Способ радиальной сварки трением вращения тонкостенных трубчатых деталей из термопластичных полимеров враструб и устройство для его осуществления (варианты)

Реферат

 

Изобретение относится к сварке трением вращения изделий, имеющих форму тел вращения из термопластичных полимеров. Способ включает взаимное сопряжение свариваемых деталей по двум посадочным поверхностям разного диаметра, относительное вращение деталей, торможение и выдержку их для охлаждения. Взаимное сопряжение деталей осуществляют по цилиндрической сопрягаемой посадочной поверхности при радиусе наружной фаски конца трубы, переходящей в коническую поверхность торца, равном 5-6 величинам радиуса перехода от внутренней цилиндрической поверхности к конусу раструба. По другой посадочной поверхности сопряжение деталей осуществляют с начальным зазором между сопрягаемыми коническими поверхностями торца трубы и конуса раструба, равным не более 1/3 величины наименьшей из толщин стенок свариваемых деталей. Стенки деталей сдавливают заданным радиальным усилием оплавления. После торможения вдвигают конец трубы по оси раструба с заданным усилием до соприкосновения торца трубы и конуса раструба. Окружные, осевые и радиальные усилия, прикладываемые к свариваемым деталям, равномерно распределяют по цилиндрическим поверхностям деталей непосредственно в зоне контакта деталей по посадочным поверхностям, при этом радиальные усилия, прикладываемые снаружи и изнутри, взаимно уравновешивают. Стенки деталей сдавливают между собой радиальным усилием осадки. Устройство для осуществления способа содержит зажим с цилиндрической рабочей поверхностью, соосную зажиму раздвижную цилиндрическую оправку с приводом для перемещения вдоль оси, пневмосистему подвода и распределения сжатого воздуха, командоаппарат и блок клапанов пневмосистемы. Зажим содержит тороидальную сообщенную с блоком клапанов пневмокамеру, насаженную на раструб и выполненную из армированного эластомера. Раздвижная цилиндрическая оправка размещена внутри трубы с возможностью вращения и передачи крутящего момента от привода. Оправка также содержит тороидальную пневмокамеру из армированного эластомера. По второму варианту устройства раздвижная цилиндрическая оправка содержит две соосно установленные тороидальные пневмокамеры из армированного эластомера, примыкающие боковыми сторонами друг к другу вплотную через антифрикционные шайбы. Между боковыми сторонами пневмокамер на среднем диаметре их полостей соосно с ними размещен толкатель в виде полого цилиндра. Изобретение позволяет избежать деформацию свариваемых деталей при сварке, образование грата на сварном шве внутри деталей и обеспечить контролируемое радиальное воздействие на процесс оплавления и осадки. 3 с. и 2 з.п. ф-лы, 3 ил.

Изобретение относится к сварке трением вращения изделий, имеющих форму тел вращения из термопластичных полимеров.

В технике сварки полимерных материалов (Справочник К.И. Зайцев, Л.Н. Мацюк. Сварка полимерных материалов. - Москва: Машиностроение, 1988 г.) известны способы сварки трубопроводов из пластмасс трением вращения встык, в раструб и раструбно-стыковое соединение.

Общим недостатком этих способов является неизбежность приложения осевого усилия и крутящего момента вне непосредственной зоны сварочного соединения, что однозначно приводит к деформации изделия в околошовной зоне, а в случае тонкостенных трубопроводов от места приложения усилий до места сварки включительно.

Объясняется это следующим образом. При сварке встык околошовная зона материала трубопровода прогревается, жесткость трубопровода в этом месте снижается и под воздействием усилий: сначала осевого усилия оплавления и крутящего момента, а затем усилия осадки трубопровод в месте сварного шва и вблизи его теряет цилиндрическую форму, поскольку между сварным швом и местом приложения осевых и вращающих усилий всегда есть посредническая зона трубопровода, свободная от фиксирующих поверхностей захватов (центраторов) сварочных устройств, препятствующих деформации, что вызвано как технологическими соображениями способа сварки, так и конструктивными особенностями устройств. Кроме того, фиксация деформируемых в процессе сварки зон трубопровода, с целью ограничения их деформации, ведет к росту остаточных сварочных напряжений (см. Справочник, стр. 63, Рис. 2.7 г, д).

