Способ сополимеризации олефинов с мостиковыми гафноценами
Реферат
Изобретение относится к способам полимеризации олефинов с применением гафноценовых каталитических комплексов. Описан способ полимеризации при получении этиленовых сополимеров, плотность которых составляет от примерно 0,850 до примерно 0,930, включающий введение в гомогенных полимеризационных условиях при реакционной температуре, от равной или превышающей 60 до 225С, этилена и одного или нескольких сомономеров, способных к полимеризации внедрением, в контакт с гафноценовым каталитическим комплексом с мостиковой связью, дериватизированным из А) бициклопентадиенильного гафнийсодержащего металлорганического соединения, включающего I) по меньшей мере один незамещенный циклопентадиенильный лиганд или замещенный ароматическими конденсированными кольцами циклопентадиенильный лиганд, II) один замещенный ароматическими конденсированными кольцами циклопентадиенильный лиганд и III) ковалентный мостик, связывающий оба циклопентадиенильных лиганда, причем такой мостик включает один атом углерода или кремния с двумя арильными группами, каждая из которых замещена С1-С20гидрокарбильной или гидрокарбилсилильной группой, по меньшей мере одна из которых представляет собой линейный заместитель С3 или с большим числом атомов углерода, и Б) активирующего сокатализатора. Технический результат: описан способ, позволяющий получать сополимеры с высокими молекулярными массами. 1 с. и 17 з.п.ф-лы, 4 табл.
Область техники, к которой относится изобретение
Настоящее изобретение относится к способам сополимеризации олефинов с использованием замещенных гафноценовых каталитических соединений с некоординационными анионами. Предпосылки создания изобретения Олефиновые полимеры, включающие звенья этилена и по меньшей мере одного или нескольких -олефинов, а также одного или нескольких необязательных диолефинов, составляют большой сектор полиолефиновых полимеров, который в настоящем описании упоминаются как "этиленовые сополимеры". Диапазон таких полимеров простирается от кристаллических полиэтиленовых сополимеров до в значительной степени аморфных эластомеров, между которыми находится новая область полукристаллических "пластомеров". Так, в частности, этиленовые сополимерные пластомеры являются хорошо зарекомендовавшим себя классом промышленных полимеров, которые находят самое разнообразное применение, связанное с их уникальными свойствами, такими, как эластомерные свойства и их термоокислительная устойчивость. Области применения пластомеров как обычных термопластичных полиолефинов включают получение пленок, покрытий для проводов и кабелей, модификацию полимеров (путем введения в смеси с другими полиолефинами), литье под давлением, изготовление вспененных материалов, обуви, листовых материалов, функционализованных полимеров (таких, как получаемые привитой свободнорадикальной сополимеризацией с полярными мономерами) и компонентов компаундов, клеев и герметиков. Синтезируемые в промышленных условиях этиленовые сополимеры традиционно получают полимеризацией по Циглеру-Натту с использованием каталитических систем, которые в значительной мере основаны на ванадии или титане. Более новые металлоценовые каталитические соединения привлекли к себе внимание благодаря легкости введения с их помощью более существенных количеств мономерных звеньев и возможности повысить полимеризационную активность. В US 5324800 описаны металлоцены, содержащие замещенные и незамещенные циклопентадиенильные лиганды, которые приемлемы для получения высокомолекулярных олефиновых полимеров, включая линейные этиленовые сополимеры низкой плотности с небольшим количеством -олефиновых звеньев. Некоординационные анионы, которые могут быть использованы в качестве каталитических компонентов с такими металлоценами, известны. Понятие "некоординационный анион" в настоящее время принято в терминологии, относящейся к области полимеризации олефинов, как координационной полимеризации или полимеризации внедрением, так и карбокатионной полимеризации. Некоординационные анионы действуют как электронно-стабилизирующие сокатализаторы или противоионы в отношении катионоактивных металлоценов, которые активны при полимеризации олефинов. Понятие "некоординационный анион", используемое в настоящем описании и в литературных ссылках, применимо как к некоординационным анионам, так и к слабо координационным