Синхронизация к базовой станции и получение кода в системе связи с передачей сигнала в широком спектре
Реферат
Изобретение относится к радиотехнике и может быть использовано в системе связи с передачей сигнала в широком спектре, в частности к действиям поиска сота, выполняемым подвижной станцией, и получить конкретный для сота длинный код, используемый в системе связи в широком спектре. Технический результат - повышение точности синхронизации и повышение скорости передачи. Каждый кадр передачи в системе связи с передачей сигнала в широком спектре, относящийся к передаче кода синхронизации, делится на множество сегментов. Каждый из сегментов включает первичный (пилотный) код и вторичный (комбинированный) код , который включает информацию, идентифицирующую или указывающую как синхронизацию кадра, так и шифровальный код для синхронизации. Эта информация, касающаяся синхронизации кадра и шифровального кода, может быть закодирована в самом комбинированном коде , а также в величинах модуляции последовательностей множества комбинированных кодов в кадре. Альтернативно, эта информация кодируется в последовательности множества комбинированных кодов , передаваемых в каждом кадре, а также в величинах модуляции последовательностей множества комбинированных кодов в кадре. В качестве еще одной альтернативы, информация кодируется в согласовании по времени передачи комбинированного кода в каждом сегменте кадра относительно его связанного первичного кода . 2 с. и 38 з.п.ф-лы, 7 ил.
Перекрестная ссылка к родственной заявке Настоящая заявка на патент относится к заявке на патент США серийный номер 08/884002, озаглавленной "Синхронизация подвижной станции в системе связи с передачей сигнала в широком спектре", зарегистрированной 27 июля 1997 г. (34645-278USPT).
Предшествующее состояние техники Техническая область изобретения Настоящее изобретение относится к системам связи с передачей сигнала в широком спектре и, в частности, к действиям поиска сота, выполняемым подвижной станцией, чтобы запросить синхронизацию по времени с базовой станцией и получить конкретный для сота длинный код, используемый в системе связи в широком спектре. Описание родственной техники Индустрия сотовых телефонов достигла феноменальных успехов в коммерческих операциях во всем мире. Рост в главных столичных областях далеко превзошел ожидания и опережает емкость системы. Если эта тенденция продолжится, эффекты быстрого роста скоро достигнут даже самых малых рынков. Основная проблема, касающаяся постоянного роста, состоит в том, что абонентская база расширяется, в то время как ширина электромагнитного спектра, предоставленного провайдерам сотовой службы для использования при передаче радиочастотной связи, остается ограниченной. Требуются новые решения, чтобы удовлетворить эти возрастающие требования к емкости в ограниченном доступном спектре, а также чтобы поддерживать высокое качество обслуживания и избежать роста цен. В настоящее время доступ к каналу в первую очередь достигается с использованием способов Многостанционного доступа с частотным разделением каналов (FDMA) и Многостанционного доступа с временным разделением каналов (TDMA). В системах многостанционного доступа с частотным разделением каналов физический канал связи содержит одну радиочастотную полосу, в которой концентрируется мощность передачи сигнала. В системах многостанционного доступа с временным разделением каналов физический канал связи содержит временной интервал в периодической последовательности временных интервалов на одной и той же радиочастоте. Хотя в системах связи FDMA и TDMA получаются удовлетворительные характеристики, часто возникает перегрузка канала из-за возрастающего требования абонентов. Соответственно, сейчас предлагаются, рассматриваются и выполняются альтернативные способы доступа к каналу. Передача сигнала в широком спектре содержит технику связи, которая находит коммерческое применение в качестве нового способа доступа к каналу в радиосвязи. Системы с широким спектром применялись со времени второй мировой войны. Ранние применения были в основном ориентированы на военные цели (относящиеся к созданию сильных радиопомех и радару). Однако в настоящее время возрастает интерес к использованию систем широкого спектра в применениях связи, включая цифровую сотовую радиосвязь, наземную подвижную связь и внутреннюю/наружную сети персональной связи. Система передачи сигнала в широком спектре действует совсем не так, как обычные системы связи FDMA и TDMA. В передатчике широкого спектра многостанционного доступа с кодовым разделением каналов прямой последовательности (DS-CDMA), например, поток цифровых символов для данного выделенного или общего канала на основной скорости передачи символов расширяется до скорости передачи элементарных посылок. Эта операция расширения включает применение уникального канального кода расширения (иногда называемого последовательностью сигнатуры) к потоку символов, который увеличивает его скорость (полосу частот), добавляя избыточность. Обычно во время расширения поток цифровых символов умножается на уникальный цифровой код. Промежуточный сигнал, содержащий полученные последовательности данных (элементарных посылок), затем добавляется к другим обработанным подобным образом (т.