Способ и устройство для предотвращения столкновения с землей летательного аппарата с усовершенствованной системой визуализации
Реферат
Изобретение относится к авиационной навигации и предназначено, в частности, для предотвращения столкновения летательного аппарата с зоной, над которой он пролетает. Технический результат заключается в повышении надежности. Устройство обеспечения воздушной навигации, установленное на борту летательного аппарата, принимает на вход информацию о пространственном положении и векторе скорости и сохраняет пространственное трехмерное представление пролетаемого рельефа земной поверхности. Это устройство содержит средство обработки информации, которое определяет сектор обзора летательного аппарата и рассчитывает в этом секторе некоторый контур в функции пересечения этого сектора с пролетаемым рельефом земной поверхности для его индикации. Упомянутый сектор обзора определяется при помощи слоя линий траектории, полученных исходя из вектора скорости и вспомогательных векторов скорости, рассчитываемых при помощи смещения вектора скорости летательного аппарата в соответствии с выбранным законом углового сканирования. 2 с. и 42 з.п.ф-лы, 15 ил.
Изобретение относится к авиационной навигации, в частности для предотвращения опасности внезапного столкновения летательного аппарата с зоной, над которой он пролетает.
Как указано в Европейских патентах ЕР-А-0565399 и ЕР-А-0802469, эти средства обеспечения авиационной навигации содержат, в частности средства определения информации, касающейся пространственного положения летательного аппарата, например, его относительного (по отношению к пролетаемому рельефу местности) и/или абсолютного (по отношению к некоторой фиксированной высоте типа высоты уровня моря) пространственного положения, а также средства определения вектора скорости летательного аппарата и при необходимости вектора ускорения. Эта информация ниже будет называться информацией о динамике полета летательного аппарата. На борту летательного аппарата центральный блок управления инерциальной системы, сопряженный с Глобальной Системой Определения местоположения или GPS, связанный с фильтром Калмана, может выдавать часть этой информации, в частности скорость и ускорение летательного аппарата, а также географическую широту и долготу точки его местоположения в данный момент. Другая часть необходимой информации о пространственном положении летательного аппарата может быть получена при помощи так называемых "бароинерциальных" средств измерения (информация об абсолютной высоте полета летательного аппарата) или при помощи радиовысотомера (относительная высота полета летательного аппарата). Однако средства обеспечения авиационной навигации содержат также устройства предупреждения столкновения с землей, предназначенные для оповещения пилота о том, что может возникнуть опасность столкновения с землей (или с пролетаемой зоной). Такие устройства являются полезными, в частности, в процессе захода летательного аппарата на посадку, а также на этапе набора высоты после взлета, вследствие того, что именно в этих фазах полета летательный аппарат находится в непосредственной близости от земли. Такие устройства известны под названием "Системы предупреждения о близости к земле" ("Ground Proximity Warning Systems"), сокращенно GPWS, или под названием "Система предотвращения столкновения с землей" ("Ground Collision Avoidance System"), сокращенно GCAS. Заявитель описал в Европейском патенте ЕР-А-0565399 и в заявке на патент Франции 9604678, а также в заявке на Европейский патент ЕР-А-0802469 устройства обеспечения авиационной навигации типа GCAS, которые содержат: входное устройство для приема информации, представляющей пространственное положение и динамическое состояние летательного аппарата, в частности, вектор скорости, рабочее запоминающее устройство, позволяющее хранить трехмерное представление рельефа местности, над которой пролетает летательный аппарат, средство обработки информации, предназначенное для определения в зависимости от информации о состоянии и положении летательного аппарата сектора обзора относительно этого летательного аппарата и расчета контура рельефа местности в этом секторе в функции пересечения этого сектора с рельефом пролетаемой местности, средство, обеспечивающее возможность визуализации, в частности, контура рельефа пролетаемой местности. Такой тип средств обеспечения авиационной навигации может также