Изделия с повышенной температурной эластичностью, изготовленные из облученных и сшитых этиленовых полимеров
Реферат
Настоящее изобретение относится к теплостойкому формованному, облученному и сшитому изделию, отличающемуся улучшенной эластичностью при повышенных температурах. В частности, к формованному изделию, такому как пленка или волокно. Изделие включает этиленовый сополимер этилена, сополимеризованный с, по меньшей мере, одним другим ненасыщенным мономером, выбранным из СЗ-С20 альфа-олефинов, С4-С18-диолефинов, стирола, галоген- или алкилзамещенного стирола, винилбензоциклобутана и нафтенов, и не содержит силановый сшивающий агент. При этом этиленовый сополимер имеет плотность ниже 0,89 г/см3 или ДСК-кристалличность при 23С, определенную с использованием дифференциальной сканирующей калориметрии перед формованием облучением и сшивкой, ниже 26 мас.%, а содержание экстрагируемых ксилолом составляет меньше или равно 70 мас. %. Изделия по настоящему изобретению обладают сочетанием свойств, таких как прочность на разрыв, удлинение, эластичное восстановление, стойкость к хлору и ароматическим/полярным растворителям, влагостойкость, тепловое старение, что позволяет их использовать в качестве предметов личной гигиены и одноразового антиинфекционного белья при температуре тела около 38С. 9 с. и 10 з.п.ф-лы, 5 ил., 3 табл.
Настоящее изобретение относится к сшитому теплостойкому эластичному изделию, имеющему повышенную температурную эластичность, включающему облученный или сшитый этиленовый полимер, и способу получения сшитого теплостойкого эластичного изделия. В частности, изобретение относится к формованному изделию (например, пленке или волокну), характеризуемому теплостойкостью и улучшенной эластичностью при повышенных температурах и включающему, главным образом, отвержденный, облученный или сшитый однородно разветвленный этиленовый полимер. Улучшенное эластичное изделие по настоящему изобретению особо полезно для использования в таких применениях, где хорошая эластичность должна сохраняться при повышенных температурах, таких как, например, предметы личной гигиены и одноразовое антиинфекционное белье, при температуре тела около 38С. Материалы с превосходной растяжимостью и эластичностью требуются для производства множества изделий одноразового и продолжительного пользования, таких как, например, прокладок для недержания, одноразовых пеленок, тренировочных брюк, спортивной одежды и обивки мебели. Растяжимость и эластичность являются эксплуатационными свойствами, которые необходимы для того, чтобы обеспечить плотное облегание тела носителя или формы предмета. Желательно, чтобы плотное облегание сохранялось при повторном использовании, растяжениях и сжатиях при температуре тела. Кроме того, для прокладок для недержания растяжимость и эластичность особо желательны для того, чтобы улучшить комфортность и обеспечить безопасность против нежелательных протечек. Одноразовые изделия являются типичными композитными материалами, изготавливаемыми из сочетания полимерных пленки, волокон, листов и поглощающих материалов, а также при сочетании технологий изготовления. В то время как волокна изготавливают хорошо известными способами, такими как соединение прядением, дутье из расплава, прядение из расплава и методами непрерывной намотки нити, процессы формования пленки и листа обычно включают известные методы экструзии и совмещенной экструзии, например раздув пленки, литье пленки, профилированную экструзию, литье под давлением, экструзионное покрытие и экструзионное листование. Материал обычно характеризуют как эластичный, если он имеет высокий процент эластичного восстановления (т.