Совместное использование квантов времени в канале доступа

Реферат

 

Предложены система и способ для повышения эксплуатационной пропускной способности канала произвольного доступа с квантованием времени в системе связи с расширенным спектром с помощью зонда доступа, состоящего из нескольких частей. Первую и вторую части преамбулы зонда доступа модулируют с помощью короткой кодовой ПШ-последовательности, а вторую часть преамбулы и оставшуюся часть зонда доступа модулируют с помощью длинной кодовой ПШ-последовательности. Информацию, подлежащую передаче с зондом доступа, модулируют на второй части зонда доступа, и зонд доступа передают таким образом, что первая часть преамбулы зонда находилась в пределах границ кванта канала доступа. В одном варианте осуществления изобретения кванты времени в каналах доступа, используемых для приема сигналов доступа, имеют длину, равную длине первой части. В другом варианте кванты времени в множестве смежных каналов доступа, используемых для приема канала доступа, могут быть длиннее, чем первая часть, но сдвинуты во времени относительно друг друга на длину или период первой части. Технический результат заключается в повышении эксплуатационной пропускной способности канала и уменьшении задержки в получении доступа после отказа первого доступа. 7 с. и 22 з.п. ф-лы, 9 ил.

Область техники Изобретение относится к системам и сетям связи с многостанционным доступом с расширенным спектром, в частности, к повышению пропускной способности для доступа абонентов в системе связи с расширенным спектром.

Уровень техники Известен целый ряд систем связи с многостанционным доступом, предназначенных для передачи информации среди большого числа пользователей системы. Однако существенными преимуществами по сравнению с другими схемами модуляции обладают методы модуляции с расширением спектра, используемые в системах связи с многостанционным доступом на основе кодового разделения каналов (МДКР), особенно при предоставлении услуг большому количеству пользователей систем связи. Эти методы известны из патента США 4901307, выданного 13 февраля 1990 г. , на изобретение "Система связи с многостанционным доступом с расширенным спектром, использующая спутниковые или наземные ретрансляторы", и патента США 5691974, выданного 25 ноября 1997 г., на изобретение "Способ и устройство для использования мощности, передаваемой в полном спектре, в системе связи с расширенным спектром для отслеживания фазы, времени и энергии отдельного приемника".

Упомянутые выше патенты раскрывают системы связи с многостанционным доступом, в которых каждый из большого числа в основном подвижных или удаленных пользователей системы может использовать, по меньшей мере, один приемопередатчик для осуществления связи с другими пользователями системы или пользователями других подсоединенных систем, например, коммутируемой телефонной сети общего пользования. Приемопередатчики осуществляют связь через шлюзы и спутники или через наземные базовые станции (иногда также именуемые как сотовые станции или сотовые ячейки).

Базовые станции обслуживают сотовые ячейки, а спутники имеют зоны обслуживания (также именуемые "ячейками") на поверхности Земли. Пропускную способность любой системы можно увеличить посредством секторизации или разделения обслуживаемых территорий. Ячейки можно разделить на "секторы" с помощью направленных антенн на базовой станции. Аналогично, зону обслуживания спутника можно территориально разделить на "лучи" с помощью антенных систем, формирующих лучи. Можно считать, что такие методы разделения зоны обслуживания обеспечивают изоляцию за счет использования относительной направленности антенн или мультиплексирования с пространственным разделением. Кроме того, если позволяет ширина полосы частот, то каждому из этих подразделений, будь то секторы или лучи, может быть выделено множество каналов МДКР за счет использования мультиплексирования с частотным разделением (МЧР). В спутниковых системах каждый канал МДКР называется "подлучом", так как их может быть несколько в каждом "луче".

В системах связи с использованием МДКР для передачи сигналов связи с шлюза в сторону базовой станции и с базовой станции в сторону шлюза используются отдельные линии связи. Под прямой линией связи подразумевается линия связи, ведущая от базовой станции или шлюза к пользовательскому терминалу, при этом сигналы связи формируются в шлюзе или базовой станции и передаются пользователю или пользователям системы. Под обратной линией связи подразумевается линия связи, ведущая от пользовательского терминала к шлюзу или базовой станции, при этом сигналы связи формируются в абонентском терминале и передаются шлюзу или базовой станции.