обеспечивать возможность визуализации для экипажа летательного аппарата предполагаемой будущей траектории его полета и, в случае необходимости, параметров стандартной траектории, основанных на теоретически возможных маневрах уклонения, позволяющих избежать столкновения с рельефом пролетаемой местности. Особенный интерес вызывает обобщение характеристик подобных систем и их эргономических параметров, а также повсеместное распространение таких систем. Действительно, речь идет об оборудовании такими системами максимально возможного количества гражданских самолетов и о выдаче экипажу самолета возможно более ясной и легко интерпретируемой информации, поскольку экипаж может оказаться в такой ситуации, которая требует особого внимания и адекватных действий. В процессе захода на посадку или выхода на наземную цель было предложено визуализировать рельеф пролетаемой местности в виде кривых, представляющих равные горизонтальные высоты или уровни. Информацию в подобном представлении достаточно трудно интерпретировать, в частности, в том случае, когда летательный аппарат перемещается в плоскости, не являющейся горизонтальной, и/или перемещается в непосредственной близости от зоны аэропорта или в районах с сильно пересеченным рельефом местности. В то же время, в некоторых ситуациях пролетаемый рельеф местности оказывается особенно сильно пересеченным и/или данный летательный аппарат имеет серьезные проблемы технического порядка. В подобных случаях предлагаемая траектория уклонения от столкновения с препятствием может оказаться невозможной вследствие того, что она пересекается с рельефом пролетаемой местности и вызывает выдачу аварийного предупреждающего сигнала, тогда как естественным образом реализуемая траектория полета данного летательного аппарата не представляет опасности столкновения с пролетаемым рельефом местности. По упомянутым выше соображениям, а также по другим соображениям существующие на сегодняшний день устройства авиационной навигации не обеспечивают в полной мере удовлетворения существующих требований в этой области. В основу данного изобретения поставлена задача создания навигационного устройства типа GCAS, которое было бы способно полностью или частично устранить отмеченные выше недостатки существующих систем. Поставленная задача решается тем, что в устройстве обеспечения авиационной навигации средство обработки информации выполнено таким образом, что прежде всего осуществляется расчет векторов вспомогательных скоростей в результате смещения вектора скорости (мгновенного) летательного аппарата в соответствии с выбранным законом углового сканирования, а затем определяется сектор возможного полета при помощи полосы линий траекторий движения летательного аппарата, исходя из известного вектора скорости и из известных вспомогательных векторов скорости. Под вспомогательным вектором скорости подразумевается вектор, две из трех координат которого в сферической системе координат, отнесенной к центру вращения для положения летательного аппарата, а именно радиус r и угол по отношению к вертикали, являются неизменными по отношению к аналогичным координатам мгновенного вектора скорости, тогда как угол его проекции в горизонтальной плоскости отличается от угла проекции вектора скорости. Другими словами, для обеспечения углового сканирования изменяют угол в одну и в другую стороны от его величины, которую он имеет на уровне вектора скорости. Таким образом, пилот располагает контуром (или картой), который представляет рельеф местности в направлении вектора скорости летательного аппарата и в выбранном угловом секторе. В данном случае слово "контур" используется в самом широком смысле, этот термин представляет все линии пересечения, которые индицируются одновременно и каждая из которых разделяет две зоны или региона. Этот термин обозначает контур земной поверхности (называемый также фоном карты или фоном изображения) и контур предупреждения об опасности. В предпочтительном варианте реализации угловое сканирование осуществляют в диапазоне от 1o до 360o, но наиболее предпочтительно в диапазоне от 60o до 120o. В соответствии с предпочтительным способом реализации все линии траектории имеют одну и ту же геометрию. В частности, эти линии могут быть прямыми или искривленными. Эти линии могут представлять собой копии будущей прогнозируемой траектории полета летательного аппарата, выведенной из его текущей траектории (в этом случае эти линии называют "траекториями с неизменными командами пилотирования"). Для того чтобы повысить точность упомянутого контура, средство обработки информации устроено таким образом, чтобы определить несколько слоев линий траектории, имеющих различные вертикальные смещения и предпочтительно отстоящие друг от друга в исходной точке строго регулярным или равномерным образом. Эти слои, по меньшей мере, частично параллельны между собой. Это позволяет "зондировать" рельеф на значительных высотах (или слоях). Однако линии траекторий могут также быть сформированы исходя из линий (первых) прогнозируемой траектории уклонения (или облета препятствия), основанной на выполнении тех или иных маневров (в этом случае эти линии называют "траекториями с модифицированными командами пилотирования в соответствии с первым выбранным законом уклонения"). В данном случае речь может идти, например, о траектории уклонения от столкновения с препятствием, известной специалисту в данной области техники под названием "caution" (зона предостережения или повышенного внимания), которая получается при реализации первого закона уклонения, содержащего продолжение представления текущей траектории, установленного в функции того или иного выбранного критерия, за которым следует маневр, имеющий вертикальную составляющую. При использовании этой гипотезы средство обработки информации может быть реализовано так, чтобы обеспечить возможность в случае, когда по меньшей мере одна из первых прогнозируемых или расчетных траекторий уклонения пересекает рельеф местности, выполнить расчет контура в функции исходной точки каждого маневра на каждой первой прогнозируемой или расчетной линии траектории уклонения упомянутого слоя. В этом случае пилот летательного аппарата располагает контуром, который можно квалифицировать как первый контур тревоги (или контур предварительного предупреждения об опасности), который, в случае необходимости, может быть индицирован одновременно с контуром, полученным при помощи будущих прогнозируемых или расчетных траекторий, или отдельно от него. Такой первый контур тревоги выдает пилоту информацию о расстоянии, которое отделяет летательный аппарат от пролетаемого рельефа местности в "направлении" первой предложенной траектории уклонения. Линии траектории также могут представлять собой вторые линии прогнозируемой или расчетной траектории уклонения (или облета) с модифицированными командами пилотирования в соответствии со вторым выбранным законом уклонения от столкновения, исходящим из вектора скорости летательного аппарата и вспомогательных векторов. В данном случае речь может идти, например, о траектории уклонения, известной специалисту в данной области техники под названием "warning" (зона предупреждения об опасности), которая получается при использовании второго закона уклонения, содержащего продолжение представления текущей траектории, установленного в функции того или иного выбранного критерия, с последующим маневром, имеющим вертикальную составляющую. При использовании этой гипотезы средство обработки информации может быть реализовано так, чтобы обеспечить возможность в том случае, когда по меньшей мере одна из упомянутых вторых прогнозируемых или расчетных траекторий уклонения от столкновения пересекает пролетаемый рельеф местности, выполнить расчет контура в функции исходной точки каждого маневра на каждой второй прогнозируемой линии траектории уклонения от столкновения упомянутого слоя. В этом случае пилот летательного аппарата имеет в своем распоряжении контур, который можно квалифицировать как второй контур тревоги (или контур предупреждения об опасности), и который, в случае необходимости, может быть индицирован в то же самое время, что и первый контур тревоги и контур, полученный при помощи будущих прогнозируемых или расчетных траекторий, или отдельно от одного или другого из этих контуров. Такой второй контур тревоги выдает пилоту информацию о расстоянии, которое отделяет летательный аппарат от пролетаемого рельефа в "направлении" второй предложенной траектории уклонения от столкновения. В предпочтительном варианте реализации каждое пересечение между рельефом местности и слоем траекторий уклонения от столкновения ограничено передней частью, причем в этом случае каждый контур образован этой передней частью и продолжением в направлении по ходу полета, определяемым в соответствии с выбранным правилом, например линейным продолжением. Под упомянутой выше "передней