анионам, которые не так сильно координированы с катионоактивным комплексом, чтобы обладать подвижностью для замещения олефиново- или ацетиленово-ненасыщенными мономерами по месту внедрения. В US 5198401 в качестве предпочтительного некоординационного аниона описан тетра(перфторфенил)бор, [B(рfр)4]- или [B(C6F5)4]-, в котором перфторированные фенильные лиганды при атоме бора обуславливают подвижность и стойкость противоиона к потенциальным обратным взаимодействиям с комплексами с металлическим катионом. Полезность ионогенных катализаторов на металлоценовой основе при высокотемпературной полимеризации олефинов описана в US 5408017 и 5408208, ЕР 0612768 и WO 96/33227. Каждая из этих публикаций посвящена металлоценовым катализаторам, приемлемым для проведения высокотемпературных процессов сополимеризации олефинов. Высокомолекулярные этилен/-олефиновые сополимеры являются задачей по ЕР 0612768, для выполнения которой предназначены каталитические системы на основе бис(циклопентадиенил/инденил/флуоренил)гафноценов, которые совмещены с алюминийалкильным соединением и ионизирующим ионогенным соединением, обеспечивающими наличие некоординационного аниона. Как сказано выше, общеизвестной проблемой в процессах высокотемпературной полимеризации, в частности в случаях, когда добиваются значительного содержания вводимых в этиленовые сополимеры сомономерных звеньев, является отмечаемое снижение молекулярной массы или повышение индекса расплава (ИР). Существует большая потребность в средствах сохранения высоких молекулярных масс или низкого ИР этиленовых сополимеров низкой плотности (с высоким содержанием сомономерных звеньев) в сочетании с одновременным ведением процесса при экономически предпочтительных высоких температурах реакции полимеризации и высокой производительности по полимеру. Краткое описание изобретения Таким образом, объектом изобретения являются замещенные, связанные мостиками каталитические комплексы, включающие некоординационные анионы, которые проявляют неожиданную стойкость в ходе проведения высокотемпературных процессов полимеризации олефинов, благодаря чему высокомолекулярные олефиновые сополимеры могут быть получены при относительно высокой производительности. Более конкретно объектом изобретения является способ полимеризации при получении этиленовых сополимеров, плотность которых составляет от примерно 0,850 до примерно 0,930, включающий введение в сверхкритических условиях или в условиях полимеризации в растворе при реакционной температуре, от равной или превышающей примерно 60 до 225С, этилена и одного или нескольких сомономеров, способных к полимеризации внедрением, в контакт с гафноценовым каталитическим комплексом, дериватизированным из А) бициклопентадиенильного гафнийсодержащего металлорганического соединения, включающего I) по меньшей мере один незамещенный циклопентадиенильный лиганд или замещенный ароматическими конденсированными кольцами циклопентадиенильный лиганд, не имеющий дополнительных заместителей, II) один замещенный или не замещенный ароматическими конденсированными кольцами циклопентадиенильный лиганд и III) ковалентный мостик, связывающий оба циклопентадиенильных лиганда, причем такой мостик включает один атом углерода или кремния с двумя арильными группами, каждая из которых замещена С1-С20гидрокарбильной или гидрокарбилсилильной группой, по меньшей мере одна из которых представляет собой линейный заместитель С3- или с большим числом атомов углерода, и Б) активирующего со катализатора, предпочтительно ионогенного соединения-предшественника, включающего галоидированный тетраарилзамещенный анион с элементом 13-й группы. Подробное описание изобретения Гафниевые соединения с мостиковой связью по изобретению включают те, которые содержат по одному замещенному углеродному или кремниевому атому, связывающему мостиком два циклопентадиенилсодержащих (Ср) лиганда гафниевых металлических центров (III), замещенный ароматическими конденсированными кольцами циклопентадиенильный лиганд или лиганды, предпочтительно те, которые содержат гидрокарбильные или гидрокарбилсилильные С1-С30заместители при (II) нециклопентадиенильном ароматическом кольце. Предпочтительные мостиковые заместители включают линейный или разветвленный С1-С20алкил или С1-С20замещенный силил, замещенные фенильные группы, причем алкильные или замещенные силильные заместители находятся в пара- или мета-положениях арильных групп, предпочтительно у которых по меньшей мере один из алкильных заместителей представляет собой линейный н-алкильный заместитель С3- или с большим числом атомов углерода, предпочтительно С4- или с большим числом атомов углерода. Конкретные примеры включают метил, этил, н-пропил, н-бутил, втор-бутил, изобутил, трет-бутил, н-пентил, неопентил и т.