Обратная линия связи состоит из, по меньшей мере, двух отдельных каналов: канала доступа и обратного канала трафика. Обычно, в системе связи имеется несколько каналов доступа и обратных каналов трафика. Канал доступа используется одним или несколькими пользовательскими терминалами с разделением во времени для того, чтобы инициировать связь или ответить на передачи, поступившие от шлюза или базовой станции. Каждый такой процесс связи называется передачей сигнала доступа или "зонда доступа". Обратные каналы трафика используются для передачи информации или данных пользователя и сигнализации с пользовательских терминалов одному или более шлюзам или базовым станциям во время "вызова" или установления линии связи. Одна структура или протокол для каналов, сообщений и вызовов доступа более подробно описана в стандарте Ассоциации промышленности средств связи TIA/EIA IS-95-A "Стандарт совместимости подвижной станции с базовой станцией для двухрежимной широкополосной сотовой системы связи с расширенным спектром".

В типичной системе связи с расширенным спектром используется одна или несколько заранее выбранных псевдошумовых (ПШ) кодовых последовательностей для модуляции или "расширения" сигналов информации пользователя на заданной полосе спектра, прежде чем их модулировать на несущую для передачи в качестве сигналов связи. ПШ-расширение, которое является широко известным методом передачи с расширением спектра, формирует сигнал для передачи, имеющий значительно большую ширину полосы, чем сигнал данных. Чтобы различать сигналы, передаваемые разными базовыми станциями или на разных лучах, а также сигналы многолучевого распространения, на линии связи от базовой станции или шлюза к пользовательскому терминалу используются расширяющие ПШ-коды или бинарные последовательности. Эти коды обычно используются коллективно всеми сигналами связи в данной сотовой ячейке или подлуче. В некоторых системах связи один и тот же набор расширяющих ПШ-кодов используется в обратной линии связи как для обратных каналов трафика, так и для каналов доступа. В других известных системах связи в прямой и обратной линиях связи используются разные наборы расширяющих ПШ-кодов.

Обычно ПШ-расширение выполняют с помощью двух псевдошумовых (ПШ) кодовых последовательностей для модуляции или "расширения" информационных сигналов. Типично, одна кодовая ПШ-последовательность используется для модуляции синфазного (I) канала, а другая кодовая ПШ-последовательность используется для модуляции квадратурного канала (Q) с применением метода, известного как квадратурная фазовая манипуляция (КФМн). ПШ-расширение выполняется перед тем, как информационные сигналы модулируются несущим сигналом и передаются со шлюза или базовой станции в сторону пользовательского терминала в качестве сигналов связи по прямой линии связи. Расширяющие ПШ-коды также называют короткими ПШ-кодами, так как они относительно "короткие" по сравнению с другими ПШ-кодами, используемыми системой связи. Обычно один и тот же набор расширяющих ПШ-кодов совместно используется для каналов трафика в прямой и обратной линии связи, а другой набор расширяющих ПШ-кодов используется для каналов доступа, как было описано выше.

В конкретной системе связи может использоваться несколько длин коротких ПШ-кодов в зависимости от того, используются ли они в каналах прямой линии связи или обратной линии связи. В прямой линии связи, например, в спутниковой системе, короткие ПШ-коды обычно имеют длину от 210 до 215 элементов. Эти короткие ПШ-коды используются для того, чтобы различать разные источники сигналов, такие как шлюзы, спутники и базовые станции. Кроме того, для различения лучей конкретного спутника, или сотовых ячеек, или секторов в наземных системах связи используются сдвиги времени в определенном коротком ПШ-коде.

В предложенной спутниковой системе связи короткие ПШ-коды, используемые в обратной линии связи, имеют длину порядка 28 элементов. Эти короткие ПШ-коды используются для того, чтобы позволить приемнику шлюза или базовой станции быстро найти пользовательские терминалы, которые пытаются осуществить доступ к системе связи, не прибегая к сложной процедуре, связанной с более "длинными" ПШ-кодами, используемыми в прямой линии связи. В целях настоящего описания под "короткими ПШ-кодами" подразумеваются короткие кодовые ПШ-последовательности (28), которые должны использоваться в обратной линии связи.