частью" следует понимать зону или область, расположенную между одним участком контура и летательным аппаратом, а под последующей частью следует понимать зону или область, располагающуюся по полету за этим участком контура. В соответствии с другой характеристикой предлагаемого изобретения средство обработки информации содержит средства дифференциации, которые присваивают различные маркировки или отличительные признаки зонам, которые располагаются по одну и по другую стороны от каждой части контура, причем эти маркировки или отличительные признаки выбираются в функции некоторого предварительно установленного критерия, основанного на степени риска столкновения летательного аппарата с рельефом. Так, например, упомянутый предварительно установленный критерий может представлять собой закон, основанный на величине расстояния, отделяющего каждую точку контура от выбранной точки рельефа, расположенной в вертикальной плоскости, проходящей через данную точку контура, причем в этом случае различные маркировки или отличительные признаки соответствуют различным интервалам расстояния, которые выбирают для соответствующей степени риска столкновения. В предпочтительном варианте реализации предлагаемого изобретения каждая маркировка состоит в окрашивании различных элементов сигнальной информации, причем цвета для окрашивания выбираются в соответствии с совокупностью нормативных документов, содержащей по меньшей мере Европейскую норму JAR 25-1322 и Американскую норму FAR 25-1322. Согласно этим нормам наиболее "холодный" цвет соответствует наименьшей степени риска столкновения летательного аппарата с рельефом местности. В качестве цветов окрашивания элементов сигнальной информации можно выбрать, например, следующие цвета, располагающиеся в порядке убывания степени риска столкновения: красный, оранжевый, желтый, зеленый и голубой. Разумеется, можно выбрать в качестве маркировок и различные оттенки серого цвета во всем диапазоне от белого до черного, а также применить различные типы штриховок (или сеток). В соответствии с еще одной характеристикой предлагаемого изобретения средство обработки информации устроено так, чтобы обеспечить возможность управления чередованием индикации контура и метеорологической карты. Можно предусмотреть, чтобы индикация контура и метеорологической карты осуществлялась одновременно. Можно также предусмотреть, чтобы одновременно с индикацией контура осуществлялась индикация той или иной дополнительной информации типа, например, определения местоположения аэропортов. В соответствии с еще одной характеристикой предлагаемого изобретения средство обработки информации устроено так, чтобы обеспечить включение звукового или визуального сигнала предостережения или предварительного предупреждения, выбранного в данном случае при условии пересечения между слоем, сформированным первыми линиями траектории уклонения. Можно также предусмотреть, чтобы звуковой и/или визуальный предупреждающий сигнал включался в случае пересечения между слоем, сформированным вторыми линиями траектории уклонения. Разумеется, можно также предусмотреть только один или другой из упомянутых сигналов предостережения и предупреждения, а также включение обоих этих сигналов. Эти сигналы могут, например, обеспечивать автоматическое включение индикации контура. В соответствии с еще одной характеристикой предлагаемого изобретения можно предусмотреть метод "облета рельефа местности", содержащий по меньшей мере одну горизонтальную составляющую. Для этого средство обработки информации может быть устроено так, чтобы выдавать другой визуальный и/или звуковой предупреждающий сигнал в том случае, когда имеет место подтвержденное выбранным критерием пересечение между, с одной стороны, рельефом и по меньшей мере одной из первой и второй траекторий уклонения, а с другой стороны, между рельефом и, по меньшей мере, будущей прогнозируемой или расчетной траекторией. Этот выбранный критерий может быть основан, например, на вертикальном расстоянии, которое отделяет представление пересечения между рельефом и траекторией уклонения и вершиной рельефа строго над точкой пересечения этого рельефа и соответствующей траектории уклонения. В предпочтительном варианте реализации средство обработки информации может определить область, охватывающую каждую линию траектории, образующую слой, в функции информации о состоянии летательного аппарата и о пролетаемом рельефе местности, а также определить