Инвертная кислотная микроэмульсия для обработки нефтегазового пласта
Реферат
Изобретение относится к нефтяной и газовой промышленности, в частности к реагентам, применяемым для повышения производительности скважин карбонатных и терригенных коллекторов. Техническим результатом изобретения является повышение устойчивости инвертной кислотной микроэмульсии. Инвертная кислотная микроэмульсия для обработки нефтегазового пласта содержит дисперсную фазу - водный раствор соляной кислоты и дисперсионную фазу - углеводородную жидкость в соотношении 1/1 - 3/1, эмульгатор - химически модифицированный гидрофобный кремнезем с размером дискретных частиц от 0,005 до 0,1 мкм с концентрацией 0,5-1,5 мас.% и регулятор стабильности эмульсии - ионогенные и неионогенные ПАВ - эмультал, неонол, нефтенол, окисленный битум с концентрацией 0,1-0,3 мас.%. При обработке количество кислотной микроэмульсии выбирают по известным рекомендациям в отрасли из расчета 0,5-11 м3/м обрабатываемой толщины. 2 табл.
Изобретение относится к нефтяной и газовой промышленности, в частности к физико-химическим методам воздействия на пласт с целью увеличения продуктивности нефтедобывающих скважин.
Известно, что для увеличения продуктивности нефтяных и газовых скважин используют различные реагенты, воздействующие на пласт, среди которых большое распространение получила соляно-кислотная обработка (СКО) призабойной зоны с карбонатными и терригенными коллекторами (1). Недостатками существующей СКО являются: - обработке в связи с проницаемостной неоднородностью подвергается, как правило, наиболее проницаемая толщина продуктивного пласта, что приводит к увеличению обводненности добываемой продукции; - соляная кислота обладает высокой скоростью реакции с породой, что позволяет обработать пласт только в районе призабойной зоны скважины; - при контакте соляной кислоты с нефтью образуются устойчивые высоковязкие (до 2500 сПас) эмульсии, что создает дополнительное сопротивление фильтрации кислоты в нефтенасыщенную часть пласта. Существуют различные составы, увеличивающие проникающую способность кислоты в призабойную зону пласта (ПЗП) путем введения в кислоту гидрофобизаторов, поверхностно-активных веществ (ПАВ), КСПЭО-2, замены соляной кислоты на сульфаминовую и др. и способствующие более эффективному вытеснению оставшейся нефти из пористой среды и уменьшению коррозионного воздействия на нефтепромысловое оборудование (2). В последние годы для стимуляции работы нефтяных и газовых скважин широкое распространение приобрели гидрофобные кислотные эмульсии типа В/М, в которых НСl закапсулирована в углеводородной среде. Их отличительными особенностями являются: - способность обеспечивать низкое (менее 0,1 мН/м) межфазное натяжение на границе раздела фаз нефть-вода, что позволяет вытеснять в зоне обработки оставшуюся нефть и воду и получать более высокие коэффициенты отбора по нефти; - способность растворять карбонатные коллектора и карбонатные, а также глинистые включения более медленно, чем водный раствор кислоты, и расширять радиус воздействия, увеличивая при этом проницаемость коллектора; - наличие углеводородного растворителя позволяет эффективно отмывать от стенок коллектора высоковязкие парафиновые и асфальтосмолистые вещества. В качестве ПАВ используют соединения различных классов и их смесей (ионогенные, неионогенные). Наиболее близким аналогом к заявляемому изобретению является применяемая для обработки кислотная инвертная микроэмульсия для обработки нефтегазового пласта, состоящая из (мас.%): 25-48 углеводородной жидкости, 64,1-74,7 водного раствора соляной кислоты, 0,05-0,5 эмульгатора - гидрофобного химически модифицированного кремнезема с размером частиц 0,004-0,04 мкм и 0,3-0,7 неионогенного поверхностно-активного вещества /3/. Задачей изобретения является повышение устойчивости инвертной кислотной микроэмульсии . Технический результат достигается тем, что в инвертной кислотной микроэмульсии для обработки нефтегазового пласта, содержащей дисперсную фазу в виде водного раствора соляной кислоты и дисперсионную фазу в виде углеводородной жидкости, эмульгатор - гидрофобный химически модифицированный кремнезем и регулятор стабильности - поверхностно-активное вещество ПАВ, указанный кремнезем имеет размер дискретных частиц от 0,005 до 0,1 мкм и концентрацию 0,5-1,5 мас.%, в качестве ПАВ используют ионогенные или неионогенные ПАВ с концентрацией 0,1-0,3 мас.