Способ слежения за плановым положением контура жидких радиоактивных отходов
Реферат
Использование: для прослеживания и мониторинга жидких радиоактивных или химических отходов (ЖРО). Сущность: используют сеть обсаженных нагнетательных скважин, через которые в пласты-коллекторы закачивают минерализованные жидкие радиоактивные отходы, и сеть обсаженных наблюдательных скважин. Осуществляют электрический заряд в обсаженных нагнетательных или в близлежащих наблюдательных скважинах путем последовательного размещения питающего электрода на уровне каждого из пластов-коллекторов с минерализованными жидкими радиоактивными отходами. Наблюдения осуществляют по стволу по меньшей мере одной наблюдательной обсаженной скважины, расположенной в контролируемом районе, и/или по сети профилей на дневной поверхности. Выделение контура залежи жидких радиоактивных отходов осуществляют на основе сопоставления результатов измерений градиента потенциала электрического поля с расчетными полями нормального поля с учетом зарядов в конкретных конструкциях обсадных труб обсаженных скважин. Технический результат - повышение эффективности способа за счет получения более полной опережающей информации об экологическом состоянии мест захоронения радиоактивных отходов. 5 ил.
Изобретение относится к электроразведочным способам геофизики и может быть использовано для прослеживания и мониторинга жидких радиоактивных или химических отходов (ЖРО).
Известны способы регламентного контроля за распространением ЖРО путем использования сети обсаженных нагнетательных и наблюдательных скважин, в частности, на радиохимическом комбинате в Красноярске-26. При этом в нагнетательные скважины закачивают предварительно минерализованные радиоактивные отходы, а в наблюдательных обсаженных скважинах осуществляют регламентный мониторинг, основанный на свойствах самих радиоактивных веществ (патент РФ 2075102, G 01 V 9/00) или, например, путем определения изменения удельного электрического сопротивления проб растворов, отобранных из скважин (авторские свидетельства СССР 622026, G 01 V 5/00 и 1034505, G 01 V 5/04). Недостатком способа является отсутствие возможности оперативного слежения за контуром распространения со временем ЖРО в межскважинном пространстве. Задачей изобретения является создание способа, обеспечивающего оперативное слежение за плановым распространением радиоактивных отходов, дающего опережающую информацию относительно регламентного контроля и позволяющего таким образом корректировать мероприятия, связанные с захоронением радиоактивных отходов. Поставленная задача решается тем, что в способе слежения за плановым положением контура жидких радиоактивных отходов, включающем использование сети обсаженных нагнетательных скважин, через которые в пласты-коллекторы закачивают минерализованные радиоактивные отходы, и сети обсаженных наблюдательных скважин, согласно изобретению осуществляют электрический заряд в обсаженных нагнетательных или в близлежащих наблюдательных скважинах путем последовательного размещения питающего электрода на уровне каждого из пластов-коллекторов с минерализованными жидкими радиоактивными отходами, при этом наблюдения осуществляют по стволу по меньшей мере одной наблюдательной обсаженной скважины, расположенной в контролируемом районе, и/или по сети профилей на дневной поверхности, а выделение контура залежи жидких радиоактивных отходов осуществляют на основе сопоставления результатов измерений градиента потенциала электрического поля с расчетными полями нормального поля с учетом зарядов в конкретных конструкциях обсадных труб обсаженных скважин. На фиг. 1 приведена схема устройства для реализации способа согласно изобретению; на фиг. 2-5 показаны графики, иллюстрирующие реализацию способа. Устройство, реализующее способ, включает генератор 1, связанный через кабель 2 с расположенным в нагнетательной скважине 3 питающим электродом 4, который последовательно располагают на уровне пластов-коллекторов 5 и б. Вторым питающим электродом является "удаленный"(10 глубин скважин) электрод 7. На поверхности земли измеряют градиент потенциала с помощью первых приемных электродов 8 и высокоточного регистратора 9. Вторые приемные электроды 10 располагают по стволу наблюдательной обсаженной скважины 11. Согласование последовательности питающих импульсов тока и фиксация измеряемых сигналов осуществляется синхронизаторами 12. Способ согласно изобретению реализуется в следующей последовательности операций. На контролируемой территории, включающей обсаженную нагнетательную скважину 3, сеть наблюдательных скважин 11 и сеть наземных профилей наблюдений, в пласты-коллекторы 5, 6 через нагнетательную скважину 3 закачивают предварительно минерализованные растворы жидких радиоактивных отходов (ЖРО). Далее в нагнетательной скважине 3 последовательно располагают питающий электрод 4 на уровне каждого из пластов-коллекторов 5 и 6 с закаченными радиоактивными отходами. При пропускании разнополярных импульсов тока через электроды 4 и 7 по стволу по крайней мере одной наблюдательной обсаженной скважины 11 с помощью приемных электродов 8 и/или на поверхности земли по сети заданных профилей с помощью электродов 10 и