е. расширенным) промежуточным сигналам, относящимся к другим каналам. Уникальный шифровальный код базовой станции (часто называемый "длинным кодом", поскольку он в большинстве случаев длиннее, чем код расширения) затем применяется к суммированным промежуточным сигналам, чтобы генерировать выходной сигнал для многоканальной передачи в среде связи. Промежуточные сигналы, относящиеся к выделенному/общему каналу, затем выгодно совместно используют одну частоту передачи связи, с множеством сигналов, оказавшихся расположенными поверх друг друга как в частотной области, так и во временном интервале. Однако, поскольку примененные коды расширения являются уникальными для канала, каждый промежуточный сигнал, передаваемый на совместно используемой частоте связи, также является уникальным и путем применения определенной технологии обработки в приемнике может быть отделен от других сигналов. В подвижной станции DS-CDMA с передачей сигнала в широком спектре (приемнике) принятые сигналы восстанавливаются путем применения (т.е. умножения или согласования) соответствующих кодов шифрации и расширения, чтобы сжать сигнал или удалить кодирование из желаемого переданного сигнала и возвратиться к основной скорости передачи символов. Однако там, где код расширения применен к другим передаваемым и принимаемым промежуточным сигналам, получается только шум. Операция сжатия таким образом эффективно содержит процесс корреляции, сравнивая принятый сигнал с соответствующим цифровым кодом, чтобы восстановить из канала желаемую информацию. До того, как произойдет какая-либо радиосвязь или передача информации между базовой станцией и подвижной станцией системы связи с передачей сигнала в широком спектре, подвижная станция должна обнаружить эту базовую станцию и синхронизироваться с опорным сигналом синхронизации этой базовой станции. Этот процесс обычно называется в технике "поиск сота". В системе связи многостанционного доступа с кодовым разделением каналов прямой последовательности с передачей сигнала в широком спектре, например, подвижная станция должна найти границы элементарных посылок прямого канала, границы символов и границы кадров этих опорных тактовых импульсов. Самое распространенное решение, применяемое к этой проблеме синхронизации, состоит в периодической передаче базовой станцией (с периодом повторения Тр) и детектировании и обработке подвижной станцией распознаваемого пилотного кода с длиной элементарной посылки Np, как показано на фиг.1. Пилотный код может также называться в технике кодом расширения для символов, маскируемых длинным кодом. Этот пилотный код посылается с известной модуляцией и без какой-либо шифрации длинным кодом. В одном типе системы связи CDMA каждая базовая станция использует разный, известный пилотный код, взятый из набора доступных пилотных кодов. В системе связи CDMA другого типа все базовые станции используют один и тот же пилотный код, при этом различие между базовыми станциями определяется путем использования отличающегося фазового сдвига пилотного кода для передаваемых сообщений. В приемнике широкого спектра подвижной станции принятые сигналы демодулируются и подаются к фильтру, согласованному с пилотным кодом (кодами). Конечно, понятно, что для обработки пилотного кода могут быть использованы альтернативные схемы детектирования, такие как скользящая корреляция. Выдача пиков согласованного фильтра каждый раз соответствует приему периодически передаваемого пилотного кода. Благодаря эффекту распространения по многим трактам, несколько пиков могут быть детектированы относительно одной передачи пилотного кода. Из обработки этих принятых пиков известным способом может быть найден опорный сигнал синхронизации, относящийся к передающей базовой станции, с неопределенностью, равной периоду повторения Тр. Если период повторения равен длине кадра, этот опорный сигнал синхронизации может быть использован для синхронизации действия связи подвижной станции и базовой станции относительно синхронизации кадра. Поскольку может быть выбрана любая длина Np в элементарных посылках для