N-фениламидные и n-пиридиламидные производные, способ их получения и содержащие их фармацевтические композиции

Реферат

 

Изобретение относится к новым N-фениламидным и N-пиридиламидным производным формулы I в которой Х обозначает О или S; R1 и R2, которые могут быть одинаковыми или различными, обозначают водород, (С16)алкил или (С38)циклоалкил или R1 и R2 совместно с атомом углерода, к которому они присоединены, образуют (С38)циклоалкил; R3 обозначает (С612)арил, необязательно замещенный одним или несколькими радикалами Y, которые могут быть одинаковыми или различными; Y обозначает галоген; R4 и R5 обозначают водород; Ar обозначает одну из следующих групп В или С: Т обозначает водород или (С16)алкил; T3 и T4, которые могут быть одинаковыми или различными, обозначают (С16)алкил, (С16)алкокси, (С16)алкилтиогруппу; R6 и R7 каждый обозначает водород или R6 и R7 совместно обозначают связь; Z обозначает либо (I) двухвалентную группу -chr9-, у которой R9 обозначает водородный атом или (С19)алкил, либо (II) двухвалентную группу -СНR10-СНR11-, в которой R10 и R11 совместно образуют такую связь, что Z обозначает группу -СН=СН-, или R10 и R11, которые могут быть одинаковыми или различными, имеют значения, указанные выше для R9, либо (III) двухвалентную группу -chr12-chr13-CH2-, в которой R12 и R13 совместно образуют такую связь, что Z обозначает -СН=СН-СН2-, или R12 и R13, которые могут быть одинаковыми или различными, имеют значения, указанные выше для R9, равно как и к их аддитивным солям с фармацевтически приемлемой кислотой или основаниям, а также к способу их получения, фармацевтической композиции и лекарственному средству, проявляющим гиполипедимическое и антиатеросклеротическое действие, на их основе. Эти соединения являются ингибиторами холестерил-ацилтрансферазы (АСАТ) и могут быть использованы в медицине. Технический результат - получение новых N-фениламидных и N-пиридиламидных производных, обладающих ценным биологически активном действием. 4 с. и 11 з.п. ф-лы., 9 табл.

Изобретение относится к новым N-фениламидным и N-пиридиламидным производным, к способам получения этих соединений, к содержащим их фармацевтическим композициям и к их применению в качестве лекарственных средств, в частности при лечении гиперлипемии и атеросклероза.

Известно, что липидные отложения, прежде всего отложения холестерина на стенках сосудов, ответственны за образование атеросклеротических бляшек, которые вызывают различные сердечно-сосудистые заболевания. Если говорить более конкретно, то атеросклеротическая бляшка представляет собой форму атеросклероза, характеризующуюся чрезмерным накоплением липидов, в частности сложных эфиров холестерина, в стенках сосудов. Недавно было установлено, что фермент ацил-СоА-холестерил-ацилтрансфераза (АСАТ), ответственен за этерификацию холестерина. Кроме того, установлена корреляция между повышением активности этого фермента и накоплением сложных эфиров холестерина в стенке сосуда. Известно также, что холестерин, поступающий с пищей в организм, всасывается в свободной форме и затем этерифицируется интестинальной АСАТ для поступления в кровоток в форме липидов очень низкой плотности (ЛОНП) и/или в виде хиломикрон.

Несмотря на то, что были идентифицированы некоторые ингибиторы АСАТ (см. , например, ЕР 295637, ЕР 415413 и ЕР 497201), разработка новых ингибиторов АСАТ с улучшенными терапевтическими свойствами продолжается.

Были предприняты попытки создания ингибирующих АСАТ продуктов, способных предотвращать всасывание в кишечнике холестерина из пищи и из желчи и воздействовать на отложения эфиров холестерина в стенках сосудов.

Этот поиск ингибиторов АСАТ привел к созданию нового семейства N-фениламидных и N-пиридиламидных производных и к обнаружению того факта, что такие продукты по отношению к сосудистой АСАТ проявляют чрезвычайно сильную ингибирующую активность, связанную с интенсивным антигиперлипимическим эффектом у животных различных видов.

Эти свойства соединений по изобретению обусловливают, в частности, возможность их использования прежде всего при лечении гиперлипемии и атеросклероза.

