ultra-Gamma 1280" (производства LKB, Швеция). Статистическую обработку результатов производили путем вычисления сигмального отклонения (), а также путем точного вычисления значимости различий долей по методу (углового преобразования Фишера) [8]. Результаты сравнительных исследований СКЦ в группах I - III представлены в таблице 1. Из данных таблицы 1 видно, что у практически здоровых пациентов (группа I) количество дегранулировавших тучных клеток крыс в смеси от общего количества тучных клеток крыс мононуклеаров и клеток-мишеней (% дегрануляции) составило в среднем (302,5)% при варьировании значений указанного показателя в пределах 25-35%. Этот интервал был принят в качестве диапазона значений, характеризующих нормальную СКЦ. Во II группе пациентов (с подтвержденно сниженными функциями цитотоксических клеток) % дегрануляции составил в среднем (183,0) при колебании значений указанного показателя в интервале 12-24% (р<0,001 по сравнению с показателями, полученными в I группе). В связи с этим было принято, что показателем сниженной СКЦ является % дегрануляции, составляющий менее 25%. В III группе пациентов (с подтвержденно повышенной активностью цитотоксических клеток) на основании полученного среднего значения % дегрануляции, равного (454,0)%, и пределов его отклонений 37-53% (при р<0,001 по сравнению с показателями, полученными в I группе), было принято, что повышенная СКЦ может быть диагностирована при значении указанного показателя свыше 35%. Данные таблицы 1 свидетельствуют также о том, что при определении СКЦ по методике способа-прототипа [4] авторами изобретения были получены значения СКЦ, сопоставимые с данными, приведенными авторами способа-прототипа в цитируемой работе. Так, определенный авторами изобретения по методике способа-прототипа средний уровень СКЦ у практически здоровых пациентов составил (544)%; по данным авторов способа-прототипа аналогичный показатель составлял (53,63,7)%. Корреляция значений СКЦ, определенных по методике способа-прототипа [4] авторами изобретения и авторами способа-прототипа, наблюдалась также и для пациентов с повышенной и пониженной СКЦ, в частности для больных с кризом отторжения трансплантата (см. графу 6 таблицы 1 описания изобретения и таблицу 65 на с. 162 описания способа-прототипа [4]). Для установления оптимального соотношения мононуклеаров и тучных клеток крыс в смеси исследовали влияние различных соотношений на точность определения СКЦ. Для исследования были предварительно отобраны 10 практически здоровых детей (в возрасте от 3 до 16 лет), у которых значения СКЦ находились в пределах 28-32%. У каждого из пациентов определяли СКЦ при соотношениях мононуклеаров и тучных клеток крыс в смеси, составляющих: 5:1, 10: 1, 15:1, 20: 1, 25: 1, 30:1, 35:1, 40:1, 45:1, 50:1. При этом кровь каждого из пациентов при каждом испытываемом соотношении мононуклеаров и заявленных клеток-мишеней исследовали в трех параллельных пробах с тремя параллельными контролями (3 опытные и 3 контрольные пробы). Каждое из соотношений проверяли при прочих фиксированных оптимальных режимах и условиях осуществления действий заявленного способа. Статистическую обработку результатов производили аналогично обработке результатов экспериментов по установлению диагностически значимых диапазонов СКЦ в норме и при патологии. Результаты исследований приведены в таблице 2. Из данных таблицы 2 следует, что оптимальным является соотношение мононуклеаров и тучных клеток крыс в смеси, составляющее 20-30:1, т.к. именно это соотношение обеспечивает максимально высокий процент специфически поврежденных клеток-мишеней, чувствительных к действию цитотоксических мононуклеаров, при минимальном разбросе результатов в параллельных опытах. При более низких соотношениях между мононуклеарами и заявленными клетками-мишенями (5-15: 1) наблюдается более низкий процент дегранулировавших клеток-мишеней (5-18%), что свидетельствует о том, что не все клетки-мишени, чувствительные к действию цитотоксических клеток, подверглись цитолизу. При повышении (по сравнению с оптимальным) соотношения мононуклеаров и клеток-мишеней (30-50: 1), несмотря на то, что все клетки-мишени, чувствительные к действию цитотоксических мононуклеаров, подвергаются цитолизу (30-32%), отмечается относительно большой разброс результатов в параллельных опытах. Последнее, по-видимому, может быть обусловлено вступлением в силу механических или других факторов, препятствующих контакту цитотоксических клеток и клеток-мишеней, или действию цитотоксических медиаторов, что негативно влияет на воспроизводимость результатов