передаваемого пилотного кода , в практическом смысле длина Np в элементарных посылках ограничена сложностью согласованного фильтра, применяемого в приемнике подвижной станции. В то же время желательно ограничить мгновенную мощность пика передач сигнала пилотного кода/канала, чтобы не создавать высокие мгновенные помехи с другими передаваемыми сигналами/каналами широкого спектра. Чтобы получить достаточную среднюю мощность передач пилотного кода данной определенной длины элементарной посылки Np, может стать необходимым в системе связи CDMA использовать период повторения пилотного кода Тр, который короче длины кадра Tf, как показано на фиг.2. Другой причиной для передачи множества пилотных кодов в пределах длины одного кадра Tf является поддержание междучастотной синхронизации прямого канала в сжатом режиме, известном опытным специалистам. При обработке сжатого режима синхронизация прямого канала на данной несущей частоте осуществляется только во время части кадра, а не во время всего кадра. Тогда возможно, при только одном пилотном коде ср на кадр, что обработка сжатого режима может полностью потерять детектирование пилотного кода на значительном интервале времени. Путем передачи множества пилотных кодов р во время каждого кадра дается много возможностей за каждый кадр для детектирования обработки сжатого режима, и может быть детектирована, по меньшей мере, одна передача пилотного кода. Однако имеется недостаток, касающийся приема и синхронизации, испытываемый при передаче множества пилотных кодов в пределах одной длины кадра Tf. Принятые сигналы также демодулируются и подаются к фильтру (или коррелятору), согласованному с известным пилотным кодом. Выход пиков согласованного фильтра каждый раз соответствует приему периодически передаваемого пилотного кода. Из обработки этих пиков опорный сигнал синхронизации для передающей базовой станции, относящийся к периоду повторения пилотного кода Тр, может быть определен способом, хорошо известным в технике. Однако этот опорный сигнал синхронизации неоднозначен относительно синхронизации кадра и, таким образом, не представляет достаточной информации для синхронизации кадра базовой/подвижной станции с опорным сигналом синхронизации. Под неоднозначностью имеется в виду, что граница кадра (т.е. его синхронизация) не может быть идентифицирована только из пиков детектированного пилотного кода. Процесс для поиска сота может дополнительно включать получение длинного кода, специфического для сота, используемого на прямом канале для шифрования связи прямого выделенного и общего канала. Выделенные каналы содержат как каналы трафика, так и управляющие каналы, и общие каналы также содержат каналы трафика и каналы управления (которые могут включать канал трансляции управления (ВССН)). Код группы длинного кода предпочтительно передается синхронно с пилотными кодами (и дополнительно ортогонально к пилотным кодам) , как показано на фиг.3. Этот код группы длинного кода посылается с известной модуляцией и без какого-либо шифрования длинным кодом. Каждый код группы длинного кода показывает конкретный поднабор общего набора длинных кодов, к которому принадлежит специфический для сота длинный код, используемый для передачи. Например, может быть всего сто двадцать восемь длинных кодов, сгруппированных в четыре поднабора по тридцать два кода каждый. Путем идентификации передаваемого кода группы длинных кодов приемник может сузить поиск для получения его длинного кода в этом примере только к тридцати двум длинным кодам, содержащимся в поднаборе, идентифицированном принятым кодом группы длинных кодов . Информация синхронизации кадра может быть найдена из совместной обработки принятых пилотных кодов и кодов группы длинных кодов . Подвижная станция сначала идентифицирует синхронизацию пилотного кода путем применения -согласованного фильтра к принятому сигналу и идентификации пиков. Из этих пиков может быть найден опорный сигнал синхронизации относительно сегментов. Хотя они неоднозначны относительно синхронизации кадра, определенные расположения сегментов идентифицируют синхронизацию для одновременной передачи кода группы длинных кодов . Затем выполняется корреляция в известных местоположениях сегментов, чтобы получить идентификацию кода группы длинных кодов . Из этой идентификации количество возможных специфических для сота длинных кодов, используемых для передачи, уменьшается. Наконец, выполняется корреляция относительно каждого из уменьшенного количества длинных кодов (т. е. тех длинных кодов, которые содержатся в идентифицированном поднаборе) у каждого из известных интервалов, чтобы определить, который специфический для сота длинный код