Другая кодовая ПШ-последовательность, известная как каналообразующий код, используется для обеспечения различия между сигналами связи, передаваемыми разными пользовательскими терминалами в обратной линии связи в пределах сотовой ячейки или подлуча. Псевдошумовые каналообразующие коды также называются длинными кодами, так как они относительно "длинные" по сравнению с другими ПШ-кодами, используемыми в системе связи. Длинный ПШ-код обычно имеет длину порядка 242 элементов сигнала, но при необходимости он может быть короче или маскирован. Обычно, сообщение доступа модулируется длинным ПШ-кодом перед модуляцией коротким ПШ-кодом, а затем передается как зонд или сигнал доступа в сторону шлюза или базовой станции. Однако короткий ПШ-код и длинный ПШ-код могут быть объединены перед модуляцией или расширением сообщения доступа.

Когда приемник в составе шлюза или базовой станции принимает зонд доступа, он должен сжать зонд доступа, чтобы получить сообщение доступа. Это осуществляется посредством выработки гипотез или прогнозов относительно того, какие длинные ПШ-коды и какие два коротких ПШ-кода были использованы для модуляции сообщения доступа. Чтобы определить, какая гипотеза является наилучшей оценкой для зонда доступа, формируется корреляция между определенной гипотезой и зондом доступа. Гипотеза, дающая самую высокую корреляцию, обычно относительно заданного порога, выбирается в качестве гипотезы наиболее вероятного совпадения кода и времени. После определения выбранной гипотезы зонд доступа сжимается с помощью выбранной гипотезы, чтобы получить сообщение доступа.

В системе связи с большим количеством пользователей существует вероятность того, что в шлюз или базовую станцию одновременно или в заранее выбранный интервал времени, в течение которого должен быть обнаружен сигнал, поступит более одного зонда доступа. Когда это случается, зонды доступа могут вступать в коллизию или создавать взаимные помехи, что делает их нераспознаваемыми для шлюза или базовой станции. Одним из путей, позволяющих избежать такой коллизии, является использование метода доступа с централизованным управлением, при котором система связи планирует передачи зонда доступа с абонентских терминалов. Одним недостатком такого метода является то, что механизм планирования потребляет значительное количество ширины полосы частот канала доступа.

Другим способом исключения таких коллизий является использование метода произвольного доступа с квантованием времени, известного как "квантованная ALOHA". При методе произвольного доступа с квантованием времени регулярная общесистемная структура синхронизации устанавливает допустимые моменты времени для передачи или приема. Канал доступа обычно делится на ряд кадров фиксированной длины или "квантов" времени, или окон, каждое из которых имеет одинаковую фиксированную длительность, при этом кванты используются для приема сигналов. Сигналы доступа обычно имеют структуру "пакетов", которые состоят из преамбулы и части сообщения, которые должны приходить в начале кванта, подлежащего захвату. Пользовательский терминал ведет передачу по своему усмотрению, однако, чтобы сообщение было получено, передача должна быть ограничена в пределах границ только одного кванта. Использование этого метода на канале доступа существенно снижает возможность коллизии зондов доступа от разных пользователей в шлюзе или базовой станции.

К сожалению, метод произвольного доступа с квантованием времени также приводит к тому, что на канале доступа остается значительное количество неиспользованного времени. Поскольку зонд доступа должен передаваться в течение одного кванта, необходимо выбрать такую длительность кванта, которая была бы больше длительности самого длинного возможного зонда доступа. Так как все кванты имеют одинаковую длительность, квант будет оставаться частично свободным для всех зондов доступа кроме самого длинного. Это приводит к тому, что на канале доступа существует значительное количество неиспользованной ширины полосы частот и, следовательно, уменьшается его эксплуатационная пропускная способность.