При сварке труб враструб или же раструбно-стыковым соединением явление сварочной деформации трубопроводов, по сравнению с вышеописанным случаем, проявляется более ярко и масштабнее, потому что величины усилий как осевых, так и окружных, значительно, в несколько раз превышают величины усилий при сварке встык, поскольку величины цилиндрических поверхностей трубопроводов, непосредственно контактирующих в процессе сварки, на порядок выше величин поверхностей свариваемых встык торцов. Кроме того, при сварке с применением неостающейся специальной вставки (дорн-гильза) значительно, на порядок, по величине возрастает во время напрессовки раструба на конец трубопровода прогретая зона трубопровода вне фиксирующих поверхностей захватов (центраторов) сварочных устройств.

Вероятность образования сварочной деформации трубопроводов возрастает особенно при тонких, относительно диаметра, стенках трубопровода, потому что уровень усилий остается прежним, а жесткость трубопровода меньше, и в значительной мере.

Недостатком известных в технике способов сварки трением вращения является также образование грата в месте сварки, особенно значительного и сравнимого по величине с толщиной стенки при соединениях трубопроводов в раструб или в раструбно-стыковом, поскольку в этом случае количество образующегося при трении расплава материала трубопровода и вытесняемого из зоны контакта свариваемых поверхностей (под воздействием радиальных усилия) больше, чем при сварке встык, по причине больших величин поверхностей контакта.

Отмеченные недостатки являются препятствиями к использованию известных способов сварки трением вращения при монтаже трубопроводов, работоспособность которых невозможна при наличии искажений их геометрической формы, например линейных трубопроводов пневмопочты, или же при наличии грата, например, канализационных систем жилых и общественных зданий.

Наиболее близким к изобретению по технической сущности и достигаемым результатам является способ радиальной сварки трением трубчатых деталей на основе полиолефинов, преимущественно армированной трубы и концевой втулки, путем взаимного сопряжения свариваемых деталей по двум посадочным поверхностям разного диаметра с начальным натягом по одной из них, относительного вращения свариваемых деталей, торможения и выдержки для охлаждения, кроме того, осуществляют сопряжение с начальным натягом дополнительно по второй посадочной поверхности, при этом сопряжение по посадочной поверхности меньшего диаметра осуществляют на диаметре, не превышающем внутренний диаметр армирующего каркаса трубы, и на длине, соизмеримой с толщиной стенки трубы, причем величину начального натяга по посадочной поверхности меньшего диаметра выбирают равной 0,6-1,0 от величины начального натяга по посадочной поверхности большого диаметра, а в центральное отверстие трубы перед сопряжением свариваемых деталей устанавливают опорную оправку. Наряду с этим имеется вариант сопряжения свариваемых деталей, при котором величину начального натяга по посадочной поверхности меньшего диаметра выбирают не более 0,6 от величины начального натяга по посадочной поверхности большого диаметра, при этом перед относительным вращением свариваемых деталей к внутренней поверхности меньшего диаметра прикладывают радиальное разжимающее усилие, равномерно распределенное по окружности. Величину начального натяга по посадочной поверхности большого диаметра при любом варианте выбирают равной 1-2% от величины этого диаметра (RU 2085383 C1, B 29 C 65/06, 11.01.93 г.).

Способ осуществляют следующим образом. Концевую втулку предварительно напрессовывают на конец трубопровода с начальным натягом по поверхности большого диаметра, равным 1-2% от величины диаметра, и с натягом по поверхности малого диаметра, равным в одном случае 0,6-1 натяга по большому диаметру, в другом - не более 0,6. При этом в отверстие трубопровода в первом случае устанавливают опорную оправку перед сопряжением свариваемых деталей, во втором - раздвижную цилиндрическую или коническую оправку перед относительным вращением.

Приводят свариваемые детали в относительное вращение. Крутящий момент к материалу втулки, примыкающему к сопрягаемым поверхностям, участвующим в сварочном процессе, прикладывают непосредственно в зоне сварки через кольцевой выступ втулки типа фланца. Реактивный крутящий момент к материалу трубопровода, примыкающему к сопрягаемым поверхностям трубопровода, участвующим в процессе сварки, прикладывают через сам трубопровод, причем место приложения крутящего момента и место сварки дистанцированы друг от друга.

После разогрева трением вращения сопрягаемых поверхностей свариваемых деталей и образования расплава материала деталей в зоне их контакта относительное вращение деталей прекращают, причем во втором случае натяга по сопрягаемым поверхностям меньшего диаметра перед вращением прикладывают радиальное разжимающее усилие, равномерно распределенное по окружности. После остановки вращения сварочное соединение выдерживают для охлаждения.