реакций и тем самым снижает точность определения СКЦ. Для установления значимости стадии центрифугирования в совокупности действий заявленного способа, а также оптимального времени инкубации исследовали влияние наличия или отсутствия стадии центрифугирования в сочетании с различными сроками инкубации на точность определения СКЦ. Для проведения экспериментов был выбран стандартный режим центрифугирования (в течение 10 мин при 600g), рекомендованный в отношении мононуклеаров периферической крови [7]. Для исследования были предварительно отобраны 10 практически здоровых детей (в возрасте от 3 до 16 лет), у которых значения СКЦ находились в пределах 28-32%. У каждого из пациентов определяли СКЦ при наличии и при отсутствии стадии центрифугирования в последовательности действий заявленного способа, при этом сроки инкубации в каждом случае варьировали от 15 до 240 мин при прочих фиксированных оптимальных режимах и условиях осуществления действий заявленного способа. Кровь каждого пациента в каждом из вариантов постановки эксперимента исследовали в трех параллельных опытах с тремя параллельными контролями (3 опытные и 3 контрольные пробы). Статистическую обработку результатов производили аналогично обработке результатов экспериментов по установлению диагностически значимых диапазонов СКЦ в норме и при патологии. Результаты исследований приведены в таблице 3. Предварительно авторами изобретения была проведена проверка пригодности принятого в соответствии с рекомендациями [7] режима центрифугирования для целей заявленного способа. При этом в результате экспериментов было установлено, что, с одной стороны, при центрифугировании смеси мононуклеаров и тучных клеток крыс в указанном режиме оседают на дно пробирки 100% мононуклеаров и 100% клеток-мишеней, что подтверждалось отсутствием указанных клеток в надосадочной жидкости (супернатанте) после центрифугирования. С другой стороны, при центрифугировании в указанном режиме практически не происходит механического повреждения клеток-мишеней, в частности их мембран. Это подтверждалось тем, что, во-первых, количество заявленных клеток-мишеней до и после центрифугирования оставалось постоянным; во-вторых, в контрольных пробах (без мононуклеаров) дегрануляции тучных клеток крыс в результате центрифугирования (при оптимальном сроке инкубации) практически не отмечалось (количество дегранулировавших клеток в контроле после центрифугирования составляло 0%). В связи с этим указанный режим был принят в качестве рабочего (далее - "рабочий режим центрифугирования"). Данные таблицы 3 показывают, что при отсутствии стадии центрифугирования в последовательности действий заявленного способа при маленьких сроках инкубации (15-60 мин) цитотоксический эффект в отношении заявленных клеток-мишеней практически не проявляется, что исключает возможность определения СКЦ. При увеличении сроков инкубации свыше 60 мин цитотоксический эффект нарастает, однако процент специфически поврежденных клеток-мишеней, чувствительных к действию цитотоксических мононуклеаров, остается относительно низким (12-21%), что препятствует достоверной оценке СКЦ. Кроме того, при сроках инкубации свыше 60 мин нарастает процесс спонтанной дегрануляции тучных клеток крыс (количество дегранулировавших клеток в контроле составляет в зависимости от времени инкубации 3-20%). Таким образом, приведенные результаты экспериментов свидетельствуют о том, что в отсутствие стадии центрифугирования учет результатов цитотоксической реакции является практически невозможным. Из таблицы 3 видно также, что при центрифугировании в рабочем режиме смеси мононуклеаров и тучных клеток крыс в сочетании с последующей инкубацией смеси максимальное специфическое повреждение заявленных клеток-мишеней, чувствительных к действию цитотоксических клеток, достигается, начиная со времени инкубации 30 мин. Учитывая, что при этом отмечается минимальный разброс результатов в параллельных опытах, указанный срок инкубации принят в качестве оптимального. При увеличении срока инкубации смеси (45-120 мин) количество дегранулировавших клеток-мишеней остается практически постоянным, однако увеличивается разброс результатов в параллельных опытах. Последнее обусловлено начинающимися процессами спонтанной дегрануляции тучных клеток крыс (как начального проявления неспецифического лизиса указанных клеток), что подтверждается нарастанием% дегрануляции в контроле (1-3%). Это снижает воспроизводимость результатов цитотоксических реакций и соответственно точность определения СКЦ. При дальнейшем увеличении срока инкубации смеси (свыше 120 мин) наблюдается существенное повышение количества дегранулировавших тучных клеток крыс в контроле (11-22%), что свидетельствует о нарастании процессов неспецифического лизиса клеток. Это приводит к значимому занижению результатов цитотоксических реакций, что соответственно исключает возможность определения СКЦ. Таким образом, анализ результатов экспериментов, представленных в таблице 3, позволяет заключить, что центрифугирование смеси мононуклеаров и тучных клеток крыс является существенным признаком заявленного способа, т.