В случае неполучения зонда доступа в течение конкретного периода кадра передатчик, желающий получить доступ, должен повторно послать зонд доступа, чтобы приемник смог обнаружить зонд доступа снова во время следующего кадра. Если несколько сигналов доступа приходят вместе, они "вступают в коллизию" и не захватываются, так что требуется их повторная посылка. В любом случае время последующих передач доступа в случае отказа первой попытки основано на времени задержки, равном как минимум длине квантов времени и, обычно, общему числу квантов времени или кадров. Поэтому проходит значительное время до того, как можно будет повторно послать и принять зонд доступа. Длина задержки захвата зонда увеличивается на любую задержку, необходимую для того, чтобы возвратить приемные схемы в приемнике в исходное состояние, чтобы проанализировать разные гипотезы и в других зондах, захваченных ранее, как упоминалось выше. И наконец, зонд может быть вообще не захвачен, по меньшей мере, в течение практического предела времени, если не разрешена временная неопределенность.

Поэтому существует потребность в системе и способе для повышения эксплуатационной пропускной способности канала произвольного доступа с квантованием времени в системе с расширенным спектром. Предпочтительно, чтобы этот метод позволял эффективно принимать зонды доступа с минимальной задержкой.

Сущность изобретения Предложены система и способ для повышения эксплуатационной пропускной способности канала произвольного доступа с квантованием времени в системе связи с расширенным спектром с помощью зонда доступа, состоящего из нескольких частей. Настоящее изобретение также позволяет уменьшить задержки в получении доступа после отказа первого доступа.

Изобретение реализуется в способе и устройстве для передачи, по меньшей мере, по одному каналу доступа множества сигналов доступа, каждый из которых включает преамбулу и части сообщения, причем преамбула содержит первую и вторую стадии. Преамбула зонда доступа не содержит информации сообщения, а состоит из нулевых данных.

Сигнал доступа формируется посредством модуляции первой стадии и второй стадии преамбулы первым сигналом, модуляции второй стадии преамбулы также вторым сигналом и модуляции сообщения первым сигналом и вторым сигналом. Затем сигнал доступа передается в форме первой стадии, второй стадии и сообщения. Сформированные таким образом сигналы доступа можно передавать и принимать в разделенных квантах на канале доступа таким образом, чтобы преамбула находилась в пределах одного из множества заранее выбранных квантов. В результате, даже если одновременно передается более одного сигнала доступа, так что вторая стадия или часть сообщения накладывается на первую стадию одного или нескольких других передаваемых сигналов доступа, сигнал доступа все равно может быть захвачен.

В предпочтительном варианте осуществления изобретения сигналы доступа можно передавать и принимать по каналу доступа, разделенному на кванты времени приема сигнала, которые имеют практически такую же длину, как первая стадия. Альтернативно, сигналы доступа можно принимать на множестве каналов доступа, разделенных на кванты времени приема сигнала, которые сдвинуты во времени относительно друг друга на период, имеющий практически такую же длину, как первая стадия.

Первая часть зонда доступа предпочтительно формируют посредством первой модуляции или расширения сигнала доступа с помощью короткой ПШ-последовательности, которая также используется для расширения второй части. В предпочтительном варианте осуществления изобретения короткая ПШ-последовательность представляет собой две квадратурные короткие ПШ-последовательности. Это расширение обычно выполняется с применением устройства для передачи состоящего из нескольких частей зонда доступа, в состав которого входят первый и второй модуляторы ПШ-кода, модулятор данных и передатчик.

Первый модулятор ПШ-кода расширяет первую и вторую части зонда доступа желаемой короткой ПШ-последовательностью, а второй модулятор ПШ-кода расширяет вторую часть зонда доступа длинной ПШ-последовательностью. Модулятор данных модулирует вторую часть сообщением доступа. Затем передатчик передает зонд доступа таким образом, чтобы его первая часть находилась в пределах одного из квантов канала доступа.

Устройство для приема состоящего из нескольких частей зонда доступа включает в себя множество демодуляторов и поисковый приемник. Поисковый приемник захватывает первую часть зонда доступа и передает дальнейшую обработку зонда, то есть вторую часть, в один из демодуляторов. Затем поисковый приемник может захватить первую часть другого зонда доступа, пока демодулятор демодулирует вторую часть первого зонда доступа. Этот процесс можно повторять, т. е. захватывать и передавать столько зондов доступа, сколько можно принять, демодулировать и захватить в течение любого заданного интервала времени.