Устройство для осуществления способа включает зажим с цилиндрической рабочей поверхностью, закрепленный на основании устройства, для фиксации трубопровода и создания реактивного момента, соосно ему опорную оправку, цилиндрическую постоянного диаметра или же цилиндрическую раздвижную или же коническую с приводом для перемещения по оси.

Соосно зажиму установлен патрон для захвата концевой втулки, перемещения ее по оси при напрессовке на трубопровод и привода втулки во вращение.

Недостатком известного способа и устройства для его осуществления является деформирование участка трубопровода при осуществлении режима разогрева и оплавления сопрягаемых поверхностей свариваемых деталей между местом приложения реактивного крутящего момента к трубопроводу зажимом и местом сварки. Участок этот прогревается за счет теплопроводности от места сварки по убывающей к зажиму, материал трубопровода теряет жесткость, становится пластичным, и под воздействием крутящего момента трубопровод в этом месте скручивается в окружном направлении с уменьшением диаметра на величину до 2 мм для труб диаметров 150-200 мм (см. Справочник, стр. 63).

Армирование трубопровода ни решетчатым, ни спиральным проволочными каркасами не повышает кардинально, как известно, его жесткость на кручение и поэтому не может противостоять полностью скручиванию трубопровода. Даже в случае примыкания фиксирующей поверхности зажима к краю юбки втулки скручивания трубопровода не избежать, поскольку скручивающее напряжение в трубопроводе в месте примыкания максимально по величине. Вследствие того, что крутящий момент к трубопроводу передается втулкой по поверхности, также передается и реактивный момент от зажима, единичный крутящий момент, передаваемый участком поверхности втулки трубопроводу у места примыкания зажима к юбке втулки, значительно меньше полного реактивного момента от зажима и не может предотвратить из-за проскальзывания скручивание трубопровода в этом месте. Аналогично такая же картина происходящего у края зажима, примыкающего к юбке втулки. Скручиваемый участок трубопровода распространяется от места примыкания как под зажим, так и под втулку. Уменьшение диаметра трубопровода при скручивании под краем юбки втулки ведет к снижению заданной величины натяга и, как следствие, к снижению качества сварного соединения в этом месте.

Другим недостатком способа является неконтролируемое радиальное воздействие на процесс осадки, поскольку натяг на сопрягаемой поверхности большого диаметра выбирают в пределах 1-2% от величины этого диаметра, т.е. допустимо изменение величины натягов по посадочной поверхности в 2 раза. Это приводит к разбросу величин (нестабильности) качественных характеристик сварного шва в партии свариваемых из деталей узлов.

Самым значительным недостатком является использование одного и того же начального натяга для процесса оплавления и для процесса осадки. Это противоречит всей практике сварки полимерных деталей как встык, так и в раструб с использованием специальной вставки (дорн-гильза). Усилие осадки во всех случаях создают в 1,5-2 раза больше, чем усилие оплавления, для того чтобы выдавить из контакта весь расплав и сомкнуть ювенильные поверхности свариваемых деталей. В известном способе все происходит наоборот: оплавление при начальном натяге, предполагаемая осадка при натяге, ослабленном оплавлением. Расплав весь не выдавливается целенаправленным воздействием, и смыкание ювенильных поверхностей не происходит. Это в значительной мере ухудшает качество сварного соединения, особенно при передержке времени процесса оплавления. При незначительной ширине сопрягаемой поверхности малого диаметра, в случае передержки времени процесса оплавления, возможно вытекание всего расплава и ослабление натяга до нуля, что приведет к крайне низкому качеству сварного шва, вплоть до образования негерметичности сварного соединения, что противоречит цели известного способа.

Недостатки известного способа и устройства для его осуществления не позволяют использовать их для сварки трением вращения тонкостенных трубчатых деталей, поскольку вероятность деформации в этом случае возрастает многократно, вплоть до разрушения свариваемых деталей, а отрицательное влияние неконтролируемого радиального воздействия осадки при малой толщине стенок свариваемых деталей на качество сварного соединения максимально усилится.

К тонкостенным трубчатым деталям относятся, например, трубы, толщина стенок которых меньше наименьшей из толщин стенок, предусмотренных общегосударственными нормативными документами, и выпускаемые по ведомственным нормалям для ограниченного применения.

Технической задачей изобретения является создание способа радиальной сварки трением вращения тонкостенных трубчатых деталей из термопластичных полимеров и устройство для его осуществления, позволяющие избежать при сварке деформации свариваемых деталей за счет приложения осевых, окружных и радиальных усилий к материалу деталей, примыкающему к поверхностям, участвующим в процессе сварки, непосредственно в зоне сварки, образование грата на сварном шве внутри полости свариваемых деталей и обеспечить контролируемое радиальное воздействие на процесс оплавления и осадки с целью обеспечения высокого качества сварного соединения.