Соединения по изобретению отвечают более конкретно формуле в которой Х обозначает О, S или СН2, R1 и R2, которые могут быть одинаковыми или различными, обозначают водород, (С16)алкил или (С38)циклоалкил или R1 и R2 совместно с атомом углерода, к которому они присоединены, образуют (С38)циклоалкил, R3 обозначает (С612)арил, необязательно замещенный одним или несколькими радикалами Y, которые могут быть одинаковыми или различными, или 5-7-членный гетероарил, содержащий 1-3 кольцевых гетероатома, выбранных из О, S и N, который необязательно замещен одним или несколькими радикалами Y, которые могут быть одинаковыми или различными, Y обозначает галоген, (С16)алкил, необязательно замещенный одним или несколькими атомами галогена, (С16)алкоксигруппу, необязательно замещенную одним или несколькими атомами галогена, (С16)алкилтиогруппу, необязательно замещенную одним или несколькими атомами галогена, (С17)ациламиногруппу, (С13)ацилокси, гидроксил, нитро-, циано-, амино-, (С16)алкиламино-, ди(С16)алкиламино-, пирролидоно-, пиперидино-, морфолино-, (С14)алкилсульфониламиногруппу, (С25)алкоксикарбонил, карбоксил, (С26)алкилкарбонил, карбамоил, (С25)алкилкарбамоил, ди(С25)алкилкарбамоил или (С16)алкилсульфонил, R4 и R5, которые могут быть одинаковыми или различными, обозначают радикал Y или водород, Аr обозначает одну из следующих групп А, В или С: Т1 и Т2, которые могут быть одинаковыми или различными, обозначают галоген, (С16)алкокси, (С16)алкилтиогруппу или (С16)алкил, Т обозначает водород или (С16)алкил, T3 и Т4, которые могут быть одинаковыми или различными, обозначают (С16)алкил, (С16)алкокси, (С16)алкилтио-, (С612)арилтиогруппу, (С16)алкоксикарбонил, (С16)алкилкарбонил, (С612)арилкарбонил или -(CH2)p-OR, в которой р обозначает 1, 2, 3 или 4, а R обозначает (С23)алкил, R6 и R7 каждый обозначают водород или R6 и R7 совместно обозначают связь, Z обозначает либо (I) двухвалентную группу -chr9-, в которой R9 обозначает водород или (С16)алкил, либо (II) двухвалентную группу -chr10-chr11-, в которой R10 и R11 совместно образуют такую связь, что Z обозначает группу -СН=СН-, или R10 и R11, которые могут быть одинаковыми или различными, имеют значения, указанные выше для R9, либо (III) двухвалентную группу -chr12-chr13-CH2-, в которой R12 и R13 совместно образуют такую связь, что Z обозначает -СН=СН-СН2-, или R12 и R13, которые могут быть одинаковыми или различными, имеют значения, указанные выше для R9, равно как и их аддитивные соли с фармацевтически приемлемой кислотой или основанием.

Аддитивные соли этих соединений с фармацевтически приемлемыми кислотами и основаниями также составляют часть изобретения. Примерами этих солей являются соли, которые образуются с соляной кислотой, п-толуолсульфоновой кислотой, фумаровой кислотой, лимонной кислотой, янтарной кислотой, салициловой кислотой, щавелевой кислотой, бромистоводородной кислотой, фосфорной кислотой, метансульфоновой кислотой, винной кислотой и миндальной кислотой.

В некоторых случаях соединения по изобретению характеризуются наличием одного или нескольких хиральных центров. Следует отметить, что каждый стереоизомер подпадает под объем изобретения.

16)алкил представляет собой линейный или разветвленный насыщенный углеводородный радикал с 1-6 атомами углерода. Следовательно, (С16)алкоксигруппа представляет собой группу алкил-O-, а (С16)алкилтиогруппа представляет собой группу алкил-S-, алкил которой имеет значения, указанные выше.

Далее, (С38)циклоалкил обозначает насыщенный моно- или бициклический углеводородный радикал, включающий 3-8 атомов углерода. Примерами являются циклопропил, циклогексил, циклопентил и циклогептил.

Кроме того, (С612)арил обозначает моно- или полициклическую ароматическую группу, содержащую 6-12 атомов углерода, такую как фенил, нафтил и антрил. Так, например, (С612)арилтиогруппа представляет собой радикал (С612)арил-S-.

В качестве примеров 5-7-членного гетероцикла, включающего 1-3 кольцевых гетероатома, выбранных из О, S и N, можно назвать фуран, тиофен, пиррол, оксазол, тиазол, имидазол, пиразол, изоксазол, изотиазол, пиридин, пиридазин, пиримидин и пиразин.

Атомами галогена являются атомы хлора, брома, фтора и иода.