используется для передачи, и обеспечить эталон фазового сдвига. Когда фазовый сдвиг определен, синхронизация кадра идентифицирована. В связи с передачей множества пилотных кодов в пределах длины одного кадра Tf определению синхронизации кадра альтернативно помогает способ, описанный в заявке на патент США серийный номер 08/884002, озаглавленной "Синхронизация подвижной станции в системе связи с передачей сигнала в широком спектре", зарегистрированной 27 июня 1997 г., путем того, что каждый из сегментов включает не только пилотный код , как на фиг.2, описанной выше, но также код синхронизации кадра , передаваемый с известной модуляцией, но без шифрации длинным кодом, как показано на фиг.4. Пилотный код один и тот же в каждом сегменте и в повторяющихся кадрах. Коды синхронизации кадров, однако, являются уникальными для каждого сегмента в кадре и повторяются в каждом кадре. Чтобы получить информацию синхронизации кадров, подвижная станция сначала идентифицирует синхронизацию пилотного кода путем применения -согласованного фильтра к принятому сигналу и идентификации пиков. Из этих пиков может быть определен опорный сигнал синхронизации по отношению к сегментам. Хотя этот опорный сигнал синхронизации неоднозначен к синхронизации кадра, знание местоположения сегмента косвенно указывает на местоположение кода синхронизации кадров в каждом расположенном сегменте. Подвижная станция затем дополнительно коррелирует набор известных кодов синхронизации кадров к принятому сигналу в местоположениях кодов синхронизации кадров. Считая, что положение каждого кода синхронизации кадров относительно границы кадра известно, когда совпадение корреляции найдено в этом положении, граница кадра относительно него (и отсюда синхронизация кадра) тогда также известна. Хотя предшествующие способы для получения информации синхронизации обеспечивают удовлетворительные результаты, их эффективность оставляет желать много лучшего. Например, обработка кода группы длинных кодов не обеспечивает непосредственно индикацию синхронизации кадра, требуя таким образом выполнения дополнительных корреляций в каждом идентифицированном местоположении сегмента, чтобы определить синхронизацию кадра. Наоборот, хотя обработка кода синхронизации кадров обеспечивает индикацию синхронизации кадра, завершение процесса поиска сота еще дополнительно требует выполнения дополнительных корреляций, чтобы определить специфический для сота длинный код, используемый для передачи. В каждом случае выполняемые дополнительные корреляции занимают значительные ресурсы обработки, сложны в исполнении и замедляют процесс поиска сота. Поэтому есть необходимость в более эффективном способе получения как индикации синхронизации кадра, так и индикации длинного кода во время процесса поиска сота. Краткое описание изобретения Каждый кадр передачи базовой станции в системе связи с передачей сигнала в широком спектре, относящийся к передаче кода синхронизации, делится на множество сегментов. Каждый из сегментов включает код первичной синхронизации и код вторичной синхронизации (далее называемый комбинированным кодом), включающий как синхронизацию кадров, так и информацию шифрования или индикации длинного кода (идк, lсi). В первом воплощении этого изобретения информация синхронизации кадра и кода шифрации кодируется в самом комбинированном коде , а также в модулированных значениях последовательностей множественных комбинированных кодов в кадре. Во втором воплощении настоящего изобретения информация синхронизации кадра и кода шифрации закодирована в последовательности множественных комбинированных кодов , передаваемых в каждом кадре, а также в модулированных значениях последовательностей множественных комбинированных кодов в кадре. Дополнительное кодирование самого комбинированного кода (как в первом воплощении) может быть использовано, чтобы обеспечить дополнительную информацию синхронизации кадра и кода шифрации. Наконец, в третьем воплощении настоящего изобретения информация синхронизации кадров и кода шифрации закодирована в синхронизации передачи комбинированного кода в каждом сегменте кадра относительно его связанного пилотного кода . Дополнительное кодирование самого комбинированного кода и последовательности модуляции (как в первом воплощении) может быть использовано, чтобы обеспечить дополнительную информацию синхронизации кадра и кода шифрации. Краткое описание чертежей Более полное понимание способа и аппаратуры настоящего изобретения может быть получено путем ссылки к последующему подробному описанию, взятому совместно с сопровождающими чертежами, на которых: Фиг. 1, описанная предварительно, есть диаграмма, иллюстрирующая формат