Результатом решения технической задачи является возможность радиальной сварки трением вращения тонкостенных трубчатых деталей с соотношением S - толщина стенки к D - наружному диаметру трубы - S/D0,0245 без деформации деталей и образования грата во внутренней полости.

Техническая задача по способу радиальной сварки трением вращения трубчатых деталей из термопластичных полимеров враструб путем взаимного сопряжения свариваемых деталей, преимущественно труб, по двум посадочным поверхностям разного диаметра с начальным натягом по одной из них, относительного вращения деталей, торможения и выдержки их для охлаждения решается, согласно изобретению, тем, что взаимное сопряжение свариваемых деталей осуществляют по цилиндрической сопрягаемой посадочной поверхности при радиусе наружной фаски конца трубы, переходящей в коническую поверхность торца, равном 5-6 величинам радиуса перехода от внутренней цилиндрической поверхности к конусу раструба, с начальным зазором по другой посадочной поверхности между сопрягаемыми коническими поверхностями торца трубы и конуса раструба, равным не более 1/3 величины наименьшей из толщин стенок свариваемых деталей, и сдавливают их между собой заданным радиальным усилием оплавления стенки деталей, затем, после торможения, вдвигают конец трубы по оси раструба до соприкосновения с заданным усилием, торца трубы и конуса раструба, причем окружные осевые и радиальные усилия прикладывают к свариваемым деталям равномерно распределенными по цилиндрическим поверхностям деталей: наружной - раструба, внутренней - конца трубы непосредственно в зоне контакта деталей по посадочным поверхностям, по всей его длине вдоль оси, при этом радиальные усилия, прикладываемые снаружи и изнутри, взаимно уравновешивают, после чего сдавливают между собой заданным радиальным усилием осадки стенки деталей.

Кроме того, величину радиального усилия осадки наращивают во времени за счет увеличения во времени площади места приложения радиального усилия осадки к внутренней поверхности трубы изменением ширины места приложения вдоль оси с нуля от конца трубы до максимума у торца раструба, при этом площадь места приложения радиального усилия оплавления на внутреннюю поверхность трубы сокращают во времени в обратном порядке, причем удельные давления по площади радиальных усилий осадки и плавления сохраняют постоянными и равными заданной величине, а величину удельного давления по площади радиального усилия на наружнюю поверхность раструба наращивают во времени адекватно наращиванию во времени усредненной величины удельного давления радиальных усилий на внутреннюю поверхность трубы с учетом соотношения величин площадей мест их приложения.

Усредненная величина удельного давления где qопл и Vопл - удельное давление и площадь места приложения удельного давления радиального усилия оплавления; qос и Voc - удельное давление и площадь места приложения удельного давления радиального усилия осадки.

Техническая задача по I варианту устройства для радиальной сварки трением вращения тонкостенных трубчатых деталей из термопластичных полимеров враструб, преимущественно труб, включающего зажим с цилиндрической рабочей поверхностью, закрепленный на основании устройства, соосно зажиму, раздвижную цилиндрическую оправку с приводом для перемещения вдоль оси, пневмосистему подвода и распределения сжатого воздуха, командоаппарат и блок клапанов пневмосистемы, решается, согласно изобретению, за счет того, что зажим содержит тороидальную, сообщенную с блоком клапанов пневмокамеру, насаженную на раструб и выполненную из армированного эластомера, при этом внешняя поверхность внутренней части оболочки пневмокамеры, обращенная к оси, является рабочей, совпадает по ширине с раструбом и сопряжена с ним, а диаметр превышает в нерабочем состоянии диаметр раструба на 2-3 мм, причем раздвижная цилиндрическая оправка, размещенная внутри трубы с возможностью вращения и передачи крутящего момента от привода, также содержит тороидальную пневмокамеру, выполненную из армированного эластомера, внешняя поверхность наружной части оболочки которой, обращенная к внутренней поверхности трубы и сопряженная с ней, является рабочей, совпадает по ширине с раструбом, не выходит за габариты по оси контакта сопрягаемых цилиндрических поверхностей раструба и трубы, а диаметр в нерабочем состоянии меньше внутреннего диаметра трубы на 2-3 мм, причем пневмокамера через внутреннее сверление в оправке сообщена с блоком клапанов.