д. Заместители, находящиеся на нециклопентадиенильных ароматических кольцах замещенного ароматическим конденсированным кольцом циклопентадиенильного лиганда (II), такого, как содержащий инденильные и флуоренильные производные циклопентадиенильных групп, как правило, включают одну или несколько углеводородных или гидрокарбилсилильных C1-С30групп, выбранных из групп с линейным, разветвленным, циклическим, алифатическим, ароматическим или комбинированным строением, включая конфигурации с конденсированными кольцевыми или боковыми группами. Примеры включают метил, изопропил, н-пропил, н-бутил, изобутил, трет-бутил, неопентил, фенил, н-гексил, циклогексил и бензил. Принимая во внимание цели данной заявки на патент, понятие "углеводородный" или "гидрокарбильный" использовано применительно к тем соединениям или группам, которые обладают по существу углеводородными характеристиками, но включают не более примерно 10 мол.% неуглеродных атомов, таких, как атомы бора, кремния, кислорода, азота, серы и фосфора. Неограничивающими примерами "гидрокарбилсилила" служат диалкил и триалкилсилилы. Подобным же образом в настоящем описании понятия "циклопентадиенильный", "инденильный" и "флуоренильный" рассматриваются как охватывающие применение гетероатомсодержащих циклопентадиенильных колец или конденсированных колец, у которых один из циклических углеродных атомов в Ср кольце или в конденсированном с ним кольце замещен неуглеродным атомом элемента 14-й, 15-й или 16-й группы (см., например, содержание заявки WO 98/37106, имеющей общую дату приоритета с заявкой США серийный номер 08/999214, поданной 29.12.97, и заявки WO 98/41530, имеющей общую дату приоритета с заявкой США серийный номер 09/042378, поданной 13.3.98, включенные в настоящее описание в соответствии с существующей в США патентной практикой в качестве ссылок. Конкретные гафниевые катализаторы с мостиковой связью включают те, которые дериватизированы из (1) комплексов на инденильной основе, таких, как изомеры и смеси (пара-н-бутилфенил)(пара-трет-диалкилбутилфенил)метилен-(флуоренил)(инденил)гафнийдиметила, (пара-н-пропилфенил)(пара-метил-фенил)метилен(флуоренил)(инденил)гафнийдиметила, ди(пара-н-бутилфенил)-метилен(2,7-ди-трет-бутилфлуоренил)(инденил)гафнийдиметила, (пара-н-бутилфенил)(пара-трет-бутилфенил)метилен(2,7-ди-трет-бутилфлуорен-ил)(инденил)гафнийдиметила, (пара-н-бутилфенил)(пара-трет-бутилфенил)-метилен(2,7-диметилфлуоренил)(инденил)гафнийдибензила и ди(пара-н-бут-илфенил)метилен(флуоренил)(инденил)гафнийдиметила; (2) комплексов на флуоренильной основе, таких, как (пара-н-пропилфенил)(пара-изопропилфен-ил)силил(флуоренил)(флуоренил)гафнийди-трет-бутил, ди(пара-н-пропилфен-ил)метилен(2,7-ди-трет-бутил-5-метилфлуоренил)(флуоренил)гафнийдиметил и (3) комплексов на циклопентадиенильной основе, таких, как изомеры и смеси (пара-н-пропилфенил)(пара-изопропилфенил)метилен(флуоренил)(инденил)-гафнийдиметила, (пара-н-бутилфенил)(пара-трет-бутилфенил)метилен(флуоренил)(циклопентадиенил)гафнийдиметила, ди(пара-н-бутилфенил)метилен-(2,7-ди-трет-бутилфлуоренил)(циклопентадиенил)гафнийдиметила, (пара-н-бутилфенил)(пара-трет-бутилфенил)метилен(2,7-ди-трет-бутилфлуоренил)(циклопентадиенил)гафнийдиметила и ди(пара-н-бутилфенил)метилен(2,7-диметилфлуоренил)(циклопентадиенил)гафнийдиметила и -дибензила. Было установлено, что замещенные соединения, содержащие мостиковые связи, такие, как те асимметричные соединения, которые перечислены выше, особенно эффективны для применения в соответствии с изобретением. Так, в частности, что касается гафниевых соединений с мостиковой связью, то повышение степени замещения замещенного ароматическими конденсированными кольцами лиганда (II) обусловливает увеличение молекулярной массы, что можно сказать также об использовании по изобретению ковалентных мостиков (III) между циклопентадиенильными лигандами, как изложено выше. Замещенные арильные группы связывающего мостиком атома обусловливают неожиданное повышение