е. низкий процент постоянной усадки) после приложения силы смещения. Идеально эластичные материалы характеризуются сочетанием трех важных свойств, а именно низким процентом постоянной усадки, низким усилием или нагрузкой при растяжении, и низким процентом релаксации при напряжении или нагрузке. Таким образом, к таким материалам предъявляются следующие требования: (1) низкое напряжение или низкая нагрузка для растяжения материала, (2) отсутствие релаксации или низкая релаксация напряжения или нагрузки после растяжения материала, и (3) полное или высокое восстановление первоначальных размеров после прекращения напряжения, смещения или деформации. Лайкра (spandex) представляет собой сегментированный полиуретановый эластичный материал, который известен как проявляющий хорошие эластичные свойства. Однако лайкра имеет свойство быть излишне дорогой для многих применений. Кроме того, лайкра подобно натуральным каучукам имеет свойство проявлять слабую сопротивляемость воздействию окружающей среды - озону, хлору и высокой температуре, в особенности в присутствии влаги. Натуральный каучук, как обсуждалось Ferdinand Rodriguez в Principles of Polymer Systems, pp. 242-43, McGraw-Hill (1982), обычно проявляет снижение удлинения до разрыва при увеличении степени сшивки. Более того, при высокой степени сшивки у натурального каучука может снижаться даже прочность на разрыв. Эластичные материалы, такие как пленки, полосы, покрытия, ленты и листы, включающие по меньшей мере один по существу линейный этиленовый полимер, описаны в патенте США №5472775 (Obijeski et al.). Однако патент США №5472775 не описывает поведение этих материалов при повышенных температурах (т.е. при температурах выше комнатной температуры). WO 94/25647 (Knight et al.) описывает эластичные волокна и ткани, изготовленные из однородно разветвленных по существу линейных полимеров этилена. Сообщается, что волокна имеют восстановление по меньшей мере 50% (т.е. постоянная усадка меньше или равна 50%) при 100% растяжения. Однако в WO 94/25647 нет ни сведений об эластичности этих волокон при повышенных температурах, ни сведений о стойкости к высоким температурам. Патент США №5322728 (Davey et al.) описывает эластичные волокна, включающие полимеры этилена, полученные на односайтовом катализаторе. Однако полимеры не являются отвержденными, облученными или сшитыми, и потому ожидается, что они имеют низкую эластичность при повышенных температурах. WO 95/29197 (Penfold et al.) описывает отверждаемые привитые силаном по существу этиленовые полимеры, которые являются полезными для использования в покрытиях проволоки и кабелей, прокладках для сохранения тепла и герметизации и волокнах. В WO 95/29197 приводятся примеры, которые включают волокна, содержащие привитые силаном по существу этиленовые полимеры с плотностью 0,868 г/см3 и 0,870 г/см3. Хотя показано, что волокна в примерах имеют улучшенное эластичное восстановление при повышенных температурах, нет сведений о показателях процента релаксации под напряжением или нагрузкой при повышенных температурах. Патент США №5324576 (Reed et al.) описывает эластичный нетканый материал из микроволокон сшитых радиацией сополимеров этилена и альфа-олефина, предпочтительно имеющих плотность ниже 0,9 г/см3. Приведенные в патенте США №324576 примеры включают полимеры этилена, имеющие плотности полимера, большие или равные 0,871 г/см3, которые подвергались облучению электронным пучком. Однако Reed et al. не приводят сведений о характеристике эластичности этих облученных полимеров при повышенных температурах. В патенте США №5525257 (Kurtz et al.) сообщается, что низкие уровни облучения (менее 2 Мрад) линейного полимера этилена низкой плотности, полученного на катализаторе Циглера, приводят к улучшенной растяжимости и стабильности микросфер без заметного гелеобразования. В патенте США №4425393 (Benedyk et al.) описаны низкомодульные волокна, имеющие диаметр в интервале от 0,5 до 3 мил (примерно от 12,7 до 76,2 мкм) (примерно от 1 до 37 денье). В канадском патенте №935598 (Hardy et al.) описаны эластичные волокна, включающие различные полимеры этилена, в которых волокна являются предварительно вытянутыми (растянутыми) и сшитыми под напряжением. В патенте США №4957790 (Warren) описано использование радиационно-чувствительных (pro-rad) соединений и облучения для приготовления дающих тепловую усадку пленок из линейного полиэтилена низкой плотности, имеющих увеличенную скорость ориентации во время приготовления. В приведенных там примерах Warren применяет полимеры этилена, полученные на катализаторе Циглера, имеющие плотность выше или равную 0,905 г/см3. Несмотря на многочисленные патенты, относящиеся к эластичным изделиям из полимеров этилена, включая изделия, содержащие отверждаемые облученные и/или