Техническая задача по II варианту устройства для радиальной сварки трением вращения тонкостенных трубчатых деталей из термопластичных полимеров враструб, преимущественно труб, включающего зажим с цилиндрической рабочей поверхностью, закрепленный на основании устройства, соосно зажиму, раздвижную цилиндрическую оправку с приводом для перемещения вдоль оси, пневмосистему подвода и распределения сжатого воздуха, командоаппарат и блок клапанов пневмосистемы, решается, согласно изобретению, за счет того, что зажим содержит тороидальную, сообщенную с блоком клапанов пневмокамеру, насаженную на раструб, выполненную из армированного эластомера, при этом внешняя поверхность внутренней части оболочки пневмокамеры, обращенная к оси, является рабочей, совпадает по ширине с раструбом и сопряжена с ним, а диаметр превышает в нерабочем состоянии диаметр раструба на 2-3 мм, причем раздвижная цилиндрическая оправка имеет диаметр на 2-3 мм меньше диаметра трубы, содержит две соосно установленные тороидальные пневмокамеры, выполненные из армированного эластомера, сообщенные через внутренние сверления в оправке с блоком клапанов и размещенные в глухих цилиндрических расточках оправки, обращенных друг к другу открытой стороной, таким образом, что пневмокамеры вплотную через антифрикционные шайбы примыкают боковыми сторонами друг к другу, а внешняя поверхность наружной части оболочек пневмокамер образует единую рабочую поверхность во время процесса осадки, сопряженную частью с внутренней поверхностью расточек, а частью, выходящей в разрыв между краями внешних обечаек, сопряженную с внутренней поверхностью трубы, при этом в нерабочем состоянии диаметр этой части рабочей поверхности на 2-3 мм меньше внутреннего диаметра трубы, причем между боковыми сторонами пневмокамер, на среднем диаметре их полостей, соосно с ними размещен толкатель в виде полого цилиндра длиной более чем две ширины раструба, сопряженный по цилиндрическим поверхностям с зазором с антифрикционными шайбами, а торцами - с боковой стороной оболочек пневмокамер, внедряя часть их внутрь полостей пневмокамер и образуя тем самым из них незамкнутые плоские в сечении тороидальные камеры, обращенные друг к другу открытой стороной, размещенные внутри полостей пневмокамер. Оправка намагничена и вывешена по оси устройства в магнитном подвесе.

Сущность изобретения поясняется чертежами: Фиг.1 - продольный разрез устройства по I варианту; Фиг. 2 - фрагмент А продольного разреза; Фиг.3 - продольный разрез устройства по II варианту.

Устройство по I варианту содержит (см. Фиг.1) зажим 1, закрепленный на основании с тороидальной пневмокамерой 2, состоящей из оболочки 3 из армированного эластомера с привулканизированными щайбами 4. Оболочка 3 с шайбами 4 установлена в расточке зажима 1 и закреплена в нем винтами 5 и крышкой 6. Пневмокамера 2 сообщена трубопроводом 7 с блоком управляющих клапанов (на Фиг. 1, 3 не показаны) пневмосистемы подвода и распределения сжатого воздуха в пневмокамере 2. Управление работой пневмокамеры 2 осуществляется блоком клапанов по сигналам командоаппарата по заданной программе. Рабочая поверхность 8 оболочки 3 сопрягается с наружной поверхностью раструба 9, на который насажена пневмокамера 2. Диаметр рабочей поверхности 8 на 2-3 мм в нерабочем состоянии больше диаметра раструба 9. Рабочая поверхность 8 по ширине В равна ширине наружной поверхности раструба 9 и полностью совпадает с ней. Раструб 9 образован на конце трубопровода 10, с которым сваривают трубу 11. Внутри трубы 11 размещена раздвижная цилиндрическая оправка 12, на которой установлена тороидальная пневмокамера 13, состоящая из оболочки 14 с привулканизированными шайбами 15, изготовленная из армированного эластомера. Оболочка 14 с помощью винтов 16 и крышки 17 установлена в расточке оправки 12. Оправка 12 имеет хвостовик 18, выходящий из свободного конца трубы 11 и соединенный с приводом (на Фиг.1, 3 не показан), осуществляющим при необходимости перемещение оправки 12 вдоль оси и вращение ее с передачей крутящего момента. Рабочая поверхность 19 оболочки 14 по ширине В равна ширине контакта на посадочной цилиндрической поверхности, образованного сопряжением с нулевым начальным зазором внутренней поверхности раструба 9 трубопровода 10 с наружной поверхностью трубы 11, и сопрягается с внутренней поверхностью трубы 11.