пересечение между каждым слоем и рельефом местности исходя из пересечений упомянутых областей каждой из соответствующих линий траектории с упомянутым рельефом. В этом случае такие линии траектории называют "щупом". Они позволяют учесть возможные погрешности измерений пространственного положения летательного аппарата и его динамики. В этом случае точка пересечения линии траектории, способствующая формированию контура, в предпочтительном варианте реализации представляет собой ту точку пересечения среди всех точек пересечения между упомянутой областью этой линии траектории и рельефом пролетаемой местности, которая обладает наибольшим значением высоты. В соответствии с еще одной характеристикой предлагаемого изобретения вход устройства обеспечения авиационной навигации может принимать информацию о состоянии летательного аппарата, в частности информацию об истинной высоте и об относительной высоте над пролетаемым рельефом местности, и средство обработки информации устроено так, чтобы определять прогнозируемые или расчетные траектории (будущие) и траектории уклонения (или облета) исходя из высоты, выбранной среди истинной высоты, относительной высоты и некоторой композиционной высоты в функции сопоставления их с двумя предварительно определенными пороговыми значениями высоты, причем эта выбранная высота будет представлять собой: либо истинную высоту в том случае, когда эта истинная высота оказывается меньше обоих пороговых значений; либо относительную высоту в том случае, когда эта относительная высота превышает оба пороговых значения; либо композиционную высоту в том случае, когда истинная высота имеет величину, заключенную в диапазоне между двумя пороговыми значениями, причем эта композиционная высота предпочтительно формируется исходя из взвешенной комбинации истинной и относительной высот. Такой принцип позволяет повысить надежность получаемых результатов (контура). В соответствии с предпочтительным вариантом реализации предлагаемого изобретения устройство содержит массовое запоминающее устройство для хранения базы данных, представляющей по меньшей мере часть поверхности земного шара, а также средство управления, обеспечивающее извлечение из этой базы данных трехмерного представления определенных участков земного рельефа (называемые также локальными временными картами) в функции параметров пространственного положения летательного аппарата, чтобы размещать эти пространственные представления по мере движения летательного аппарата над земной поверхностью в рабочем или оперативном запоминающем устройстве. Это позволяет сделать данное устройство автономным. Согласно изобретению предлагается также способ обеспечения воздушной навигации летательного аппарата, содержащий следующие приемы: получение на борту летательного аппарата информации о его состоянии, представляющей пространственное положение этого летательного аппарата и вектор скорости его движения, хранение в рабочем запоминающем устройстве трехмерного представления рельефа местности региона, пролетаемого данным летательным аппаратом, определение сектора исследования в функции информации о состоянии летательного аппарата, отнесенного к летательному аппарату, и расчет в этом секторе контура в функции пересечения сектора с рельефом местности, визуализацию контура, в котором согласно изобретению при определении сектора исследования осуществляют расчет вспомогательных векторов скорости путем смещения вектора скорости летательного аппарата в соответствии с выбранным законом углового сканирования, определение сектора на основе вектора скорости летательного аппарата и вспомогательных векторов скорости. Другие характеристики и преимущества предлагаемого изобретения будут лучше поняты из приведенного ниже подробного описания предпочтительного варианта выполнения со ссылками на сопроводительные чертежи, на которых: фиг. 1 изображает схему известного устройства обеспечения авиационной навигации типа GCAS, аналогичного описанным в источниках ЕР-А-0565399 и FR 9604678; фиг.2 - блок-схему устройства обеспечения авиационной навигации согласно изобретению; фиг.3 - область погрешности определения пространственного положения летательного аппарата согласно изобретению; фиг. 4 - погрешность, связанную с прогнозируемой или расчетной траекторией летательного аппарата, спроектированной на горизонтальную плоскость, согласно изобретению; фиг. 5 - диаграмму вертикального разреза для определенной ситуации, первый