Термином "ацил" обозначают алкилкарбонильный радикал. Так, например, (С17)ациламиногруппа представляет собой (С17)алкилкарбониламиногруппу, а (С13)ацилокси представляет собой (С13)алкилкарбонилокси.

Среди этих соединений имеется 6 подгрупп предпочтительных соединений.

Первую подгруппу составляют соединения формулы I, в которой Y обозначает атом галогена, (С16)алкил, (С16)алкокси или трифторметил.

Вторая подгруппа включает соединения формулы I, в которой R1 и R2, которые могут быть одинаковыми или различными, обозначают водород, или R1 и R2 совместно с углеродным атомом, к которому они присоединены, образуют (С38)циклоалкил, R3 обозначает (С612)арил, необязательно замещенный одним или несколькими радикалами Y, которые могут быть одинаковыми или различными, Y обозначает галоген, R4 и R5 каждый обозначает водород, Аr обозначает одну из следующих групп А, В или С: T1 и Т2, которые могут быть одинаковыми или различными, обозначают (С16)алкил, Т обозначает водород или (С16)алкил, Т3 и Т4, которые могут быть одинаковыми или различными, обозначают (С16)алкил, (С16)алкокси или (С16)алкилтиогруппу, R6 и R7 обозначают водород или R6 и R7 совместно обозначают связь, Z обозначает либо (I) двухвалентную группу -chr9-, в которой R9 обозначает водород или (С16)алкил, либо (II) двухвалентную группу -chr10-chr11-, в которой R10 и R11 совместно образуют такую связь, что Z обозначает группу -СН=СН-, или R10 и R11 обозначают водород.

Третью подгруппу составляют соединения формулы I, в которой Z обозначает -chr12-chr13-CH2-, а значения R12 и R13 указаны выше.

Среди соединений первой, второй и третьей подгрупп, которые представлены выше, еще более предпочтительны те, в которых R1 и R2 обозначают водород.

Четвертую подгруппу составляют соединения формулы I, у которых Х обозначает О или S, a R1 и R2 совместно с атомом углерода, к которому они присоединены, образуют (С38)циклоалкил.

Пятая подгруппа предпочтительных соединений включает соединения формулы I, в которой Х обозначает О или S, а Z обозначает группу -СН=СН- или -СН= СНСН2.

Обычно в предпочтительном варианте Аr обозначает 2,4-диметилтио-6-метил-3-пиридил, 2-метокси-4-гексилтио-3-пиридил или 2,6-диизопропилфенил.

Шестую подгруппу составляют соединения формулы I, в которой Х обозначает СН2.

Среди этих соединений еще более предпочтительными являются те, у которых Аr обозначает группу В или С. При этом особенно предпочтительными значениями для Аr являются 2,4-диметилтио-6-метил-3-пиридил и 2-метокси-4-гексилтио-3-пиридил.

В соответствии с предпочтительным вариантом выполнения изобретения радикал R3 предпочтительно представляет собой фенил, который является необязательно замещенным, пиридил или тиенил, каждый из которых является необязательно замещенным, такой как, например, 2-пиридил или 2-тиенил, который необязательно замещен в 5-м положении.

Соединения по изобретению могут быть получены реакцией сочетания кислоты формулы II которой R1, R2, R3, R4, R5, R6, R7 и Z имеют значения, указанные в п.1 формулы изобретения, с ароматическим амином формулы III Ar-NH2 (III), в которой Аr имеет значения, указанные выше.

Этот способ, равно как и предпочтительные варианты осуществления этого способа, которые описаны ниже, составляют объект изобретения.

Реакцию сочетания кислоты формулы II с амином формулы III можно проводить осуществлением простого взаимодействия амина формулы III с активированным производным кислоты формулы II, таким как хлорангидрид, эфир или смешанный ангидрид кислоты.

Кроме того, специалистам в данной области техники известно, что можно проводить аминирование следующих активированных производных кислоты: Po-CO-SH, Po-CO-SR, Рo-COSe-Me, Рo-СО-В(OR)2, (Po-COO)4Si, Ро-СО-С(hal)3 или Рo-СО-N3, в которых Pо обозначает hal обозначает атом галогена, а R обозначает (С16)алкил.

Способы активирования органических кислот в данной области техники известны.

Более того, реакцию сочетания кислоты формулы II с амином III можно проводить с применением любого метода, который применяют в жидкофазном синтезе пептидов. Эти методы описаны, например, в "Methods of Peptide Synthesis", T. Wieland и Н. Determann, Angew. Chem. Interm., издание на англ. яз., 2, 358 (1963).