активности или производительности катализатора в сравнении с более простыми диарильными замещенными аналогами без нежелательного влияния на молекулярную массу образующихся сополимеров. Предпочтительный вариант замещения флуоренильных или инденильных радикалов (II) в соединениях гафния обычно включает два или большее число гидрокарбильных или гидрокарбилсилильных C1-C30заместителей кольцевого водорода в по меньшей мере одном 6-членном конденсированном кольце, предпочтительнее в обоих в случае флуоренила. По изобретению активирующие сокаталитические ионизирующие соединения-предшественники включают комплексы с элементом 13-й группы, содержащие по меньшей мере по два галоидированных арилзамещенных ароматических лиганда, такие, как галоидированные тетрафенилборные и -алюминиевые соединения, примеры которых приведены в описании известного уровня техники. Предпочтительные ароматические лиганды состоят из полициклических ароматических углеводородных остатков и ароматических кольцевых конгломератов, в которых два или большее число колец (или конденсированных кольцевых систем) связаны непосредственно друг с другом или находятся вместе. Эти лиганды, которые могут быть одинаковыми или различными, ковалентно связаны непосредственно с металлическим/металлоидным центром. В предпочтительном варианте арильные группы представляют собой галоидированные тетраарильные анионные комплексы с элементом 13-й группы, включающие по меньшей мере по одному конденсированному полициклическому ароматическому углеводородному остатку или боковому ароматическому кольцу. Примерами служат инденильные, нафтильные, антрацильные, гепталенильные и дифенильные лиганды. Так, например, приемлемые лиганды включают те, которые представлены ниже, причем незамкнутая связь обращена к атому элемента 13-й группы [для выбора дополнительных лигандов см. также примеры полициклических соединений в литературе, в частности Nomenclature of Organic Compounds, Chs. 4-5 (ACS, 1974)]. Эти предпочтительные ионизирующие соединения включают соли анионов, содержащих лиганды, способные к тетраэдрической ориентации. Таким образом, в предпочтительном варианте эти лиганды структурно совместимы с любым другим в смысле нахождения в связанном состоянии с металлом группы 13 в качестве центра и без пространственного затруднения для образования связи с ним дополнительных галоидированных арильных лигандов. Примеры охватывают те, которые содержат боковые арильные группы в пара- или мета-положении арильного кольца, ближайшего к металлическому/металлоидному центру, и те, которые содержат конденсированные арильные группы, связанные с арильным кольцом, ближайшим к металлическому/металлоидному центру, во 2-м, 3-м или 3-м, 4-м положениях (см. вышеприведенные формулы I). Приемлемы также анионы со смешанными лигандами. Примером комплекса является трис(перфторфенил)(перфторнафтил)борат. Таким образом, в общем комплексы с элементом 13-й группы, которые могут быть использованы в соответствии с изобретением, как правило, отвечают следующей формуле: [M(A)4-n(Cn)]- где М обозначает элемент 13-й группы, А обозначает незатрудненный лиганд, как он описан выше, С обозначает затрудненный лиганд, тот, который содержит объемистые заместители при ближайшем арильном кольце, связанном с металлическим/металлоидным центром, отличным от тех, которые описаны выше как приемлемые, а n обозначает 0, 1 или 2 (см. также совместно рассматриваемую заявку США серийный номер 60/087447, поданную 1 июня 1998 г., и ее аналог WO 99/45042, содержание которых в соответствии с существующей в США патентной практикой включено в настоящее описание в качестве ссылок. Как для конденсированных ароматических колец, так и для ароматических кольцевых конгломератов весьма предпочтительно галоидирование с тем, чтобы позволить диспергироваться увеличенному заряду, что совместно с пространственным объемом в качестве независимых характеристик содействует снижению вероятности отщепления лиганда металлоценовым катионом со свойствами сильной кислоты Льюиса, образующимся при активировании катализатора. Кроме того, галоидирование подавляет взаимодействие гафниевого катиона со всеми оставшимися углерод-водородными связями ароматических колец, а пергалоидирование предотвращает возможность протекания таких потенциально нежелательных реакций. Таким образом, в предпочтительном варианте по меньшей мере одна