вариант реализации, положение самолета относительно наглядно представленного рельефа пролетаемой местности в данный момент времени, а также три прямолинейные направляющие соответственно для траектории облета и параллельных расчетных траекторий согласно изобретению; фиг.6 - карту степеней риска столкновения летательного аппарата, сформированную на основе множества сечений, соответствующую одному циклу сканирования, согласно изобретению; фиг. 7А и 7В - принцип второго варианта реализации изобретения для двух различных ситуаций; фиг. 8A-8D - различные варианты визуализации, полученные в соответствии со вторым вариантом реализации предлагаемого изобретения; фиг. 9 - искривленную линию траектории, спроектированную на плоскость, согласно изобретению; фиг. 10 - варианты формирования визуализации, показанной на фиг.8A-8D, согласно изобретению; фиг. 11 - схему пространств перед летательным аппаратом в случае, когда может внезапно появиться ложный предупреждающий сигнал, если не задержана обработка информации, согласно изобретению. Принимая во внимание технический характер излагаемого материала, содержание источников ЕР-А-0565399 и ЕР-А-0802469 следует рассматривать как неотъемлемую составную часть предлагаемого описания. То же самое можно сказать и о следующем документе - записка фирмы ДАССО ЭЛЕКТРОНИК 810-196 AN, опубликованная в октябре 1997 г. и озаглавленная "А New Approach to CFIT Prevention and to improve situational awareness: GCAS GROUND COLLISION AVOIDANCE SYSTEM".(Новый подход к предупреждению CFIT и улучшению предупреждения). Стандартные сообщения, обычно используемые в гражданской авиации, выдаются на английском языке. Среди этих сообщений будут упомянуты следующие термины, квалифицирующие степень риска столкновения летательного аппарата с землей: "advisory" или уведомление, которое соответствует указанию или совету; "caution", которое в данном описании будет называться предостережением или предварительным предупреждением и которое носит предупредительный характер; "warning", которое в данном описании будет называться предупреждением и которое носит срочный или неотложный характер. Отдельно или в совокупности эти различные уровни сигнальных сообщений в последующем изложении будут называться "оповещениями". Для облегчения понимания в описании не упоминаются уведомляющие сообщения или оповещения типа "advisory", которые могут рассматриваться, например, как предварительная версия сигнальных сообщений типа предостережения. В описании также использованы единицы измерения различных величин, не принадлежащие к системе единиц МКСА, хотя они и могут быть выведены из единиц этой системы, вследствие употребительности упомянутых несистемных единиц в гражданской авиации. Устройство, описанное в ЕР-А-0565399, предназначено для установки на борту летательного аппарата, в частности самолета. Это устройство (фиг.1) содержит комплекс оборудования 2, способный выдавать в виде соответствующих электрических сигналов информацию о параметрах полета летательного аппарата, в частности, информацию о его пространственном положении и о динамике полета. Этот комплекс оборудования содержит центральный блок управления инерциальной или бароинерциальной системой 20 или INU и/или радионавигационное оборудование, в данном случае приемник навигационной системы GPS (но речь может идти и об оборудовании IRS) 21 (фиг.2) вместе с его антенной, радиовысотомер 22 вместе с его антенной или другие бортовые навигационные датчики. Центральный блок управления инерциальной системы 20 выдает информацию о составляющих векторов скорости (V) и ускорения (GAMMA) летательного аппарата. Путем различных преобразований из этой информации можно получить значения всех или части связанных характеристических углов (таких как угол атаки, угол скольжения, угол наклона траектории, угол тангажа, угол курса, угол крена) или непосредственно принимать значения этих углов, используемые самим центральным блоком управления инерциальной системы. Эти угловые величины могут быть введены и/или использованы на уровне поста управления летательного аппарата. Для получения информации о высоте полета центральный блок управления инерциальной системы известным образом взаимодействует с барометрическим высотомером (не показан). Для лучшего понимания описания ниже определены следующие обозначения: Zb представляет собой барометрическую высоту, выдаваемую в результате измерения атмосферного давления и