передачи сигнала пилотного канала предшествующей техники в системе связи многостанционного доступа с кодовым разделением каналов прямой последовательности (DS-CDMA); Фиг.2, описанная предварительно, есть диаграмма, иллюстрирующая альтернативный формат передачи сигнала пилотного канала предшествующей техники в системе связи многостанционного доступа с кодовым разделением каналов прямой последовательности; Фиг.3, описанная предварительно, есть диаграмма, иллюстрирующая альтернативный формат передачи сигнала пилотного канала и группы длинного кода канала предшествующей техники в системе связи многостанционного доступа с кодовым разделением каналов прямой последовательности; Фиг.4, описанная предварительно, есть диаграмма, иллюстрирующая еще один альтернативный формат передачи пилотного кода и кода синхронизации кадров предшествующей техники в системе связи многостанционного доступа с кодовым разделением каналов прямой последовательности; Фиг. 5 есть диаграмма, иллюстрирующая формат передачи комбинированного пилотного кода и комбинированного кода настоящего изобретения в системе связи многостанционного доступа с кодовым разделением каналов прямой последовательности; Фиг. 6А-6F иллюстрируют множество воплощений настоящего изобретения для включения информации как синхронизации кадра, так и длинного кода в комбинированный код и Фиг.7 есть блок-схема системы связи с передачей сигнала в широком спектре многостанционного доступа с кодовым разделением каналов прямой последовательности (DS-CDMA). Подробное описание чертежей Дается ссылка к фиг. 5, на которой показана диаграмма, иллюстрирующая формат передачи сигнала по настоящему изобретению в системе связи с передачей сигнала в широком спектре (такой как система связи многостанционного доступа с кодовым разделением каналов прямой последовательности). Каждый кадр, имеющий длительность Tf передачи сигнала, делится на множество сегментов s0, s1,..., sM-1. Длительность каждого сегмента s равна периоду повторения пилотного кода Тр. Каждый из сегментов включает пилотный код (первичный код синхронизации) и комбинированный код , указывающий синхронизацию кадров и длинный код (lci) (далее называемый комбинированным кодом или вторичным кодом синхронизации). Пилотный код один и тот же в каждом сегменте и по всем повторяющимся кадрам, и он передается с известной модуляцией и без шифрования длинным кодом. Пилотный код и комбинированный код предпочтительно передаются одновременно и перекрываются. Комбинированные коды могут, например, быть одинаковыми в каждом сегменте или различными в каждом сегменте . Множество комбинированных кодов передаются по одному на каждый соответствующий сегмент s0, s1,..., sM-1 и повторяются в каждом кадре. Комбинированный код подобным образом передается без какой-либо шифрации длинным кодом. Более того, множество комбинированных кодов предпочтительно ортогональны пилотному коду. Пилотный код имеет предопределенное смещение по времени t1 относительно границы 30 его соответствующего сегмента. Каждый комбинированный код имеет смещение по времени t2 относительно границы сегмента 30. Смещение по времени t1 предпочтительно устанавливается равным смещению по времени 2 (т.е. одновременная передача пилотного кода и комбинированного кода ), чтобы получить выгоду упрощения обработки, касающейся детектирования фазы, как будет описано далее. Комбинированный код включает информацию, идентифицирующую или указывающую как синхронизацию кадра, так и длинный код. Это выгодно исключает необходимость передавать отдельно код группы длинных кодов на прямом канале (смотри фиг. 3). Более того, выполняется более эффективная обработка комбинированного кода, чтобы детектировать как синхронизацию кадра, так и длинный код, используемый в шифровании передачи на прямом канале. Имеется несколько возможных технологий для включения информации как синхронизации кадра, так и длинного кода в комбинированный код . Одна технология, содержащая первое воплощение изобретения (включая несколько различных исполнений, как обсуждается ниже), в общем, кодирует информацию синхронизации кадра и длинного кода в самом комбинированном коде , а также в значениях модуляции последовательностей комбинированных кодов. Другая технология, содержащая второе воплощение настоящего изобретения (включая специфическое исполнение, обсуждаемое ниже), в общем, кодирует информацию синхронизации кадра и длинного кода в последовательности множества комбинированных кодов , передаваемых в каждом кадре, а также в модулированных значениях последовательностей множества комбинированных кодов. Дополнительное кодирование самого комбинированного кода (как в технологии первого