треть водородных атомов при углеродных атомах арильных лигандов может быть замещена атомами галогена, а в более предпочтительном варианте арильные лиганды пергалоидированы. Наиболее предпочтительным галогеном является фтор, а наиболее предпочтительны пефторированные арильные лиганды. Средства получения ионогенных каталитических систем, включающих каталитически активные катионы гафниевых соединений и подходящие некоординационные анионы, общеизвестны (см., например, US 5198401, WO 92/00333, WO 97/22639 и ЕР 0612768). Как правило, такие методы включают получение из технических источников или синтез соединений с выбранным переходным металлом, содержащих отщепляемые лиганды, например гидридную, галогенидную, алкильную, алкенильную или гидрокарбилсилильную группу, и их введение в контакт с источником некоординационного аниона или подходящими соединениями-предшественниками в приемлемом растворителе. Анионоактивное соединение-предшественник отщепляет одновалентный лиганд (или одну моноанионную связь бидентатных алкенильных лигандов), что удовлетворяет валентные потребности предпочтительных гафнийсодержащих металлоценовых соединений. Вследствие такого отщепления остаются гафноцены в практически катионоактивном состоянии, которое в соответствии с изобретением уравновешивается стабильными совместимыми и объемистыми некоординационными анионами. Содержание каждого из документов, упомянутых в этом абзаце, в соответствии с существующей в США патентной практикой включено в настоящее описание в качестве ссылки. В предпочтительном варианте на стадии приготовления катализатора некоординационные анионы вводят в виде ионогенных соединений, включающих по существу катионоактивный комплекс, который отщепляет нециклопентадиенильный подвижный лиганд соединений переходного металла, которые при отщеплении нециклопентадиенильного лиганда в качестве побочного продукта оставляют некоординационный анионный фрагмент. Для ионогенных каталитических систем по настоящему изобретению исключительно предпочтительны гафниевые соединения, включающие при металлическом центре подвижные гидридные, алкильные или силильные лиганды, поскольку известно, что результатом протекающих in situ процессов алкилирования могут быть параллельные реакции и взаимодействия, которым свойственна тенденция снижать эффективность полимеризации в целом в высокотемпературных условиях, которые соответствуют предпочтительным вариантам осуществления способа по изобретению. Подходящие катионы для соединений-предшественников, способных предоставлять для сокатализаторов по изобретению некоординационные анионы, включают те, которые в данной области техники известны. К ним относятся азотсодержащие катионы, такие, как те, которые представлены в US 5198401, карбениевые, оксониевые и сульфониевые катионы по US 5387568, металлические катионы, например Ag+ или Li+, силилиевые катионы по WO 96/08519 и гидратированные соли с металлами группы 1 или 2 в качестве катионов по WO 97/22635. Примеры предпочтительных солей-предшественников с некоординационными анионами, способными к ионной катионизации металлоценовых соединений по изобретению и к последующей стабилизации образовавшимся некоординационным анионом, включают триалкилзамещенные аммониевые соли, такие, как триэтиламмонийтетракис(перфторнафтил)- и -тетра-кис(перфтор-4-дифенил)бор, три(н-бутил)аммонийтетракис(перфторнафтил)- и тетракис(перфтор-4-дифенил)бор, три(н-октил)аммонийтетракис(перфторнафтил)- и -тетракис(перфтор-4-дифенил)бор, триметиламмонийтетракис(перфторнафтил)- и -тетракис(перфтор-4-дифенил)бор, триметиламмонийтетратетракис(перфторнафтил)- и -тетракис(перфтор-4-дифенил)бор, трибутиламмонийтетракис(перфторнафтил)- и -тетракис(перфтор-4-дифенил)бор, трипропиламмонийтетракис(перфторнафтил)- и -тетракис(перфтор-4-дифенил)бор, три(н-бутил)аммонийтетракис(перфторнафтил)- и -тетракис(перфтор-4-дифенил)бор и т.п.; N,N-диaлкилaнилиниeвыe соли, такие, как N,N-диметиланилинийтетракис(перфторнафтил)- и -тетракис(перфтор-4-дифенил)бор, N,N-ди(н-додецил)анилинийтетракис(перфторнафтил)- и тетракис(перфтор-4-дифенил)бор, N,N-2,4,6-пентаметиланилинийтетракис(перфторнафтил)- и -тетракис(перфтор-4-дифенил)бор и т.п.; диалкиламмониевые соли, такие, как ди(н-додецил)аммониийтетракис(перфторнафтил)- и -тетракис(перфтор-4-дифенил)бор, дициклогексиламмониийтетракис(перфторнафтил)- и -тетракис(перфтор-4-дифенил)бор и т.