Диаметр рабочей поверхности 19 в нерабочем состоянии на 2-3 мм меньше внутреннего диаметра трубы 11. Рабочие поверхности 8 пневмокамеры 2 и 19 пневмокамеры 13, контакт внутренней поверхности раструба 9 и наружной поверхности трубы 11 находятся в створе ширины В раструба 9. Пневмокамера 13 внутренним сверлением 20 сообщена с блоком клапанов пневмосистемы. Оправка 12 намагничена и вывешена по оси устройства в магнитном подвесе 21 для компенсации веса оправки 12.

Устройство по варианту II содержит (см. Фиг.3) две соосные пневмокамеры: переднюю 22 и заднюю 23, состоящие из оболочек соответственно 24 и 25, изготовленные из армированного эластомера и установленные соответственно в расточках 26 и 27 оправки 12, связанной хвостовиком 18 с приводом вращения и перемещения оправки 12 вдоль оси. Пневмокамеры 22, 23 сообщены через внутренние сверления 28, 29 с блоком клапанов пневмосистемы. Пневмокамеры 22 и 23 установлены вплотную боковыми сторонами оболочек 24, 25 через антифрикционные шайбы 30, 31 (например, фторопластовые). Между боковыми сторонами оболочек 24, 25 на среднем диаметре пневмокамер 22, 23 между антифрикционными шайбами 30, 31 установлен толкатель 33, изготовленный из прочного легкого материала в виде полого цилиндра длиной более 2В, сопрягаемый торцами с оболочками 24, 25 и по цилиндрическим поверхностям с зазором с антифрикционными шайбами 30, 31. Рабочие поверхности 32, 34 оболочек 24, 25 имеют возможность образовать единую рабочую поверхность на внутренней поверхности трубы 11. Диаметр ее в нерабочем состоянии на 2-3 мм меньше внутреннего диаметра трубы 11. Диаметр оправки 12 также меньше на 2-3 мм внутреннего диаметра трубы 11. Часть рабочих поверхностей 32, 34 оболочек 24, 25 сопрягается с внутренней цилиндрической поверхностью расточек 26, 27; другая часть выходит в разрыв между краями обечаек 35, 36 расточек 26, 27 и сопрягается внутренней поверхностью трубы 11 в створе ширины В раструба 9. Обечайка 36 из конструктивных соображений выполнена съемной. Оболочки 24, 25 закреплены с помощью винтов 37 и колец 38 к днищам 39 расточек 26, 27. Торцы толкателя 33 внедряют части 40, 41 боковых сторон оболочек 24, 25 внутрь полостей камер 22, 23, образуя тем самым из них незамкнутые плоские в сечении тороидальные камеры, обращенные друг к другу открытой стороной.