воплощения) может быть использовано, чтобы обеспечить дополнительную информацию синхронизации кадра и/или длинного кода. Другая технология, содержащая третье воплощение настоящего изобретения (включая несколько различных исполнений, обсуждаемых ниже), в общем, кодирует информацию синхронизации кадра и/или длинного кода в синхронизации передачи комбинированного кода относительно пилотного кода . Дополнительное кодирование самого комбинированного кода и последовательности модуляции (как в технологии первого воплощения) может быть использовано, чтобы обеспечить дополнительную информацию синхронизации кадра и/или длинного кода. Обращаясь теперь конкретно к первому воплощению настоящего изобретения, имеется Ns/lci возможных действительных комбинированных кодов . Эти Ns/lci возможных комбинированных кодов могут обеспечить log2(Ns/lci) бит информации для использования в передаче информации длинного кода, содержащей либо код группы длинных кодов (который идентифицирует поднабор возможных длинных кодов, используемых в шифровании передачи прямого канала), либо сам действующий длинный код. Это означает, что путем поиска приемником одного конкретного из действительно передаваемых s/lci комбинированных кодов будут получены log2(Ns/lci), бит информации, показывающие длинный код. Например, при двухстах пятидесяти шести длинных кодах, сгруппированных в четыре группы по шестьдесят четыре кода в каждой, Ns/lci=4, и таким образом имеется четыре возможных комбинированных кода . Когда приемник определяет, что комбинированный код , который передается, является, например, номером три, тогда он также узнает, что конкретный обсуждаемый длинный код выбирается из группы номер три. С помощью этого процесса, в этом примере, принимается log2(4)= 2 бита полезной информации. Комбинированные коды в данном кадре дополнительно модулируются с помощью одной из Nmod возможных действительных (например, двоичной или квадратурной) последовательностей модуляции. Каждая действительная последовательность модуляции обязательно предоставляет информацию синхронизации кадра. Nmod действительных последовательностей модуляции дополнительно обеспечивают log2(Nmod) бит информации для использования в передаче (дополнительной) информации длинного кода (если Nmod>1). В этом воплощении предпочтительно, чтобы последовательности модуляции имели хорошие автокорреляционные свойства. Более того, если Nmod>1, желательны также хорошие свойства взаимной корреляции, а также желательно, чтобы никакой циклический сдвиг любой действительной последовательности модуляции не мог дать другую действительную последовательность модуляции (или какой-либо ее циклический сдвиг). В соответствии с одним способом настоящего изобретения для восстановления передаваемой информации путем применения -согласованного фильтра подвижная станция (приемник) определяет место каждого из сегментов и отсюда местоположение комбинированных кодов . Эта корреляция дополнительно обеспечивает опорное значение фазы канала, полезное при когерентном детектировании значений модуляции комбинированных кодов в сегментах. Приемник может затем (например, параллельно) сопоставить принятые комбинированные коды с каждым из Ns/lci возможных комбинированных кодов. Это может быть выполнено на одном кадре, таким образом собирая Ns/lci последовательностей из М значений корреляции. Эти Ns/lci последовательностей из М значений корреляции (содержащие Ns/lci рядов и М столбцов первой матрицы - Z1) затем коррелируются (или согласовываются) с М возможными сдвигами всех Nmod возможных последовательностей модуляции (содержащими МNmod столбцов и М рядов второй матрицы M1). Эта корреляция может быть математически представлена умножением первой матрицы (Z1) на вторую матрицу (M1). В этом процессе должна быть принята во внимание компенсация фазы канала. Оценка фазы канала получается из корреляций пилотного кода (как упоминалось выше). Корреляция (M1Z1), которая дает наилучшее согласование (т.е. наибольшую величину), указывает комбинированный код, который был использован (таким образом обеспечивая информацию длинного кода), и дополнительно указывает последовательность модуляции (таким образом обеспечивая больше информации длинного кода (если Nmod>1)) и ее сдвиг, который был использован (таким образом обеспечивая информацию синхронизации кадра). В первом исполнении (относящемся к первому воплощению настоящего изобретения), показанном на фигуре 6А, биты информации каждого комбинированного кода в кадре являются одними и теми же в каждом сегменте, и они передают информацию длинного кода, содержащую либо код группы длинного кода (который идентифицирует поднабор возможных длинных кодов, используемых