п., и триарилфосфониевые соли, такие, как трифенилфосфонийтетракис(перфторнафтил)- и -тетракис(перфтор-4-дифенил)бор, три(метилфенил)фосфонийтетракис(перфторнафтил)- и -тетракис(перфтор-4-дифенил)бор, три(диметилфенил)-фосфонийтетракис(перфторнафтил)- и -тетракис(перфтор-4-дифенил)бор и т.п. [см. также включающие длинноцепочечные группы комплексы азотсодержащих кислот Льюиса (например, протонированные аммониевые соли) по WO 97/35983, каталитические активаторы которых приемлемы для использования в соответствии с настоящим изобретением и описание которых в соответствии с существующей в США патентной практикой включено в настоящее описание в качестве ссылки]. Другие примеры приемлемых анионных предшественников включают те, которые содержат стабильный карбениевый ион и совместимый некоординационный анион. К ним относятся тропиллийтетракис(перфторнафтил)- и тетракис(перфтор-4-дифенил)борат, трифенилметилийтетракис(перфторнаф-тил)- и -тетракис(перфтор-4-дифенил)борат, бензол(диазоний)тетракис(перфторнафтил)- и -тетракис(перфтор-4-дифенил)борат. Точно так же приемлемы силилийборатные и алюминатные соли практически эквивалентной структуры. В данной заявке понятие "очищающее средство" использовано в том смысле, который ему придают в данной области техники, для обозначения кислоты Льюиса, обладающей достаточной кислотностью для образования координационной связи с полярными загрязнителями и примесями, которые могут случайно попасть в полимеризационные исходные материалы или реакционную среду. Такие примеси могут быть неумышленно введены вместе с любыми компонентами реакции полимеризации, в частности с растворителем, мономерными и каталитическими исходными материалами, и оказывать нежелательное влияние на активность и стабильность катализатора. Так, в частности, для процессов, в ходе проведения которых применяют рецикловые потоки непревращенного мономера для повторного использования, потребность в применении полярных соединений в качестве дезактиваторов или "подавителей" катализатора, таких, как вода и низшие спирты, настоятельно требует применения очищающих средств, как это происходит в случае полярных примесей, естественно встречающихся в исходных мономерных материалах. Это может привести к снижению или даже полной потере каталитической активности, в особенности когда каталитической системой служит пара металлоценовый катион - некоординационный анион. Полярные примеси или каталитические яды включают воду, кислород, металлсодержащие примеси и т.д. В предпочтительном варианте перед их загрузкой в реакционный сосуд предпринимают некоторые меры, состоящие, например, в химической обработке или осуществлении методов осторожного разделения после или во время синтеза или получения различных компонентов, но для проведения собственно процесса полимеризации обычно все-таки требуются некоторые незначительные количества очищающего соединения. Как правило, очищающим соединением служит металлорганическое соединение, такое, как металлорганические соединения с элементами 13-й группы, представленные в US 5241025, ЕР А-0426638, и те, которые представлены в US 5767208. Примеры соединений включают триэтилалюминий, триэтилборан, триизобутилалюминий, метилалюмоксан, изобутилалюмоксан, три-н-гексилалюминий и три-н-октилалюминий, причем для сведения к минимальному нежелательного взаимодействия с активным катализатором предпочтительны те соединения, у которых имеются объемистые заместители, ковалентно связанные с металлическим или металлоидным центром. Добавление избыточного количества очищающего средства приводит к уменьшенным производительности, молекулярной массы и степени введения сомономерных звеньев. Следовательно, молярное соотношение между алюминием и гафнием (Al:Hf) должно составлять меньше примерно 100:1, предпочтительно меньше примерно 75:1, более предпочтительно меньше примерно 50:1, а наиболее предпочтительно меньше примерно 30:1. Было отмечено, что для проведения непрерывных процессов, описанных в данной заявке, достаточны молярные соотношения меньше 20:1 и меньше 15:1. Предпочтительным очищающим средством является линейное алюминийтриалкильное соединение с длинной цепью, причем средства с более длинными цепями предпочтительнее средств с более короткими цепями (для дальнейшего обсуждения см. WO 97/22635 и US 5767208; в соответствии с существующей в США практикой патентования