Так, например, хлорангидриды кислоты формулы II могут быть получены при воздействии SOCl2, оксалилхлорида, РСl3 или PCl5.

Хлорангидрид кислоты можно также получать путем воздействия трифенилфосфина в тетрахлориде углерода на кислоту формулы II.

Для получения бромангидрида кислоты могут быть использованы соответствующие бромированные реагенты, такие как оксалилбромид, РВr3 и РВr5.

В качестве примера процесса получения смешанного ангидрида можно упомянуть воздействие бис(2-оксо-3-оксазолидинил)фосфиновой кислоты на кислоту формулы II. В предпочтительном варианте эту реакцию, как и большинство реакций активирования, проводят в присутствии основания. Таким основанием может служить либо пиридин, либо этилендиамин, либо 4-диметиламинопиридин.

Таким образом, в соответствии с предпочтительным вариантом выполнения изобретения соединения формулы I получают - осуществлением следующих стадий (I) и (II): (I) кислоту формулы II обрабатывают оксалилхлоридом в присутствии диметилформамида, а затем (II) соединение, полученное на стадии (I), вводят во взаимодействие с амином формулы III, или в другом варианте - осуществлением следующих стадий (I) и (II): (I) кислоту формулы II обрабатывают бис(2-оксо-3-оксазолидинил)фосфиновой кислотой в присутствии основания, а затем (II) соединение, полученное на стадии (I), вводят во взаимодействие с амином формулы III.

Реакцию сочетания кислоты II с амином III можно проводить в соответствии, например, с двумя следующими методами.

Метод А В соответствии с этим методом перед реакцией сочетания с амином III кислоту формулы II активируют в форме хлорангидрида кислоты.

Реакцию оксалилхлорида с кислотой формулы II проводят в неполярном апротонном растворителе, таком как углеводород, например галоидированный углеводород.

Оксалилхлорид и каталитически эффективное количество диметилформамида вводят в раствор соединения формулы II, температуру которого поддерживают в пределах 15-25oС, предпочтительно при комнатной температуре. Далее реакционную среду нагревают до температуры в пределах 30-70oС, например до температуры кипения используемого растворителя. За ходом реакции следят с помощью тонкослойной хроматографии (ТСХ). Затем перед добавлением ароматического амина III и основания, такого как пиридин или 4-диметиламинопиридин, растворитель выпаривают и остаток растворяют в неполярном апротонном растворителе, таком как, например, ранее использованный галоидированный водород. Эту реакцию продолжают в течение такого периода времени, длительность которого необходима в условиях температуры в пределах 15-85oС, предпочтительно при комнатной температуре.

Метод Б В соответствии с этим методом перед реакцией сочетания с амином III кислоту формулы II активируют в форме смешанного ангидрида. В раствор кислоты формулы II в неполярном апротонном растворителе, таком как галоидированный углеводород, вводят слабое основание, такое как триэтиламин, после чего реакционную среду нагревают до температуры в пределах от -10 до 10oС, предпочтительно в пределах от 0 до 5oС. Далее добавляют хлорангидрид бис(2-оксо-3-оксазолидинил)фосфиновой кислоты. По завершении реакции весь ароматический амин формулы III сразу вводят в реакционную среду, причем температуру этой последней поддерживают в пределах от -10 до 10oС (предпочтительно в пределах от 0 до 5oС). После этого основание вводят в реакционную среду небольшими порциями в виде раствора в неполярном апротонном растворителе, таком как галоидированный углеводород.

Далее полученное соединение формулы I выделяют и очищают.

Амины формулы III либо являются непосредственно коммерчески доступными продуктами, либо могут быть легко получены из коммерчески доступных продуктов.

В остальной части описания представлены методы получения соединений формулы II.

Соединения формулы II, в которой Z обозначает группу chr9-, могут быть получены в соответствии c реакционной схемой А, приведенной в конце описания.

Осуществление первой стадии позволяет ввести карбоксальдегидную функциональную группу.

Соединение формулы VIII, в которой R1, R2, R3, R4, R5 и Х имеют значения, указанные выше, вводят во взаимодействие с оксихлоридом фосфора. В предпочтительном варианте это взаимодействие протекает в полярном апротонном растворителе, таком как диметилформамид (ДМФ). Реакционную температуру варьируют в пределах от -20oС до комнатной температуры. Реакцию предпочтительнее вести при температуре в пределах от 0 до 5oС, а за ее ходом следить с помощью тонкослойной хроматографии. Получаемый альдегид VII выделяют по обычному методу: разбавлением реакционной смеси ее введением в смесь воды со льдом, нейтрализацией и последующими экстракцией и очисткой.