изменяющуюся в зависимости от высоты полета и от текущих метеорологических условий в зоне полета; Zi представляет собой инерциальную высоту, рассчитанную при помощи двойного интегрирования вертикального ускорения летательного аппарата, измеренного при помощи акселерометров центрального блока управления инерциальной системы (долгосрочные изменения); Zbi представляет собой бароинерциальную высоту, то есть высоту Zb, скорректированную при помощи высоты Zi (например, при помощи контура третьего порядка); Zc представляет собой высоту, рассчитанную по формуле HRS+Zta, где HRS представляет собой радиовысоту (или относительную высоту), выдаваемую одним или несколькими радиовысотомерами летательного аппарата (при этом точность показаний высоты от радиовысотомеров составляет несколько метров), и Zta представляет собой высоту земной поверхности под летательным аппаратом, выдаваемую при помощи файла, содержащего информацию о пролетаемой земной поверхности (более подробно об этом будет сказано ниже); Zgps представляет собой высоту, получаемую при помощи, например, навигационной системы GPS. Приемник навигационной системы GPS 21 (фиг.2) выдает необработанные измерения географической широты L1, географической долготы G1 и высоты полета Z1 (то есть высоты Zgps) данного летательного аппарата, обновляемые постоянно с периодом обновления р1, величина которого составляет от нескольких секунд до нескольких минут. Путем интегрирования векторов скорости и ускорения центральный блок управления инерциальной системы 20 выдает другие измерения географической широты L0, географической долготы G0 и высоты полета Z0 (то есть высоты Zbi) летательного аппарата, достаточно точные, но подверженные дрейфу во времени. Блок 25 осуществляет сопоставление двух этих типов измерений и признает действительными величины LI, G1 и Z1 в том случае, если они когерентны с величинами L0, G0 и Z0. Такая технология подтверждения достоверности измерений является известной. Признанные достоверными измерения L2, G2 и Z2 постоянно обновляются с периодом p1. Однако эти измерения постоянно уточняются при помощи центрального блока управления инерциальной системы с периодом р2, составляющим примерно одну секунду. В блоке 28 осуществляется экстраполяция полученной информации на промежуток времени между последним моментом измерения, выполненного приемником 21, и текущим моментом времени. Такая экстраполяция, в частности, оказывается полезной в том случае, когда имеются проблемы с темпом обновления информации, который может быть слишком медленным. Радиовысотомер 22 выдает высоту летательного аппарата над землей, обозначаемую HRS. Блок 3 (фиг.1) содержит файл информации о земной поверхности, о формировании которого более подробно описано ниже. В функции величин широты L и долготы G осуществляют обращение к соответствующей части этого файла, называемой локальной картой. Эта локальная карта образует трехмерное представление пролетаемой летательным аппаратом области и сохраняется в локальном запоминающем устройстве 40. Исходя из локальной карты и с учетом величин L, G, Z, а также величины HRS, в блоке 4 осуществляются расчеты предупреждения столкновения с землей, в предпочтительном варианте реализации сопровождаемые расчетами траекторий облета земного рельефа. При наличии опасности столкновения с землей выдается соответствующий предупреждающий сигнал из блока 51. Директорный индикатор 53 может подсказать экипажу необходимый маневр облета препятствия. В этом состоит предназначение поста управления (или пилотирования). Локальная карта также может быть использована для формирования синтезированного изображения 60 при помощи устройства визуализации 55. Все, о чем кратко было сказано выше, описано в источниках ЕР-А-0565399 и ЕР-А-0802469, где указано также каким образом сблизить и взаимно проверить различную информацию от располагаемых источников этой информации, в частности, в вертикальной плоскости. Одной из главных основ источника ЕР-А-0565399 является то обстоятельство, что имеется возможность хранить на борту летательного аппарата специальный файл, содержащий информацию о земной поверхности и способный представить практически всю поверхность земного шара в пределах контура и разрешающей способности, которые подходят для решения задач, стоящих перед летательным аппаратом. В этом случае анализ мгновенного и прогнозируемого положения летательного аппарата может сводиться к формированию совокупности