соответственно подключенного регистратора 9 (например, высокоточной аппаратуры типа ИСЭ-8) измеряют градиент потенциала электрического поля. По результатам измерений строят графики градиента потенциала и путем сопоставления с расчетными полями нормального поля с учетом зарядов в конкретных конструкциях обсадных труб делают заключение о положении пластов-коллекторов и изменении их положения с течением времени. Зона с повышенной относительно нормального поля проводимостью идентифицируется как зона проникновения ЖРО, по которой судят о путях их преимущественного распространения. В зависимости от технологических возможностей при реализации способа электрический заряд может осуществляться в обсаженной наблюдательной скважине, близлежащей к обсаженной нагнетательной скважине 3. Теоретическое обоснование патентуемого способа иллюстрируется графиками, представленными на фиг. 2-5. Для расчетов использовался новый разработанный авторами аппарат математического моделирования электрических полей в сложно построенных трехмерных средах. На фиг. 2 приведены графики градиента потенциала V по профилю, пересекающему проекцию двух проводящих объектов. При этом размер нижнего объекта превышает примерно в 2,2 раза размеры верхнего объекта. На фиг. 3 - то же, но при размерах верхнего объекта, превышающих размеры нижнего примерно в 2,2 раза. В обоих случаях нижний пласт-коллектор залегает на глубине 400-477 м, а верхний на глубине 189-236 м. При расчетах учтено сопротивление железной трубы и бурового раствора. Как видно из приведенных ни фиг. 2 и 3 графиках, наличие проводящих слоев-коллекторов четко выделяется понижением величины V относительно нормального поля и совпадением с ним за пределами проекции объекта. Проекция края верхнего и нижнего объектов выделяется градиентной зоной перед локальным максимумом графика V. Более четкая картина выделения края нижнего и верхнего пластов-коллекторов наблюдается при размерах верхнего объекта меньших, чем размеры нижнего (фиг. 2). В данном случае оба объекта отражаются по максимуму градиента потенциала. На фиг. 4 приведены практические результаты реализации способа согласно изобретению. На контролируемой территории, включающей ряд обсаженных нагнетательных и ряд наблюдательных скважин, производился заряд в двух нагнетательных скважинах на уровнях известных пластов коллекторов на глубине 220 м и 460 м. Измерения градиента потенциала V проводили в двух обсаженных наблюдательных скважинах А-1 и А-2, расположенных на удалении от нагнетательных примерно на 1,3 км. В скважине А-1 измерения проводились дважды с интервалом в один год. Анализ графиков показывает следующее. В скважине А-1 градиент потенциала V резко возрастает в области нижнего пласта-коллектора. При этом сравнение наблюдений 2000 и 2001 годов свидетельствует о достаточно резком изменении проводимости или размеров объекта, что соответственно свидетельствует о том, что здесь находится путь распространения ЖРО. Измерения в скважине А-2 не показали резких изменений градиента потенциала V, что в свою очередь свидетельствует об отсутствии распространения ЖРО в этом направлении. На фиг. 5 приведены результаты измерений на данной территории на дневной поверхности по профилю, удаленному примерно на 1 км от нагнетательных скважин. Данный график демонстрирует достаточно четкое выделение западного края (точка В1) верхнего объекта по градиентной зоне перед максимумом графика V. В восточном направлении край объектов определяется по совпадению полученных данных (графиков) с нормальным полем (точка В2). Существенных изменений положения края ЖРО в течение 2000-2001 годов не наблюдается. В целом, проведенные исследования подтвердили возможность и эффективность применения измерений в обсаженных скважинах и наземно-скважинных наблюдений для слежения за плановым положением контура распространения ЖРО в пластах-коллекторах для мониторинговых целей. Предлагаемый способ является более эффективным по сравнению с известными, так как позволяет получать более полную, опережающую информацию об экологическом состоянии мест захоронения радиоактивных отходов.Формула изобретения
Способ слежений за плановым положением контура жидких радиоактивных отходов, включающий использование сети обсаженных нагнетательных скважин, через которые в пласты-коллекторы закачивают минерализованные жидкие радиоактивные отходы, и сети обсаженных наблюдательных скважин, отличающийся тем, что осуществляют электрический заряд в обсаженных нагнетательных или в близлежащих наблюдательных скважинах путем последовательного размещения питающих электродов на уровне каждого из пластов-коллекторов с минерализованными жидкими радиоактивными отходами, при этом наблюдения осуществляют по стволу по меньшей мере одной обсаженной наблюдательной скважины, расположенной в контролируемом районе, и/или по сети профилей на дневной поверхности, а выделение контура жидких радиоактивных отходов осуществляют на основе сопоставления результатов измерений градиента потенциала электрического поля с расчетными полями нормального поля с учетом зарядов в конкретных конструкциях обсадных труб обсаженных скважин.РИСУНКИ
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5