Способ автоматического регулирования напряжения в электрофильтре

Реферат

 

Изобретение относится к области электрической очистки газов и может быть использовано в энергетике, черной и цветной металлургии и других отраслях промышленности для регулирования напряжения на электродах электрофильтра. Изобретение обеспечивает технический результат - максимальную скорость дрейфа частиц к осадительным электродам электрофильтра и, следовательно, наибольшую степень очистки газа. Это достигается тем, что в способе автоматического регулирования напряжения в электрофильтре путем изменения напряжения на электродах последнее поддерживают на уровне, соответствующем максимальной величине произведения амплитудного напряжения на среднее напряжение. 3 ил.

Изобретение относится к области электрической очистки газов и может быть использовано в энергетике, черной и цветной металлургии и других отраслях промышленности для регулирования напряжения на электродах электрофильтра.

Известен способ регулирования напряжения в электрофильтре, согласно которому рабочее напряжение с определенной скоростью повышают до возникновения пробоя, фиксируют напряжение пробоя и после вновь повышают напряжение до величины, меньшей напряжения пробоя (см. Европейский патент 0050883, кл. В 03 С 3/68, 1981 г.).

Данный способ не позволяет достигнуть в электрофильтре максимального рабочего напряжения, определяющего степень очистки газа.

Наиболее близким к предлагаемому является известное техническое решение, в котором автоматическое регулирование напряжения в электрофильтре осуществляется по максимуму среднего рабочего напряжения на электродах электрофильтра (см. Авторское свидетельство СССР 355606, кл. G 05 F 1/22, 1972 г. ).

Недостатком этого технического решения является то, что оно не обеспечивает максимально возможное значение степени очистки газа в электрофильтре.

Задача предлагаемого технического решения - разработка способа автоматического регулирования напряжения в электрофильтре, обеспечивающего максимальную скорость дрейфа заряженных частиц к осадительным электродам, а следовательно, и наибольшую степень очистки газа.

Скорость дрейфа частиц определяется произведением напряженности электрического поля зарядки частиц (или амплитуды рабочего напряжения) и напряженности электрического поля осаждения частиц (или среднего напряжения) в электрофильтре.

Отсюда поставленная задача решается предлагаемым способом автоматического регулирования напряжения в электрофильтре путем изменения напряжения на электродах, отличительные особенности которого состоят в том, что напряжение на электродах поддерживают на уровне, соответствующем максимальной величине произведения амплитудного напряжения на среднее напряжение.

На фиг.1 приведены зависимости амплитудного напряжения Uа, среднего напряжения Uср. в электрофильтре и их произведения UаUср. от первичного напряжения U1 высоковольтного трансформатора агрегата питания электрофильтра; на фиг. 2 дана блок-схема для реализации предложенного способа автоматического регулирования напряжения в электрофильтре.

Зависимости на фиг.1 имеют качественный характер, т.к. конкретные величины напряжений определяются конструкцией электрофильтра и свойствами очищаемого газа.

Из графиков фиг.1 видно, что с ростом первичного напряжения U1 высоковольтного трансформатора линейно возрастает амплитудное напряжение Uа и увеличивается среднее напряжение Uср. в электрофильтре до максимальной величины в точке 1, а затем снижается за счет падения напряжения с ростом числа электрических искровых разрядов в электрофильтре. При этом произведение и UаUср. дocтигает максимального значения при напряжении U1 в точке 2, которое значительно больше напряжения U1 в точке 1.

Блок-схема на фиг.2 включает электрофильтр 1, на который подается напряжение от агрегата питания, содержащего следующие основные узлы: выпрямитель 2, высоковольтный трансформатор 3 и регулятор 4.

Способ осуществляется следующим образом.

С делителя напряжения, расположенного на выходе выпрямителя 2, подаются через короткие интервалы времени сигналы напряжения в регулятор 4. Эти сигналы пропорциональны амплитудному напряжению Uа на электрофильтре 1. В регуляторе 4 такие сигналы интегрируются за определенный интервал времени и они становятся пропорциональными среднему напряжению Uср. в электрофильтре 1 за этот интервал времени. Регулятор 4 автоматически осуществляет поддержание напряжения на электрофильтре 1 на максимальном уровне произведения UаUср..

Применение предложенного способа автоматического регулирования напряжения в электрофильтре позволяет достигнуть максимальной скорости дрейфа заряженных частиц к осадительным электродам. Это обеспечивает наибольшую степень очистки газа в электрофильтре.

Способ осуществляется следующим образом. На фиг.3 представлена блок-схема регулятора 4. С делителя напряжения, расположенного на выходе выпрямителя 2 (фиг. 2), через короткие интервалы времени (например, через 10 с путем уставки в блоке 5) подаются сигналы напряжения в блок 6 для измерения амплитуды выпрямленного напряжения Uа и в блок 7 для измерения средней величины выпрямленного напряжения Uср. В блоке 8 осуществляется перемножение амплитудного и среднего значения выпрямленного напряжения. Блок 9 является детектором экстремума произведения этих напряжений. Сигнал с блока 9 поступает в исполнительный блок 10 регулятора, который осуществляет регулирование напряжения на высоковольтном трансформаторе 3 по максимальной величине произведения UаUср.

Из литературы ( Алиев Г.М.А., Гоник А.Е. Электрооборудование и режимы питания электрофильтров. - М.: Энергия, 1971, 264 с.) известна блок-схема агрегата типа АУФ-250, в котором используется экстремальный принцип регулирования напряжения в электрофильтре, т.е. по максимальной величине среднего значения выпрямленного напряжения.

Формула изобретения

Способ автоматического регулирования напряжения в электрофильтре путем изменения выпрямленного напряжения на электродах, отличающийся тем, что выпрямленное напряжение на электродах поддерживают на уровне соответствующем максимальной величине произведения амплитудного значения на среднее напряжение.

РИСУНКИ

Рисунок 1, Рисунок 2, Рисунок 3