тестовых кривых. Эта совокупность может сформировать по меньшей мере два типа предупреждающей сигнализации: сигнал предостережения, указывающий конфигурацию, опасную в среднесрочном плане, сигнал предупреждения, указывающий конфигурацию, требующую незамедлительных действий пилота, поскольку под угрозой оказывается безопасность полета. Для решения этой задачи предусматривают формирование двух поверхностей (кривых в пространстве) защиты данного летательного аппарата от столкновения с пролетаемым рельефом местности. Эти предохранительные поверхности определяются в соответствии с одним и тем же принципом, но с использованием различных параметров, и включают: защитную поверхность краткосрочного плана ССТ, предназначенную для исключения авиационной катастрофы. Как только точка рельефа земной поверхности входит в упомянутую поверхность или в верхнюю огибающую поверхности ССТ, пилот данного летательного аппарата должен срочно вмешаться в управление (предупреждающий сигнал), осуществляя тот или иной маневр облета или уклонения; защитную поверхность среднесрочного плана СМТ, предназначенную для предупреждения пилота о том, что траектория управляемого им летательного аппарата может пересечься с наземным препятствием, если эта траектория будет оставаться неизменной, и что пилот должен рассмотреть возможность выполнения маневра облета или уклонения от препятствия (сигнал предостережения или предварительного предупреждения). Эти защитные поверхности, которые представляют собой важный элемент системы предупреждения столкновения с землей, могут быть сформированы на основе многих статических и динамических параметров данного летательного аппарата, в частности: передаточной функции пилотирования летательного аппарата, то есть его способности к совершению того или иного маневра; запаздывания TRO, связанного с временем реакции пилота летательного аппарата; горизонтальной скорости Vh полета летательного аппарата; скорости набора высоты Vz летательного аппарата;. допустимого коэффициента перегрузки n.g; предусмотренной безопасной высоты пролета над рельефом местности; допустимого крена летательного аппарата. Для продолжения описания примеров реализации предлагаемого изобретения необходимо дать несколько определений. В последующем изложении "мгновенной осью" траектории летательного аппарата называют либо касательную к мгновенной траектории (направление мгновенного вектора скорости летательного аппарата), либо ось пройденной и прогнозируемой траектории (в том случае, когда летательный аппарат выполняет вираж, эта "ось" является криволинейной), либо некоторую ось (в принципе промежуточную), определяемую, например, при помощи взвешенной линейной комбинации двух упомянутых выше осей. В последующем изложении "вертикальной плоскостью" называют поверхность (которая необязательно является плоской), содержащую вертикаль, проходящую через данный летательный аппарат и мгновенную ось траектории полета этого летательного аппарата. Если летательный аппарат выполняет вираж и в качестве мгновенной оси траектории его полета используется ось пройденной и прогнозируемой траектории, то эта "вертикальная плоскость" представляет собой криволинейную поверхность. "Вертикальными" считают маневры летательного аппарата, при осуществлении которых главная их составляющая располагается в вертикальной плоскости. В последующем изложении "горизонтальной плоскостью" называют горизонтальную плоскость, проходящую через базовую точку или точку отсчета данного летательного аппарата (например через его центр тяжести), и считают "горизонтальными" или "боковыми" те маневры летательного аппарата, главная составляющая которых располагается в горизонтальной плоскости. И в этом случае горизонтальная "плоскость" может представлять собой кривую поверхность в пространстве, определяемую в зависимости от траектории данного летательного аппарата. Среди горизонтальных маневров различают те, которые выполняются влево, и те, которые выполняются вправо от прогнозируемой траектории данного летательного аппарата. И наконец, понятия "вертикальный", а также "горизонтальный" или "боковой" будут также использоваться для квалификации, в частности, наземных препятствий и опасностей, которые могут быть встречены в процессе выполнения маневров. Предельная кривая облета (или уклонения) в вертикальной плоскости может быть определена тремя участками: от момента времени Т0 до момента времени Т1 продолжается текущая