Следующую стадию восстановления альдегидной функциональной группы до гидроксиметильной функциональной группы осуществляют с применением любого из методов, известных в данной области техники, с тем лишь условием, что реакционные условия должны быть такими, чтобы не вызывать нежелательных побочных реакций. В соответствующих случаях реакционноспособные функциональные группы радикалов R1, R2, R3, R4 и R5 защищают.

Среди реагентов, которые с этой целью обычно используют, можно назвать алюмогидрид лития, натрийборoгидрид и натрийцианборoгидрид. Когда применяют натрийборoгидрид, в предпочтительном варианте реакцию проводят в смеси метанол/вода при температуре в пределах от -40 до 0oС, более предпочтительно в пределах от -25 до -15oС. В этом случае полученное соединение также выделяют по известному методу.

Далее выделенный таким образом спирт формулы VI превращают в соответствующий алкилхлорид. Это превращение можно осуществлять по любому методу с тем лишь условием, что реакционные условия должны быть такими, чтобы не вызывать нежелательных побочных реакций. В соответствующих случаях реакционноспособные функциональные группы радикалов R1, R2, R3, R4 и R5 защищают.

Известный метод состоит в обработке спирта VI тионилхлоридом в инертном растворителе, таком как, например, ароматический углеводород толуольного или бензольного типа, при температуре в пределах от 15 до 30oС, предпочтительно при комнатной температуре.

Для хлорирования соединения VI могут быть использованы другие реагенты, например, такие как PCl5, РСl3 или POCl3.

Далее хлорированное соединение формулы V обрабатывают цианидом щелочного металла (MCN), таким как цианид натрия, в полярном растворителе, таком как ДМФ. В зависимости от реакционной способности хлорида V реакционную температуру поддерживают в пределах от 0 до 50oС. Когда MCN представляет собой цианид натрия, обычно приемлема температура в пределах 20-25oС. Полученное соединение формулы IV выделяют и очищают по известному методу.

Соединение формулы II, в которой R9 обозначает водород, легко получают из нитрила IV кислотной или основной обработкой. С этой целью могут быть использованы следующие реакционные системы: NaOH/H2O2 или водн. NaOH, H2SO4, НСООН/НВr или НСl, АсОН/ВF3, AcOH/HCl.

Так, например, нитрил IV можно гидролизовать с использованием смеси AcOH/HCl в соотношении от 40/60 до 60/40, причем вполне приемлемой является смесь в соотношении 1/1. В этом случае в предпочтительном варианте смесь AcOH/HCl выполняет функции растворителя, причем температура важного значения не имеет и составляет от 0 до 50oС, предпочтительно от 15 до 25oС.

Для получения соединений формулы I, в которой R9 обозначает (С16)алкил, соответствующее соединение формулы II, в которой R9 обозначает водород, обрабатывают алкилгалогенидом формулы R9-X, в которой Х обозначает атом галогена, группу (С16)алкилсульфонилокси или (С610)арилсульфонилокси, необязательно замещенную (С16)алкилом, a R9 обозначает (С16)алкил, в присутствии сильного основания, способного удалять атом водорода в -положении относительно положения карбоксильной функциональной группы в соединении формулы II (R9 обозначает Н). Таким основанием является, например, диизопропиламид лития (ДАЛ).

В соответствии с предпочтительным вариантом ДАЛ получают in situ из н-бутиллития и диизопропиламина при температуре в пределах от -15 до 5oС, предпочтительно при примерно 0oС. Растворитель, используемый для получения ДАЛ, представляет собой полярный апротонный растворитель, такой как тетрагидрофуран. Далее в реакционную смесь вводят галогенид R9-X и соединение формулы II. Температура реакции составляет, например, от 15 до 35oС, предпочтительно от 20 до 25oС.

Когда соединение формулы I представляет собой такое соединение, у которого Z обозначает группу -chr10-chr11-, его можно получать в соответствии с реакционной схемой Б, приведенной в конце описания.

Введение атома брома в соединение формулы VIII осуществляют воздействием N-бромсукцинимида (N-БС) на соединение формулы VIII, растворенное в полярном протонном растворителе, таком как диметилформамид, в отсутствие влаги. Реакцию проводят, например, при комнатной температуре. Тем не менее в зависимости от реакционной способности соединения формулы VIII температуру реакции можно варьировать в пределах от 10 до 35oС.