Краткое описание чертежей В дальнейшем изобретение поясняется описанием примеров его осуществления со ссылками на прилагаемые чертежи, на которых фиг. 1 иллюстрирует примерный вариант системы радиосвязи, выполненной и функционирующей в соответствии с одним из вариантов осуществления настоящего изобретения, фиг. 2 иллюстрирует примерный вариант линий связи между шлюзом и абонентским терминалом в системе связи, изображенной на фиг.1, фиг.3 более подробно иллюстрирует структуру канала доступа, фиг. 4 изображает временную диаграмму, показывающую типичную структуру синхронизации для зондов доступа на обычном канале произвольного доступа с квантованием времени, фиг. 5 изображает временную диаграмму для зондов доступа на канале произвольного доступа с квантованием времени согласно предпочтительному варианту настоящего изобретения, фиг. 6 иллюстрирует протокол формирования зонда доступа согласно одному варианту настоящего изобретения, фиг.7 изображает структурную схему примерного варианта передатчика канала доступа, используемого для передачи зонда доступа, согласно варианту настоящего изобретения, фиг.8 изображает алгоритм работы передатчика канала доступа согласно варианту настоящего изобретения, фиг. 9 изображает структурную схему примерного варианта приемника канала доступа для приема зонда доступа согласно одному варианту настоящего изобретения.

Подробное описание предпочтительных вариантов осуществления изобретения Предложены система и способ для увеличения эксплуатационной пропускной способности канала произвольного доступа с квантованием времени в системе связи с расширенным спектром за счет использования состоящего из нескольких частей зонда доступа. Настоящее изобретение также позволяет уменьшить задержку при повторной посылке неуспешных зондов или сигналов доступа. В одном варианте осуществления изобретения зонд доступа передается с пользовательского терминала шлюзу или базовой станции.

Несмотря на то, что изобретение будет подробно описано на примере его конкретных вариантов осуществления, в него можно внести разные модификации, не выходя за рамки изобретения. Например, изобретение в равной мере подходит для передач, отличных от передач на канале доступа, которые расширяются множеством кодовых ПШ-последовательностей. Кроме того, канал связи, согласно изобретению, не ограничен описанной линией радиосвязи, а может быть также реализован в виде проводной линии связи, волоконно-оптической кабельной линии связи и т.д.

В типичной системе связи МДКР базовая станция на определенной территории или сотовая ячейка использует несколько модемов или модулей передатчика и приемника с расширенным спектром для обработки сигналов связи для пользователей системы в зоне обслуживания. В каждом модуле приемника обычно используется цифровой приемник данных с расширенным спектром и, по меньшей мере, один поисковый приемник, а также связанные с ними демодуляторы и т.п. Во время обычных операций пользовательскому терминалу выделяется определенный модуль передатчика и определенный модуль приемника или один модем в составе базовой станции для осуществления передачи сигналов связи между базовой станцией и пользовательским терминалом. В некоторых случаях для осуществления обработки разнесенных сигналов можно использовать несколько приемных модулей или модемов.

В спутниковых системах связи модули передатчика и приемника обычно находятся в базовых станциях, именуемых шлюзами, которые осуществляют связь с пользователями системы посредством пересылки сигналов связи через спутники. Кроме того, могут быть предусмотрены другие связанные с ними центры управления, которые обмениваются информацией со спутниками или шлюзами для обеспечения общесистемного управления трафиком и для синхронизации сигналов.

I. Общая структура системы На фиг.1 представлен примерный вариант системы радиосвязи, выполненной и функционирующей в соответствии с настоящим изобретением. В системе 100 связи используются методы модуляции с расширенным спектром для связи с пользовательскими терминалами (показанными как пользовательские терминалы 126 и 128). В наземных системах система 100 связи осуществляет связь с подвижными станциями или пользовательскими терминалами 126 и 128 с помощью базовых станций (показаны как базовые станции 114 и 116). В сотовых телефонных системах в больших городах могут существовать сотни базовых станций 114 и 116, обслуживающих тысячи пользовательских терминалов 126 и 128.