Способ осуществляют следующим образом. На конце трубы 11 (см. Фиг.2) выполняют фаску радиусом R1, переходящую в коническую поверхность 42 торца трубы 11. Величина R1 в 5-6 раз больше величины радиуса R2 перехода от внутренней цилиндрической поверхности к конусу 43 раструба 9. Конец трубы 11 вставляют в раструб 9, сопрягая их таким образом по цилиндрической посадочной поверхности с зазором, наименьшая величина которого равна нулю, и вдвигают трубу 11 по оси, обеспечивая начальный зазор k по другой посадочной поверхности между сопрягаемыми коническими поверхностями торца 42 трубы 11 и конуса 43 раструба 9. Величину зазора k выбирают не более 1/3 величины наименьшей из толщин свариваемых деталей 9, 11. Раструб 9 фиксируют пневмокамерой 2 зажима 1, трубу 11 - пнемокамерой 13 оправки 12. Радиальные усилия, создаваемые пневмокамерами 2 и 13, всегда поддерживаются равными при любом режиме: как плавления, так и осадки. Стенки раструба 9 и трубы 11 сдавливают между собой пневмокамерами 2 и 13 с заданным радиальным усилием оплавления, равномерно распределенным по поверхности деталей 9, 11 непосредственно в зоне сварки, создавая между ними натяг контролируемой величины. Приводом через хвостовик 18 и оправку 12 приводят во вращение трубу 11. Трубопровод 10 с раструбом 9 остается неподвижным. Сила трения рабочих поверхностей 8, 19 пневмокамер 2 и 13 по поверхностям свариваемых деталей 9, 11 больше, чем сила трения между деталями 9, 11, поскольку удельное давление рабочих поверхностей 8, 19 на детали 9, 11 больше за счет жесткости деталей 9, 11, чем удельное давление в контакте между деталями 9, 11, поэтому рабочие поверхности 8, 19 удерживают детали 9, 11 без проскальзывания. За счет силы трения и относительного вращения свариваемых деталей 9, 11 в контакте между ними шириной по оси В выделяется тепло, оплавляющее поверхностный слой свариваемых деталей 9, 11. Образуется слой расплава термопластичного полимерного материала деталей 9, 11. Слой расплава защищен от влияния атмосферы. Затем вращение трубы 11 прекращают и сдвигают ее по оси внутрь раструба 9 до соприкосновения с заданным усилием торца 42 и конуса 43. После этого стенки свариваемых деталей 9, 11 сдавливают с заданным радиальным усилием осадки с помощью пневмокамер 2, 13. При этом расплав из контакта свариваемых деталей 9, 11 выдавливается, унося с собой все поверхностные ингредиенты, образовавшиеся на деталях 9, 11 до сварки, освобождая для контакта ювенильные поверхности деталей 9, 11. Радиальные усилия пневмокамеры 2 зажима на раструб 9 увеличиваются с увеличением радиального усилия пневмокамеры 13 на внутреннюю поверхность трубы 11, обеспечивая тем самым радиальное равновесие стенок свариваемых деталей 9, 11 в пределах величины осадки. В таком положении соединение выдерживают до полного охлаждения. Основная часть расплава, выдавливаемая из контакта, изливается наружу, образуя наружний грат, легко удаляемый. Незначительная часть расплава изливается в полость 44, образовавшуюся при смыкании поверхностей 42, 43 между поверхностями, описываемыми радиусами R1 и R2. Плотный герметичный контакт между поверхностями 42 и 43, к тому же заклиниваемый быстро остывающим от контакта с холодными поверхностями расплавом, предотвращает вытекание расплава внутрь и образование внутреннего грата. Зазор k предусмотрен из чисто технологических соображений для того, чтобы предотвратить образование расплава на поверхностях 42, 43. Незначительная часть расплава, вытекшая из контакта под воздействием радиальных усилий оплавления при сдвиге трубы 11, будет захвачена и заклинена между деталями 9, 11. Расплав, вытекший из контакта под воздействием радиальных усилий осадки, будет закупорен в полости 44.

Контроль равномерно распределенных по поверхности свариваемых деталей 9, 11 радиальных усилий оплавления и осадки, отсутствие неконтролируемого начального натяга по посадочной цилиндрической поверхности, а также уравновешивание наружных и внутренних радиальных усилий между собой позволяют получить контролируемые надежность и качество сварного соединения без значительного ослабления стенок деталей 9, 11 за счет их утончения при оплавлении. Приложение радиальных, осевых и окружных усилий к материалу свариваемых деталей, прилагающему к поверхностям, участвующим в процессе сварки, непосредственно в зоне контакта, равномерное их распределение по поверхности, отсутствие промежуточных зон деталей, посредничающих в передаче усилий от места приложения к месту их применения, а также уравновешивание наружных и внутренних радиальных усилий позволяют осуществить процесс сварки без сварочных деформаций свариваемых деталей. Магнитная подвеска оправки 12 позволяет избежать неравномерного по окружности радиального силового воздействия веса оправки 12 на сварное соединение.

Способ осуществляют также со следующими дополнениями. Радиальные усилия плавления на внутреннюю поверхность трубы 11 создают задней пневмокамерой 23, рабочая поверхность 34 оболочки 25 которой в это время сопрягается с внутренней поверхностью трубы 11. Задняя пневмокамера 23 находится в крайнем переднем положении и ее оболочка 25 выходит в разрыв между краями обечаек 35, 36 расточек 26, 27 оправки 12. Передняя пневмокамера 22 находится полностью в расточке 26. Пневмокамерой 2 зажима 1 создают радиальное усилие, равное по величине и обратное по направлению радиальному усилию оплавления, создаваемому пневмокамерой 23. После торможения и сдвига по оси трубы 11 в раструб 9 в переднюю пневмокамеру 22 подают сжатый воздух давлением, создающим заданное радиальное усилие осадки. Пневмокамерой 22 начинают вытеснять пневмокамеру 23 с давлением сжатого воздуха, обеспечивающим радиальное усилие оплавления, из крайнего переднего положения, и рабочая поверхность 32 оболочки 24 начинает постепенно занимать разрыв между краями обечаек 35, 36 расточек 26, 27, вступая в сопряжение с внутренней поверхностью трубы 11, постепенно увеличивая площадь места приложения радиального усилия осадки. Рабочая поверхность 34 оболочки 25 задней пневмокамеры 23 постепенно уступает место сопряжения с внутренней поверхностью трубы 11, освобождая разрыв между краями обечаек 35, 36 расточек 26, 27 и уменьшая площадь места приложения радиального усилия оплавления к внутренней поверхности трубы 11. Граница между рабочими поверхностями 32 и 34 постепенно сдвигается в сторону выхода из раструба 9. Скачок величины радиальных усилий в сторону увеличения движется вместе с границей, производя выдавливание расплава из контакта свариваемых деталей 9, 11 наружу и тем самым направляя течение расплава в нужную, наружу, сторону, освобождая ювенильные поверхности свариваемых деталей 9, 11 для контакта между собой.