Следующая стадия состоит в превращении полученного бромированного производного формулы IX в соединение формулы X. Для этого алкилакрилат формулы H2C=CH-COOR, в которой R обозначает (С16)алкил, вводят во взаимодействие с бромированным производным IX в присутствии ацетата палладия, фосфина и основания. Реакцию целесообразно проводить в полярном апротонном растворителе, таком как диметилформамид.

В качестве основания можно использовать триэтиламин, пиридин или 4-диметиламинопиридин, предпочтительно триэтиламин.

Фосфин отвечает, например, формуле PAr'3, в которой Аr' в предпочтительном варианте обозначает (C612)арил, необязательно замещенный (С16)алкилом. РАr'3 представляет собой, например, трифенилфосфин или тритолилфосфин.

Для эффективного протекания реакции вначале вводят в контакт между собой соединение формулы IX, растворенное в ДМФ, основание, фосфин и ацетат палладия, а затем в реакционную смесь добавляют акрилат формулы CH2=CH-COOR.

Получаемый сложный эфир формулы Х выделяют обычным путем, после чего омыляют по известному методу с получением соединения формулы II, в которой R10 и R11 совместно образуют связь.

Использование этого соединения в качестве исходного материала позволяет легко получать все соединения формулы II, в которой Z обозначает -chr9-chr10-.

Так, например, полученную по вышеописанной методике кислоту формулы II подвергают каталитической гидрогенизации. Соответствующее регулирование гидрогенизационных условий позволяет получать либо соединение формулы II, в которой каждый из R6, R7, R10 и R11 обозначает атом водорода, либо соединение формулы II, в которой R6 и R7 совместно образуют связь, а каждый из R10 и R11 обозначает атом водорода.

Соединения формулы II, в которой Z обозначает chr12-chr13-CH2-, может быть получено по реакции Виттига с использованием в качестве исходного материала альдегида формулы VII (схема А). Возможно, например, использование системы реагентов, включающей (I) фосфонийгалогенид формулы ROOC-CH2-CH2-P+A3hal-, в которой R обозначает водород или (С16)алкил, hal обозначает атом галогена, а значения А выбирают из (С612)арила, необязательно замещенного (С16)алкилом, и (II) основание, такое как трет-бутоксид щелочного металла (tBuOK), гидрид щелочного металла (NaH) или алкиллитий (C4H9Li). Эту реакцию можно успешно проводить в полярном апротонном растворителе, таком как диметилформамид или тетрагидрофуран, при температуре в пределах от 0 до 30oС.

Другим объектом настоящего изобретения является фармацевтическая композиция, включающая по меньшей мере одно соединение формулы I в сочетании с одним или несколькими фармацевтически приемлемыми носителями.

В качестве носителей могут быть использованы, например, наполнители, разбавители, связующие вещества, смачивающие агенты, разрыхлители, поверхностно-активные вещества и смазочные вещества. Фармацевтической композиции можно придать форму любого необходимого препарата в дозах на один прием, включая таблетки, пилюли, порошки, жидкости, суспензии, эмульсии, гранулы, капсулы, суппозитории, препараты для инъекций (растворы и суспензии) и т.п.

Для приготовления таблеток можно использовать носители, известные в данной области техники, например наполнители, такие как лактоза, сахароза, хлорид натрия, глюкоза, мочевина, крахмал, карбонат кальция, каолин, кристаллическая целлюлоза, кремниевая кислота и т.п., связующие вещества, такие как вода, этанол, пропанол, простой сироп, раствор глюкозы, раствор крахмала, раствор желатина, карбоксиметилцеллюлоза, шеллак, метилцеллюлоза, фосфат калия, поливинилпирролидон и т.п., разрыхлители, такие как высушенный крахмал, альгинат натрия, порошкообразный агар, порошок ламинарии, бикарбонат натрия, карбонат кальция, эфиры жирных кислот и полиоксиэтиленсорбитана, лаурилсульфат натрия, моноглицерид стеариновой кислоты, крахмал, лактоза и т.п., ингибиторы разрыхления, такие как рафинированный сахар, стеарин, масло какао, гидрогенизованные масла и т.п., ускорители всасывания, такие как четвертичное аммониевое основание, лаурилсульфат натрия и т.п., смачивающие агенты, такие как глицерин, крахмал и т.п., агенты, способствующие адсорбции, такие как крахмал, лактоза, каолин, бентонит, коллоидная кремниевая кислота и т.п., смазочные вещества, такие как очищенный тальк, соли стеариновой кислоты, порошкообразная борная кислота, полиэтиленгликоль и т. п.