к. указанная стадия (ее наличие в последовательности действий способа) непосредственно влияет на достижение заявленного результата. При этом именно сочетание центрифугирования смеси с последующей ее инкубацией обеспечивает возможность выбора оптимального времени инкубации (30 мин), позволяющего получить наибольшую точность определения СКЦ. Для сравнения авторами изобретения были проведены эксперименты по оценке возможности введения стадии центрифугирования в совокупность действий способа-прототипа [4]. При этом проверялась пригодность двух стандартных режимов центрифугирования: - режима, рекомендованного в отношении опухолевых клеток миелоидной линии согласно методике способа-прототипа [4] (в течение 5 мин при 150g) - режим 1; - режима, рекомендованного в отношении мононуклеаров периферической крови [7] (в течение 10 мин при 600g) - режим 2 (рабочий режим центрифугирования в заявленном способе). Было установлено, что центрифугование в режиме 1 приводило к недостаточному оседанию мононуклеаров - в надосадочной жидкости оставалось 15-30% мононуклеаров, что приводило к конечному нарушению соотношения мононуклеаров и клеток-мишеней способа-прототипа в смеси, что в свою очередь снижало точность определения СКЦ. Кроме того, спонтанный выход 51Сr в контроле возрастал до 25-30%, что свидетельствовало о механическом повреждении значительной части клеток мишеней (в частности, их мембран) в процессе центрифугирования. Указанные негативные факторы в совокупности исключали возможность определения СКЦ. Центрифугирование в режиме 2 делало практически невозможным учет результатов цитотоксической реакции из-за высокого (50-60%) спонтанного выхода 51Сr в контроле, что свидетельствовало о механическом повреждении подавляющего большинства клеток-мишеней (в частности, их мембран) в процессе центрифугирования. Таким образом, введение центрифугирования (как в режиме 1, так и в режиме 2) в последовательность действий способа-прототипа приводило к невозможности определения СКЦ по методике способа-прототипа. Достижение обеспечиваемого изобретением технического результата обусловлено следующим. Известно, что под действием аллергенов происходит дегрануляция предварительно сенсибилизированных сывороткой крови больного тучных клеток крыс. Морфологически это проявляется выходом из клеток цитоплазматических гранул, которые имеют достаточно большие размеры, позволяющие учитывать процесс дегрануляции под микроскопом. При этом сенсибилизация тучных клеток крыс сывороткой крови больного в ходе определения причинно значимого аллергена является необходимым этапом для получения реакции дегрануляции [9] . Последнее обусловлено тем, что исходно на поверхности тучных клеток крыс отсутствуют аллерген-специфические иммуноглобулины Е (IgE) человека, отвечающие за создание и функционирование рецепторного комплекса, необходимого для ответа на аллерген. Авторами заявленного решения не обнаружено источников информации, где были бы описаны изменения тучных клеток крыс в ходе цитотоксических реакций. Авторы изобретения экспериментально установили, что при реализации заявленной совокупности действий при оптимальных условиях и режимах их осуществления под воздействием цитотоксических мононуклеаров происходит дегрануляция тучных клеток крыс без предварительной сенсибилизации последних сывороткой крови больного, что является проявлением антителонезависимой клеточной цитотоксичности. По мнению авторов предложенного способа, это может быть обусловлено тем, что тучные клетки крыс исходно обладают особыми специфическими высокочувствительными рецепторами к перфоринам и цитокинам, продуцируемым цитотоксическими мононуклеарами человека. Возможно также, что цитотоксические мононуклеары могут продуцировать особые цитокины, способные направленно воздействовать на рецепторы и/или на мембраны тучных клеток крыс. Поэтому для создания и функционирования рецепторного комплекса, чувствительного к цитотоксическому действию клеток-эффекторов, не требуется предварительной сенсибилизации заявленных клеток-мишеней сывороткой