В спутниковых системах система 100 связи использует спутниковые ретрансляторы (показанные как спутники 118 и 120) и системные шлюзы (показанные как шлюзы 122 и 124) для связи с пользовательскими терминалами 126 и 128. Шлюзы 122 и 124 посылают сигналы связи пользовательским терминалам 126 и 128 через спутники 118 и 120. Спутниковые системы обычно используют меньше спутниковых ретрансляторов для обслуживания большего числа пользователей на большей территории, чем сопоставимые наземные системы.

Каждая из подвижных станций или пользовательских терминалов 126 и 128 имеет в своем составе или представляет собой устройство радиосвязи, такое как, не ограничиваясь перечисленным, сотовый телефон, приемопередатчик данных или устройство передачи данных (например, компьютеры, персональные электронные помощники, факсимильные аппараты). Обычно такие устройства являются либо переносными, либо устанавливаемыми в транспортном средстве. Хотя эти устройства описываются как подвижные, понятно, что идеи изобретения применимы и к стационарным устройствам или другим типам терминалов, которым требуется удаленная беспроводная связь. Такой тип сервиса особенно подходит при использовании спутниковых ретрансляторов для установления линий связи во многих удаленных областях мира. В разных системах связи, в зависимости от предпочтения, пользовательские терминалы иногда также называют абонентскими устройствами, подвижными устройствами, мобильными станциями или просто "пользователями", "мобильниками" или "абонентами".

Примерные варианты пользовательских терминалов описаны в патенте США 5691974, упоминавшемся выше, и в заявках на патент США 08/627830 на изобретение "Управление уровнем пилот-сигнала для систем связи со спутниками на низкой околоземной орбите" и 08/723725 на изобретение "Точное определение местоположения с помощью двух спутников на низкой околоземной орбите".

В данном примере подразумевается, что спутники 118 и 120 обеспечивают в "зонах обслуживания" множество лучей, направленных для покрытия отдельных, практически не перекрывающихся территорий. Обычно, множество лучей на разных частотах, которые также называют каналами МДКР, подлучами или сигналами МЧР, частотными слотами или каналами, можно направлять на покрытие одной и той же области. Однако понятно, что покрытие лучом или зоны обслуживания разных спутников, или диаграммы направленности антенн наземных сотовых станций могут перекрываться в определенной области полностью или частично в зависимости от конструкции системы связи и предлагаемого типа услуг, и что можно также обеспечивать пространственное разнесение между любыми такими областями связи или устройствами. Например, можно предоставлять услуги разным группам пользователей с разными характеристиками на разных частотах, или конкретное подвижное устройство может использовать несколько частот и/или несколько поставщиков услуг, имеющих перекрывающиеся территории.

Как видно на фиг.1, в системе 100 связи обычно используется сеть 112 контроллера системы и коммутатора, которая также именуется центром коммутации подвижной телефонной связи (ЦКПТС) в наземных системах или командными центрами (КЦ) в спутниковых системах, которые также осуществляют связь со спутниками. Такие контроллеры обычно включают в себя схемы сопряжения и обработки для обеспечения общесистемного управления для базовых станций 114 и 116 или шлюзов 122 и 124 в отношении определенных операций, включая формирование ПШ-кодов, назначения и синхронизацию. Контроллер 112 также управляет маршрутизацией линий связи или телефонных вызовов между коммутируемой телефонной сетью общего пользования (КТСОП) и базовыми станциями 114 и 116 или шлюзами 122 и 124 и пользовательскими терминалами 126 и 128. Однако интерфейс КТСОП обычно является частью каждого шлюза, чтобы обеспечивать прямое соединение с такими сетями или линиями связи.

Линии связи, которые соединяют контроллер 112 с разными базовыми станциями 114 и 116 или шлюзами 122 и 124 системы, можно устанавливать с помощью известных методов, например, не ограничиваясь перечисленным, с помощью выделенных телефонных линий, оптоволоконных линий и линий СВЧ или выделенных линий спутниковой связи.

Несмотря на то, что на фиг.1 показано всего два спутника, в системе связи обычно используется множество спутников 118 и 120, обращающихся в разных орбитальных плоскостях. Известен целый ряд многоспутниковых систем связи, включая системы с использованием созвездия низкоорбитальных спутников (НОС) для обслуживания большого количества пользовательских терминалов. Однако специалистам будет понятно, что идеи настоящего изобретения применимы для многих конфигураций наземных и спутниковых систем связи.