В случае изготовления таблеток на эти последние можно, кроме того, наносить покрытия с использованием обычного материала для покрытий, что позволяет таким образом перерабатывать их в таблетки, покрытые сахаром, таблетки, покрытые желатиновой пленкой, таблетки с энтеросолюбильным покрытием, таблетки с пленочными покрытиями, таблетки с двухслойным или многослойным покрытием.

Для приготовления пилюль можно применять, например, известные носители, которые обычно используют в данной области техники, такие как наполнители, в частности глюкозу, лактозу, крахмал, масло какао, гидрогенизованные растительные масла, каолин, тальк и т.п., связующие вещества, такие как порошкообразная аравийская камедь, порошкообразная трагакантовая камедь, желатин, этанол и т.п., и разрыхлители, такие как порошок ламинарии, агар и т.п.

Для изготовления суппозиториев можно применять известные носители, которые широко используют в данной области техники, например полиэтиленгликоли, масло какао, высшие спирты, эфиры высших спиртов, желатин, полусинтетические глицериды и т.п.

При приготовлении препаратов для инъекций растворы и суспензии стерилизуют и в предпочтительном варианте им придают изотоничность относительно крови. Для приготовления препаратов для инъекций также можно применять носители, которые обычно используют в данной области техники, например воду, этиловый спирт, пропиленгликоль, этоксилированный изостеариловый спирт, полиоксилированный изостеариловый спирт, эфиры жирных кислот и полиоксиэтиленсорбитана и т. п. В этом случае для придания раствору изотоничности в целевые фармацевтические препараты можно добавлять соответствующие количества хлорида натрия, глюкозы или глицерина. Более того, когда это целесообразно, в целевые фармацевтические препараты можно добавлять растворяющие агенты, буферные растворы, анальгетические вещества, которые обычно используют, а также красящие вещества, консерванты, отдушки, добавки, улучшающие вкусовые ощущения, подслащивающие вещества и другие лекарственные средства.

Было установлено, что соединения по изобретению являются эффективными ингибиторами ацил-кофермента А. Они могут быть использованы при лечении или профилактике гиперхолестеринемии, атероматозного атеросклероза, а также способны предупреждать возможные ишемические поражения, такие как, например, инфаркт миокарда или цереброваскулярные болезни.

Фармакологические свойства соединений по изобретению были подтверждены следующими тестами.

Тест А. Определение in vitro ингибирования печеночной АКАТ у крыс Самцов крыс линии Wistar весом 220-250 г умерщвляли переломом шейных позвонков, извлекали печень и гомогенизировали ультрацентрифугированием для приготовления микросомальной фракции. Эти микросомы инкубировали с 14С-олеил-коферментом А по методу, описанному у P.J. Gillies и др. в Exp. and Mol. Pathol. , 1986, 44, 329-339; липиды экстрагировали из инкубата смесью метанол/хлороформ и с помощью тонкослойной хроматографии выделяли 14C-олеилхолестерин; данные этого последнего отражали активность АСАТ. Результаты выражали в виде ингибирующей концентрации ИК50, являющейся концентрацией соединения, ингибирующего активность АСАТ на 50%.

Так, например, значения ИК50 для соединений 1, 4 и 6 были равны соответственно 94х10-9, 74х10-9 и 31х10-9 моль/л.

Тест Б. Определение всасывания холестерина в кишечнике крыс Самцам крыс линии Wistar весом 230-250 г, голодавшим в течение 24 ч, одновременно вводили тестируемое соединение перорально и тритон WR 1339 внутривенно, через 1 ч им вновь перорально вводили 3Н-холестерин, а через 3 ч у них отбирали по 1 мл крови из ретроорбитального синуса; используя 0,1 мл сыворотки, определяли радиоактивность крови, и этот показатель характеризовал всасывание 3Н-холестерина. Результаты выражали в виде эффективной дозы ЭД50 (в миллиграммах на килограмм веса животного), которая характеризовала количество соединения, ингибирующее всасывание холестерина в кишечнике на 50%.

Так, например, значения ЭД50 для соединений 1, 4 и 6 были равны соответственно 0,005, 0,038 и 0,023 мг/кг.

Тест В. Модель гиперхолестеролемии Предлагаемые по п.1 формулы изобретения соединения испытывали пероральным введением с использованием для животных диеты, обогащенной холестерином.

В частности, самцов крыс линии Wistar кормили в течение 8 дней пищей, обогащенной до 2,5% холестерином, и давали им в течение 2 дней соединение 1. При дозе 0,78 мг/кг общее содержание холестерина снижалось на 50%. Эффект проявлялся главным образом на липидах очень низкой плотности (ЛОНП).