изобретений этот документ включен в настоящее описание в качестве ссылки). Неограничивающие примеры эффективных длинноцепочечных линейных триалкиллигандсодержащих очищающих средств включают те, которые входят в ряд соединений, отвечающих формуле M’R’R’’R’’’, где М’ обозначает Аl, а каждая из групп R независимо друг от друга представляет собой C4- или более высокомолекулярную линейную, разветвленную или циклическую алкильную группу, предпочтительно С6- или более высокомолекулярную, наиболее предпочтительно С8- или более высокомолекулярную. Было установлено, что длинноцепочечные линейные алюминийалкилы, у которых длина каждого алкильного заместителя соответствует 8 или большему числу атомов С, предпочтительно 9 или большему числу атомов С, проявляют оптимальные рабочие свойства и расцениваются как оказывающие наименьшее нежелательное воздействие, когда их используют в количестве, превышающем оптимальное содержание, которое указано в следующем абзаце. Конкретно они включают алюминийтри-н-октил, алюминийтри-н-децил, алюминийтри-н-додецил, алюминийтри-н-гексадецил и их эквиваленты с более значительным числом углеродных атомов, например (C20)3Al, включая соединения со смешанными лигандами, а также смешанные очищающие соединения. Кроме того, обычно приемлемы гидролизованные производные этих алкиллигандсодержащих алюминийорганических соединений. Более того очевидно, что приемлемы также те очищающие соединения, которые включают как длинноцепочечные линейные, так и объемистые лиганды или смешанные линейные лиганды, каждый из которых описан выше, но они, вероятно, менее желательны вследствие более сложных или дорогостоящих синтезов. Предпочтительным процессом полимеризации является тот, который планируют и проводят таким образом, чтобы сокаталитические компоненты, т.е. соединения переходного металла и анионные соединения-предшественники, содержались раздельно непосредственно до момента их использования или до введения в процесс полимеризации в выбранном реакторе или реакторах. Примером является применение параллельного введения каждого каталитического компонента прямо в реактор или применение смесительных камер Т-образного типа или с более значительным числом впускных патрубков непосредственно перед введением в реактор. Дополнительная оптимизация может быть достигнута, когда очищающее соединение вводят в реактор независимо от каталитической системы или соединений, предпочтительно после активации гафноценов анионными предшественниками сокатализаторов. Способ по изобретению применим к гомогенной полимеризации под высоким давлением, предпочтительно с использованием меньше 30 мас.% растворителя в процессе, который является практически адиабатическим и в котором теплоту полимеризации расходуют на повышение температуры содержимого реактора, а не отводят за счет внутреннего или внешнего охлаждения. В этом случае содержимое состоит главным образом из непрореагировавшего мономера. Такой процесс можно вести в одно- или двухфазных гомогенных условиях под давлением 250-3000 бар, предпочтительно 500-2500 бар, с добавлением или без добавления нереакционноспособных разбавителей или растворителей при температуре, которая обычно превышает точку плавления получаемого полимера. Такие процессы в промышленности известны и могут включать применение очищающих соединений и стадий дезактивации или подавления катализатора (см., например, US 5408017, WO 95/07941 и WO 92/14766). Каждый из этих документов и их американские аналоги в соответствии с существующей в США практикой патентования изобретений включены в настоящее описание в качестве ссылок. Предпочтительные дезактиваторы или подавители катализаторов включают высокомолекулярные нереакционноспособные соединения, такие, как поливиниловый спирт, который проявляет функциональную способность к образованию с катализаторами комплексов, тем самым их дезактивируя без одновременного образования летучих полярных побочных продуктов или остаточных непрореагировавших соединений. Предлагаемый по изобретению способ особенно эффективен также применительно к гомогенной полимеризации в растворе, которая является тоже по существу адиабатической, т.