%, при этом соотношение дисперсная: дисперсионная фазы изменяется в пределах от 1/1 до 3/1. Используют ионогенные и неионогенные ПАВ - эмультал, неонол, нефтенол, окисленный битум, а вязкость микроэмульсии составляет от 300 до 3500 мПас. При значительной проницаемостной неоднородности пластов (особенно в карбонатных коллекторах) предварительно проводят временную изоляцию высокопроницаемых зон путем направленной закачки в призабойную зону пласта кислотной микроэмульсии с вязкостью 2500-3500 мПас. В этом случае происходит временная блокировка высокопроницаемого интервала и появляется возможность последующей доставки активной соляной кислоты в низкопроницаемые нефтенасыщенные пропластки. Это позволяет увеличить охват пласта воздействием за счет подключения ранее не работавших интервалов. Применение для этих целей гидрофобной кислотной микроэмульсии с более высокими реологическими свойствами целесообразно, на наш взгляд, вследствие того, что после выполнения блокирующей функции кислотная эмульсия реализует свой химический потенциал более замедленно, вступая в реакцию с породой пласта. При существенных различиях в проницаемости трещин и матрицы карбонатного коллектора (на 1-2 порядка) вместо временной изоляции высокопроницаемых зон проводят закрытие последних стабильными инвертными эмульсионными растворами, не содержащими кислоты. При обработке по предлагаемому изобретению количество кислотной микроэмульсии выбирают по известным рекомендациям в отрасли из расчета 0,5-11 м3/м обрабатываемой толщины. Примеры конкретного выполнения Пример 1 (мас.%). В колбу, снабженную якорной мешалкой с частотой оборотов до 103 в мин, загружают 32 дизельного топлива и при интенсивном перемешивании добавляют 0,8 гидрофобного химически модифицированного кремнезема (ХМК) со степенью гидрофобности 99,8%, получаемого по патенту РФ № 2152967, 1999 г., и 0,2 эмультала. По завершении ввода в дисперсионную фазу эмульгатора и стабилизатора в колбе постепенно в течение 10 мин диспергируют 67 раствора соляной кислоты с концентрацией 15%. Перемешивание продолжают в течение 15 мин и образовавшуюся кислотную микроэмульсию выдерживают в течение 1 часа для разгазирования и стабилизации агрегативных процессов. С использованием установки АКМ-коллектор были определены скорости реакции различных кислотных составов с карбонатной породой башкирских отложений. В процессе исследования фиксировался объем выходящей из образца жидкости во времени. Полученные результаты приведены в табл.1. В табл.1 приведены также сравнительные данные исследований эмульсии и 10 %-ного водного раствора НСl. Опыт с неэмульгированной 10% НСl (пример 2) показал, что при поступлении в образец первой капли кислоты проницаемость его резко возрастала. Принципиально иное действие на образец карбонатной породы оказывает кислотная микроэмульсия с показателем электростабильности 208 В (пример 1). Это хорошо видно из анализа величин соотношения конечной и начальной проницаемости образцов Кк/Ко ( сравн. 30,3 и 149). В отличие от примеров 2-3 разработанная гидрофобная кислотная микроэмульсия не образует больших каналов в породе. Её действие пролонгировано и ориентировано на увеличение проницаемости коллектора в более удаленной части пласта. В табл.2 приведены результаты по стабильности кислотных микроэмульсий в зависимости от их состава. Порядок ввода компонентов для приготовления эмульсии аналогичен примеру 1. Как видно из табл.2, увеличение содержания дисперсной фазы (примеры 5, 8, 9) приводит к снижению электростабильности и увеличению вязкости. Повышение температуры состава увеличивает скорость расслоения (примеры 5-7). При температуре 20°С все образцы эмульсии в выбранных интервалах концентрации эмульгатора-стабилизатора сохраняют стабильность в течение нескольких суток. Содержание в составе эмульсии гидрофобного ХМК более 1,5 мас.%, так же, как и увеличение концентрации регулятора стабилизации эмульсии (ПАВ) более 0,3 мас.%, не приводит к заметному изменению свойств получаемых инверсионных систем (пример 12). Снижение концентраций ХМК менее 0,5 и ПАВ менее 0,1 мас.% (примеры 13, 14) нецелесообразно, т.к. в этом случае образуется неустойчивая эмульсия с низким значением электростабильности. Для тех случаев, когда для временной изоляции более проницаемого пропластка необходимо применение более вязкой и стабильной эмульсии, целесообразно использовать составы с высокими значениями вязкости (пример 9). * широкая фракция легких углеводородов В примерах 3, 6, 8, 9, 10, 11, 12 соотношение дисперсной-дисперсионной фаз равно 2/1, в примерах 4, 5 - 1/1, в примере 7 - около 3/1. Источники информации 1. Абасов М.Т. и др. Современные методы увеличения нефтеотдачи пластов. РМНТК “Нефтеотдача”, М., Наука, 1992, с.5-130. 2. Булыгин Д.В., Булыгин. В.Я. Геология и имитация разработки залежи нефти. М., Недра, 1996, с.257-270. 3. А.С. СССР №1809020, 15.04.1993.Формула изобретения
Инвертная кислотная микроэмульсия для обработки нефтегазового пласта, содержащая дисперсную фазу в виде водного раствора соляной кислоты и дисперсионную фазу в виде углеводородной жидкости, эмульгатор - гидрофобный модифицированный кремнезем, регулятор стабильности - поверхностно-активное вещество, отличающаяся тем, что указанный кремнезем имеет размер дискретных частиц 0,005-0,1 мкм и концентрацию 0,5-1,5 мас.%, а в качестве поверхностно-активного вещества микроэмульсия содержит ионогенные или неионогенные поверхностно-активные вещества с концентрацией 0,1-0,3 мас.%, при этом соотношение дисперсная - дисперсионная фаза изменяется в пределах 1:1 - 3:1.