Так, например, кроликов кормили в течение 15 дней пищей, обогащенной до 0,5% холестерином, и одновремено им давали соединение 1. При дозе 0,1 мг/кг общее содержание холестерина снижалось на 70%. Эффект проявлялся главным образом на липидах очень низкой плотности (ЛОНП).

Ниже предпочтительные варианты осуществления изобретения проиллюстрированы на примерах.

I. Получение ароматических аминов формулы III Когда Аr обозначает 2-(С16)алкокси-4-н-гексилтио-3-пиридил, реакции проводят, например, в соответствии со схемой В, приведенной в конце описания.

Стадия 1 трет-Бутил(2-метокси-3-пиридил)карбамат В 100-миллилитровый реактор, защищенный от влаги, в атмосфере азота загружают 3,72 г (30 ммолей) 2-метокси-3-пиридиламина в виде раствора в 30 мл тетрагидрофурана, а затем по каплям при комнатной температуре добавляют 60 мл (60 ммолей) бис(триметилсилил)амида натрия в виде 1 М раствора в тетрагидрофуране.

После перемешивания реакционной смеси при комнатной температуре в течение 20 мин в эту реакционную смесь, которую выдерживают при комнатной температуре, по каплям добавляют 6,54 г (30 ммолей) ди-трет-бутилкарбоната.

После перемешивания при комнатной температуре в течение 3 ч тетрагидрофуран выпаривают. Остаток растворяют в этилацетате, промывают водой, 0,1 М соляной кислотой, а затем водой до тех пор, пока значение рН промывных жидкостей не установится на 7. После сушки органической фазы над сульфатом натрия и выпаривания растворителя получают вещество в виде черного масла, которое хроматографируют на силикагеле (элюент: этилацетат/гексан в соотношении 1/3). После выпаривания растворителя в виде окрашенного в янтарный цвет масла получают 6,1 г вещества, т.е., другими словами, выход составляет 90,2%.

ТСХ (силикагель "Kieselgel 60" фирмы Merck; AcOEt/гексан в соотношении 1/2): Rf=0,4.

ИК-спектр: NH=3425, СО=1731 см-1.

ЯМР-спектр (СDС13): 1,5 (s, 9H), 3,95 (s, 3Н), 6,8 (dd, 1H, J=5 Гц, J= 7,8 Гц), 6,9 (s, 1H), 7,7 (dd, 1H, J=5 Гц, J=1,6 Гц), 8,2 (d, 1H, J=7,8 Гц).

Стадия 2 трет-Бутил(4-н-гексилтио-2-метокси-3-пиридил)карбамат В реактор, защищенный от влаги, в атмосфере азота загружают 4,48 г (20 ммолей) соединения, полученного на предыдущей стадии, в виде раствора в 100 мл диэтилового эфира и 9,05 мл (60 ммолей) тетраметилэтилендиамина.

После охлаждения раствора до -70oС по каплям добавляют 37,5 мл (60 ммолей) 1,6 М раствора н-бутиллития в гексане. Реакционную смесь перемешивают при -10oС в течение 2 ч, а затем при -70oС по каплям добавляют 14,1 г (60 ммолей) дигексилсульфида.

После перемешивания раствора в течение 12 ч при комнатной температуре реакционную смесь растворяют в воде и экстрагируют диэтиловым эфиром. Органическую фазу промывают 0,1 М соляной кислотой, а затем водой до тех пор, пока значение рН промывных жидкостей не установится на 7, и в завершение сушат над сульфатом натрия. После выпаривания растворителя в виде масла получают вещество, которое хроматографируют на силикагеле (элюент: этилацетат/гексан в соотношении 1/5). После выпаривания растворителя получают 5,6 г вещества в виде масла, которое кристаллизуется, т.е., другими словами, выход составляет 82,3%. Его температура плавления находится в пределах 72-74oС.

ТСХ (силикагель "Kieselgel 60" фирмы Merck; AcOEt/гексан в соотношении 1/3): Rf=0,3.

ИК-спектр: NH=3171, СО=1720 см-1.

ЯМР-спектр (CDC3): 0,85 (t, 3H), 1,3 (m, 4H), 1,45 (m, 11H), 1,7-1,8 (m, 2H), 3,0 (t, 2H), 4,25 (s, 3H), 6,7 (d, 1H, J=6,8 Гц), 7,85 (d, 1H, J=6,8 Гц).

Стадия 3 4-н-Гексилтио-2-метокси-3-аминопиридин В 500-миллилитровом реакторе при интенсивном п