Процесс выдавливания расплава подобен процессу работы перистальтического насоса. После сдавливания ювенильных поверхностей радиальным усилием осадки по всей площади контакта соединение оставляют в таком положении для охлаждения. Задняя пневмокамера 23 находится в крайнем заднем положении в расточке 27. Передняя пневмокамера 22 находится также в крайнем заднем положении. По мере изменения соотношения радиальных усилий оплавления и осадки на внутреннюю поверхность трубы 11 давление воздуха в пневмокамере 2 устанавливают величиной, адекватной усредненной величине удельных давлений радиальных усилий оплавления и осадки с учетом соотношения величин площадей мест их приложения к внутренней поверхности трубы 11.

Усредненная величина удельного давления где qопл и Vопл - удельное давление и площадь места приложения удельного давления радиального усилия оплавления; qoc и Vос - удельное давление и площадь места приложения удельного давления радиального усилия осадки. Перистальтический способ выдавливания расплава из контакта позволяет полностью исключить возможность возникновения грата внутри полости трубопровода 10.

Радиальные, окружные и осевые усилия, прикладываемые к цилиндрическим поверхностям свариваемых деталей 9 и 11 со стороны пневмокамер 2 и 13 в I варианте и пневмокамер 2, 22 и 23 во II варианте устройства, равномерно распределены по поверхности сопряжения пневмокамер 2, 13, 22, 23 со свариваемыми деталями 9, 11. Равномерное распределение обеспечивается тем, что армированный эластомер, из которого изготовлены оболочки 3 и 14 пневмокамер 2 и 13 и оболочки 24 и 25 пневмокамер 22, 23, обладает, как известно, значительной изгибной податливостью, что изначально присуще тонкостенным оболочкам, и значительной жесткостью на сдвиг и растяжение. Равномерно распределенное по поверхности давление сжатого воздуха изнутри пневмокамер 2, 13, 22, 23 на части оболочек 3, 14, 24, 25, обладающие возможностью выпучивания наружу, с учетом того, что ширина этих участков превышает ширину рабочих поверхностей В оболочек 3, 14, 24, 25, создает равномерно распределенное по рабочей поверхности В оболочек 3, 14, 24, 25 радиальное усилие на свариваемые детали 9, 11, которое за счет сил трения армированного эластомера о материал деталей 9, 11 обеспечивает равномерно распределенное по поверхности приложение окружного и осевого усилий к деталям 9, 11, передаваемых оболочками 3, 14, 24, 25 за счет жесткости армированного эластомера на сдвиг и растяжение. Изначальная жесткость армированного эластомера повышается под воздействием давления сжатого воздуха в полостях пневмокамер 2, 13, 22, 23. Передача усилий в этом случае аналогична передаче усилий пневмошинами транспортных средств на грунт. Величины участков оболочек 3, 14, 24, 25, подвергаемые сдвигу и растяжению, незначительны по сравнению с шириной В рабочих поверхностей оболочек 3, 14, 24, 25, и имеющие место смещения эластомера на этих участках незначительны и не оказывают существенного влияния на процесс осуществления способа.

Способ позволяет избежать сварочных деформаций свариваемых деталей и обеспечить контролируемые надежность и качество сварного соединения с гарантированным отсутствием грата на внутренней поверхности трубопровода.

Устройство по I варианту работает следующим образом (фиг.1). Трубопровод 10 при свободном за счет диаметрального зазора 2-3 мм между ним и пневмокамерой 2 осевом его перемещении внутри пневмокамеры 2 зажима 1 устанавливают таким образом, чтобы раструб 9 трубопровода 10 совпал по