На фиг. 1 в виде линий 130, 132, 134 и 136 показаны некоторые возможные тракты сигналов для линий связи между базовыми станциями 114 и 116 и пользовательскими терминалами 126 и 128. Стрелки на этих линиях указывают направления сигналов на данной линии, чтобы показать, что она является прямой или обратной линией связи, и служат только в качестве иллюстрации в целях пояснения, никак не ограничивая действительную направленность сигналов.

Аналогичным образом, тракты сигналов для линий связи между шлюзами 122 и 124, спутниковыми ретрансляторами 118 и 120 и пользовательскими терминалами 126 и 128 показаны в виде линий 146, 148, 150 и 152 для линий связи шлюз-спутник и в виде линий 140, 142 и 144 для линий связи спутник-пользователь. В некоторых конфигурациях можно и желательно устанавливать прямые межспутниковые линии связи, как показано линией 154.

Как будет понятно специалистам, настоящее изобретение подходит как для наземных, так и для спутниковых систем. Поэтому шлюзы 122 и 124 и базовые станции 114 и 116 будут для ясности называться в общем как шлюз 122. Понятия "базовая станция" и "шлюз" иногда используются как взаимозаменяемые, при этом под шлюзами подразумеваются специализированные базовые станции, которые направляют сообщения через спутники. Аналогичным образом, спутники 118 и 120 будут в общем называться спутником 118, а пользовательские терминалы 126 и 128 - пользовательским терминалом 126.

II. Линии связи На фиг. 2 показан примерный вариант осуществления линий связи, используемых между шлюзом 122 и пользовательским терминалом 126 в системе 100 связи. В системе 100 связи использованы две линии связи, чтобы облегчить пересылку сигналов связи между шлюзом 122 и пользовательским терминалом 126. Эти линии связи называются прямой линией 210 и обратной линией 220 связи. Прямая линия 210 связи оперирует сигналами 215 передачи, которые передаются с шлюза 122 пользовательскому терминалу 126. Обратная линия 220 связи оперирует сигналами 225 передачи, которые передаются с пользовательского терминала 126 шлюзу 122.

Прямая линия 210 содержит передатчик 212 прямой линии связи и приемник 218 прямой линии связи. В одном варианте осуществления изобретения передатчик 212 прямой линии связи реализован в шлюзе 122 в соответствии с известными методами связи МДКР, описанными в упомянутых выше патентах. В одном варианте осуществления изобретения приемник 218 прямой линии связи реализован в пользовательском терминале 126 в соответствии с известными методами связи МДКР, описанными в упомянутых выше патентах.

Обратная линия 220 связи содержит передатчик 222 обратной линии связи и приемник 228 обратной линии связи. В одном варианте осуществления изобретения передатчик 222 обратной линии связи реализован в пользовательском терминале 126. В одном варианте осуществления изобретения приемник 228 обратной линии связи реализован в шлюзе 122.

Как было сказано выше, в обратной линии 220 связи используются, по меньшей мере, два канала, включая один или больше каналов доступа и один или больше обратных каналов трафика. Эти каналы можно реализовать отдельными приемниками или одним и тем же приемником, работающим в разных режимах. Как обсуждалось выше, канал доступа используется пользовательскими терминалами 126 для инициирования связи со шлюзом 122 или ответа на его сообщения. Каждому активному пользователю требуется в любое заданное время отдельный канал доступа. В частности, каналы доступа используются совместно с разделением времени несколькими пользовательскими терминалами 126, т.е. передачи от каждого активного пользователя разделены относительно друг друга во времени. Структура каналов доступа и сигналов будет более подробно обсуждаться ниже.