е., другими словами, теплота полимеризации расходуется на повышение температуры содержимого полимеризационного реактора, главным образом растворителя. В ходе проведения этого адиабатического процесса, как правило, не предусмотрено никакого внутреннего охлаждения и соответственно никакого внешнего охлаждения. Теплоту полимеризации отводит из реактора отходящий из реактора поток. Производительность такого адиабатического процесса можно повысить охлаждением поступающих растворителя и/или мономерного потока (потоков) перед вводом в реактор, что позволяет допустить более высокую экзотермию полимеризации. Таким образом, выбор катализатора, сокатализатора и очищающего средства, описанных в данной заявке, можно с успехом осуществить в ходе проведения непрерывного процесса в растворителе при температуре, от равной или превышающей 140С, превышающей 150С или превышающей 160С до примерно 225С. В наиболее предпочтительном варианте процесс полимеризации в растворе при получении полукристаллических полимеров проводят при температуре 140-220С. Этот процесс, как правило, проводят в инертном линейном, циклическом или разветвленном алифатическом или ароматическом углеводородном растворителе под давлением 20-200 бар. Способность этих катализаторов обеспечивать получение технически необходимого полимера при повышенных температурах содействует повышенной экзотермии, высокому содержанию полимера в реакторе благодаря пониженной вязкости и уменьшенному потреблению энергии на испарение и возврат в процесс растворителя, а также более высокой степени превращения мономера и сомономера. Предпочтительными -олефинами, приемлемыми для использования при получении этиленовых сополимеров или для полиэтиленовых сополимеров, являются С3-С20--олефины, но обычно к ним относятся олефины с более значительным числом углеродных атомов, такие, как способные полимеризоваться макромеры, включающие до пятисот или больше углеродных атомов. Иллюстрирующими, но неограничивающими примерами таких -олефинов служат пропилен, 1-бутен, 1-пентен, 1-гексен, 1-октен и 1-децен. Принимая во внимание цели описания эффективно сополимеризующихся мономеров, понятие "олефины" охватывает циклические моноолефины с затрудненными кольцами, такие, как циклобутен, циклопентен, норборнен, алкилзамещенные норборнены, алкенилзамещенные норборнены и циклические олефины с более значительным числом углеродных атомов, известные в данной области техники (см., например, патент US 5635573, включенный в настоящее описание в качестве ссылки в соответствии с существующей в США практикой патентования изобретений), и известные сополимеризующиеся диолефины, например 1,4-гексадиен, этилиденнорборнен и винилнорборнен. Кроме того, приемлемы виниловые ароматические мономеры, например стирол и алкилзамещенные стирольные мономеры. Ряд полиэтиленовых сополимеров может охватывать от полукристаллических до практически аморфных, которые, как правило, характеризуются по существу неупорядоченным размещением звеньев по меньшей мере этилена и олефиновых сомономеров. Как очевидно для специалистов в данной области техники, применение асимметрично замещенных соединений гафния по изобретению дает возможность получать синдиотактичес-кие полимеры из прохиральных олефинов, например подобных пропилену. Дополнительные преимущества процессам такого рода придают увеличенные производительность и молекулярные массы, о которых говорилось в связи с этиленовыми сополимерами. (Предпочтительные этиленовые сополимерные пластомеры по изобретению обычно проявляют полукристаллические характеристики, например точки плавления, находящиеся в интервале от примерно 85 до 115С. Молекулярная масса (среднечисленная молекулярная масса) пластомеров по изобретению обычно находится в интервале от примерно 10000 до примерно 60000, предпочтительно от примерно 20000 до примерно 50000. Более часто молекулярную массу этиленовых сополимерных пластомеров отражают посредством значений их полиэтиленового индекса расплава (ИР) (определяют по стандарту ASTM D 1238, условие Е), которые, как правило, находятся в интервале 0,01-10,0, предпочтительно 0,005-6,0, а более предпочтительно от примерно 0,01 до меньше 3,0. Значения Мn этиленовых сополимерных эластомеров, как правило, составляют от 60000 до примерно 250000; в дополнение к звеньям этилена и одного или нескольких -олефинов они могут включать необязательные звенья одного или нескольких несопряженных или циклических диолефинов, как правило, пропилена. Что касается полимерной плотности, то у полимеров, которые могут быть получены в соответствии с изобретением, она может на