в шифровании передачи прямого канала), или сам действительный длинный код. Затем предопределенная последовательность модуляции применяется к множеству включенных комбинированных кодов в кадре, чтобы определить информацию синхронизации кадров. Модуляция, выбранная для определения информации синхронизации кадра, может быть либо когерентной, либо дифференциальной. При когерентной модуляции опорное значение фазы извлекается подвижной станцией (приемником) из связанного пилотного кода , поскольку оно обычно модулируется известным значением символа (например, "+1"). В этом случае расстояние между пилотным кодом и его связанным комбинированным кодом из того же сегмента должно сохраняться насколько возможно меньшим (предпочтительно нулевым, обеспечивая одновременную передачу), чтобы дать возможность подвижной станции выполнять точные определения фазы. Это происходит потому, что очень большая частотная погрешность в приемнике может привести к большому фазовому сдвигу в очень короткий интервал времени. При дифференциальной модуляции, с другой стороны, информация синхронизации кадров содержится в изменениях фазы между последовательными комбинированными кодами в последовательных сегментах. В этом случае должна быть достигнута допустимо точная синхронизация частоты до выполнения процесса синхронизации по времени, чтобы детектировать последовательность модуляции подвижной станцией. Более полное понимание этого первого исполнения может быть получено при ссылке к некоторым примерам. В первом примере, обеспечивающем двухпозиционную фазовую манипуляцию (BPSK), сам комбинированный код обеспечивает информацию длинного кода. Эта информация может содержать либо сам длинный код, либо код группы длинных кодов, указывающий поднабор длинных кодов, из которого выбирался длинный код, специфический для сота. Последовательность двоичных величин модуляции (например, +1, -1, -1, +1,...,+1, -1, -1) для комбинированных кодов в данном кадре обеспечивает информацию синхронизации кадра. Таким образом, в этом примере первый комбинированный код для первого сегмента в кадре модулируется +1, второй комбинированный код для второго сегмента в кадре модулируется -1 и т.д. Во втором примере, обеспечивающем квадратурно-фазовую манипуляцию (QPSK), сам комбинированный код опять же обеспечивает информацию длинного кода. Эта информация может содержать либо сам длинный код, либо код группы длинного кода, указывающий на поднабор длинных кодов, из которого выбирался специфический для сота длинный код. Первая четверть М-1 комбинированных кодов в данном кадре модулируется фазовым значением "0" (т.е. умножаются на "+1"), следующая четверть кодов модулируется значением фазы "/2" (т.е. умножается на "+j"), третья четверть кодов модулируется значением фазы "" (т.е. умножается на "-1") и последняя четверть кодов модулируется значением фазы "3/2" (т.е. умножается на "-j"). Во втором исполнении (относящемся к первому воплощению настоящего изобретения), показанном на фиг.6В, комбинированные коды в кадре одни и те же в каждом сегменте. Предопределенная последовательность модуляции затем применяется к множеству комбинированных кодов в кадре, причем величины последовательности модуляции (например, +1, -1, -1, +1,...,+1, -1, -1) определяют как информацию длинного кода (содержащую либо код группы кодов, который идентифицирует поднабор возможных длинных кодов, используемых в шифровании передачи прямого канала, либо сам действительный длинный код), так и информацию синхронизации кадра (уникально идентифицирующую связанный сегмент). Здесь также, модуляция, выбранная для определения информации синхронизации кадра и информации длинного кода, может быть либо когерентной, либо дифференциальной. Более полное понимание этого второго исполнения может быть получено с помощью ссылки к некоторым примерам. В первом примере первая часть последовательности модуляции для комбинированных кодов явно определяет информацию длинного кода, а вторая часть последовательности модуляции явно определяет информацию синхронизации кадра. Следует тщательно выбирать шаблоны для первой и второй частей последовательности модуляции, чтобы гарантировать возможность однозначного детектирования. Таким образом, определенные действительные шаблоны для информации синхронизации кадров, содержащиеся во второй части последовательности модуляции, должны быть исключены из действительных шаблонов для информации длинного кода, содержащихся в первой части последовательности модуляции (и/или наоборот, в соответствующем случае). Во втором примере последовательность модуляции для комбинированных кодов 10 явно определяет информацию длинного кода и неявно определяет синх