Системы могут использовать более одного канала доступа в зависимости от таких известных факторов, как требуемый уровень сложности шлюза и определение времени доступа. В предпочтительном варианте осуществления изобретения используется от 1 до 8 каналов доступа на каждой частоте. В предпочтительных вариантах используются разные наборы расширяющих ПШ-кодов между обратными каналами трафика и каналами доступа. Кроме того, на каналах доступа можно использовать очень короткие ПШ-коды, выбранные из уникального набора кодов (или генераторов кода) и назначенные для использования только на каналах доступа во всей системе 100 связи. В последнем случае обеспечивается очень эффективный механизм для быстрого захвата сигналов доступа в шлюзах при наличии задержки сигнала, а также допплеровского и других известных эффектов.

III. Канал доступа На фиг. 3 более подробно показан канал 300 доступа. Канал 300 доступа включает в себя передатчик 310 канала доступа, приемник 320 канала доступа и сигнал или зонд 330 доступа. Передатчик 310 канала доступа может быть включен в описанный выше передатчик 322 обратной линии связи. Приемник 320 канала доступа может быть включен в описанный выше приемник 328 обратной линии связи.

Канал 300 доступа используется для обмена короткими сигнализационными сообщениями, включающими сообщения о создании вызова, ответы на поисковые вызовы и регистрации, исходящие из пользовательского терминала 126 и предназначенные для шлюза 122. Чтобы пользовательский терминал 126 мог инициировать связь со шлюзом 122 или ответить на его сообщения, по каналу 300 доступа посылается сигнал, именуемый как зонд 330 доступа.

Канал доступа обычно также связан с одним или более конкретными каналами поискового вызова, используемыми в данной системе связи. Это повышает эффективность ответов на сообщения поискового вызова, так как системе известно, где искать передачи доступа пользовательского терминала в ответ на поисковые вызовы. Такая связь или назначение могут быть известны на основании фиксированной структуры системы или указаний, даваемых пользовательским терминалам в структуре сообщений поискового вызова.

IV. Временная неопределенность в зонде доступа Временная неопределенность зонда 330 доступа возникает в результате изменения расстояния или длины тракта распространения сигнала между пользовательским терминалом 126 и спутником 118 в зависимости от орбиты обращения спутника 118 вокруг Земли. Такая временная неопределенность ограничена минимальной и максимальной задержкой распространения сигнала. Минимальная задержка распространения сигнала представляет собой время, необходимое сигналу для его прохождения от пользовательского терминала 126 к спутнику 118 (и шлюзу), когда спутник 118 находится непосредственно над пользовательским терминалом 126. Максимальная задержка распространения сигнала представляет собой время, требуемое для прохождения сигнала от пользовательского терминала 126 к спутнику 118, когда спутник 118 находится в заданном полезном горизонте относительно пользовательского терминала 126. На общую задержку также влияет положение шлюза относительно спутника, в зависимости от которого может изменяться положение спутника, при котором имеют место максимумы или минимумы. Аналогичным образом, некоторая степень временной неопределенности может возникать в результате относительного движения между пользовательским терминалом и базовой станцией 114 или другими источниками сигнала, хотя при этом временная неопределенность обычно имеет меньшую величину, зависящую от этого относительного движения.

Разрешение временной неопределенности необходимо для того, чтобы правильно захватить зонд 330 доступа. В частности, необходимо знать фазу и время ПШ-кода, т. е. время начала кодовых ПШ-последовательностей для того, чтобы сжать длинные и короткие ПШ-коды, использованные при формировании зонда 330 доступа. Это осуществляется посредством коррелирования зонда 330 доступа с разными временными гипотезами (при необходимости также и кодом), чтобы определить, какая временная гипотеза является наилучшей оценкой для захвата зонда 330 доступа. Временные гипотезы сдвинуты по времени и частоте для допплеровских эффектов относительно друг друга и представляют разные оценки времени зонда 330 доступа или ПШ-кодов, использованных для формирования сигнала доступа. Гипотеза, которая дает самую высокую корреляцию с зондом 330 доступа, обычно превышающую заданный порог корреляции, является гипотезой с наиболее вероятной оценкой времени (принимаемой за "правильную" или соответствующую), которую следует использовать для данного конкретного зонда 330 доступа. После такого разрешения временной неопределенности зонд 330 доступа можно сжать, используя разрешенное время и длинные и короткие ПШ-коды в соответствии с хорошо известными методами.

V. Системная синхронизация для передачи зонда доступа Обычным методом доступа для