крови больного. Результаты экспериментальных исследований авторов изобретения показали, что дегрануляция тучных клеток крыс при цитотоксических реакциях морфологически проявляется экзоцитозом - выходом на поверхность указанных клеток прозрачных достаточно крупных гранул, четко различимых под микроскопом. При этом установлено, что совместная инкубация клеток-эффекторов и заявленных клеток-мишеней в течение заявленного периода времени (30 мин) не приводит к гибели клеток-мишеней. Все это позволяет осуществлять учет суправитальных морфологических изменений тучных клеток крыс - их дегрануляцию под действием цитотоксических клеток человека. Возможность оценивать результаты цитотоксических реакций по морфологическим изменениям клеток-мишеней в свою очередь позволяет исключить необходимость мечения последних радиоактивным изотопом. Это, с одной стороны, дает возможность избежать необходимости принимать во внимание способность клеток-мишеней к спонтанному высвобождению радионуклида даже в отсутствие клеток-эффекторов и тем самым позволяет обеспечить оптимальный контроль реакции, за счет чего также повышается точность определения СКЦ. С другой стороны, исключается необходимость проводить анализ в специально оборудованной для работы с радиоактивными изотопами лаборатории и с участием специально обученного персонала. Наличие у заявленных клеток-мишеней особых специфических высокочувствительных рецепторов к действию клеток-эффекторов обеспечивает возможность раннего проявления выраженного цитотоксического эффекта даже при минимальных количествах перфоринов и цитокинов, продуцируемых мононуклеарами. Это позволяет получить значимый цитотоксический эффект и соответственно обеспечить относительно высокую точность определения при относительно низком соотношении клеток-эффекторов и заявленных клеток-мишеней (20-30:1). В результате появляется возможность проведения качественного анализа при использовании относительно небольшого количества крови, что дает возможность получения крови для исследования не только из вены, но и из пальца пациента. Введение в совокупность действий заявленного способа дополнительной (по сравнению с прототипом) стадии - центрифугирования смеси мононуклеаров и клеток-мишеней - позволяет обеспечить ускоренное осаждение клеток, способствуя достижению более раннего и более тесного контакта между клетками-эффекторами и клетками-мишенями и соответственно более раннему продуцированию и высвобождению цитотоксических медиаторов клеток-эффекторов и их воздействию на клетки-мишени. При этом авторами изобретения экспериментально установлено, что степень механического повреждения мембран тучных клеток крыс в результате центрифугирования в рабочем режиме недостаточна для спонтанной дегрануляции указанных клеток, что подтверждалось практически полным отсутствием (0%) дегранулировавших клеток в контроле (при оптимальном режиме инкубации). Напротив, при центрифугировании используемых в способе-прототипе опухолевых клеток миелоидной линии механические повреждения значительной части этих клеток (в частности их мембран) отмечались даже при использовании режима (5 мин при 150g), рекомендованного для данных клеток методикой способа-прототипа [4] (спонтанный выход 51Сr в контроле 25-30%). При центрифугировании в режиме (10 мин при 600g), рекомендованном для мононуклеаров периферической крови [7] (рабочий режим заявленного способа), механические повреждения клеток-мишеней становились еще более значимыми (спонтанный выход 51Сr в контроле 50-60%). Таким образом, результаты сравнительных экспериментальных исследований авторов изобретения (приведенные выше) свидетельствовали о том, что при использовании заявленных клеток-мишеней (в отличие от клеток-мишеней способа-прототипа) центрифугирование не оказывает значимого негативного влияния на точность определения СКЦ, что обусловлено относительно высокой механической прочностью мембран тучных клеток крыс. Использование в качестве клеток-мишеней тучных клеток крыс, обладающих особым специфическим рецепторным аппаратом и прочностными характеристиками мембран, позволяющими искусственно ускорить процесс осаждения клеток, в сочетании с включением центрифугирования (как дополнительной по сравнению с прототипом стадии) в совокупность действий заявленного способа обусловливают возможность получения выраженного цитотоксического эффекта при относительно коротких сроках инкубации (30 мин). Заявленные сроки инкубации в свою очередь позволяют исключить возможность неспецифического лизиса тучных клеток крыс, начальные проявления которого в виде спонтанн