сшитые полимеры этилена, в настоящее время существует потребность в недорогих эластичных изделиях, имеющих хорошую теплостойкость и эластичность при повышенных температурах, в особенности при температурах человеческого тела около 38С. Существует также потребность в способе приготовления эластичных изделий, имеющих хорошую эластичность при повышенных температурах. Было найдено, что эта и другие цели могут быть полностью достигнуты в описанном здесь изобретении. Было найдено, что эластичные изделия, включающие преимущественно отвержденный облученный или сшитый полимер этилена, в которых полимер характеризуется плотностью полимера ниже 0,89 г/см3, предпочтительно ниже 0,87 г/см3, и более предпочтительно ниже или равной 0,865 г/см3 (или кристалличностью по дифференциальной сканирующей калориметрии (ДСК) при 23С ниже 26 мас.%, предпочтительно ниже 12 мас.% и наиболее предпочтительно ниже или равной 8,5 мас.%). Эти новые изделия обладают превосходной эластичностью при комнатной температуре и при повышенных температурах. В широком аспекте изобретение предлагает теплостойкое отвержденное при формовании, облученное или сшитое изделие, включающее интерполимер этилена или этилен, интерполимеризованный с по меньшей мере одним другим мономером и отличающийся тем, что имеет: а) плотность полимера ниже 0,89 г/см3 или ДСК-кристалличность при 23С, определенную с использованием дифференциальной сканирующей калориметрии, ниже 26 мас.% перед тем, как он сформован, отвержден, облучен или сшит, и b) в форме волокна, полученного прядением из расплава, величину ниже 0,75 в выражении Abs[E/E0]+Abs[T/T0], где Е и T взяты из графика усилие-растяжение, определенного с использованием тензометра Instron при скорости направляющей головки 500 мм/мин и длине калибра 10,2 см для среднего из четырех повторений для пяти образцов волокна; Е определено как разница удлинения в процентах между отвержденным, облученным или сшитым полимером и неотвержденным, облученным или несшитым интерполимером при прочности 0,4 г/денье; Е0 определено как процент удлинения неотвержденного, облученного или несшитого интерполимера при прочности 0,4 г/денье; T взято как разница прочности (в г/денье) между отвержденным, облученным или сшитым полимером и неотвержденным, облученным или несшитым полимером при процентном удлинении в 300%; Т0 взято как прочность (в г/денье) неотвержденного, облученного или несшитого интерполимера при процентном удлинении в 300%; и Abs означает абсолютную величину. Другим аспектом изобретения является теплостойкое отвержденное облученное или сшитое эластичное волокно, включающее этилен, интерполимеризованный с по меньшей мере одним другим мономером, где интерполимер отличается тем, что имеет: а) плотность полимера ниже 0,89 г/см3, или кристалличность при 23С, определенную с использованием дифференциальной сканирующей калориметрии, ниже 26 мас.% перед тем, как он сформован, отвержден, облучен или сшит, и b) в форме волокна, полученного прядением из расплава, величину ниже 0,75 в выражении Abs[E/E0]+Abs[T/T0] где Е и T взяты из графика усилие-растяжение, определенного с использованием тензометра Instron при скорости направляющей головки 500 мм/мин и длине калибра 10,2 см для среднего из четырех повторений для пяти образцов волокна; Е определено как разница удлинения в процентах между отвержденным, облученным или сшитым полимером и неотвержденным, облученным или несшитым интерполимером при прочности 0,4 г/денье; Е0 определено как процент удлинения неотвержденного, облученного или несшитого интерполимера при прочности 0,4 г/денье; Т взято как разница прочности (в г/денье) между отвержденным, облученным или сшитым полимером и неотвержденным, облученным или несшитым полимером при процентном удлинении в 300%; Т0 взято как прочность (в г/денье) неотвержденного, облученного или несшитого интерполимера при процентном удлинении в 300%; и Abs означает абсолютную величину. Третьим аспектом изобретения является теплостойкое формованное эластичное изделие, включающее по меньшей мере один интерполимер этилена, который был отвержден, облучен или сшит, где интерполимер включает этилен, интерполимеризованный с по меньшей мере одним другим мономером и отличается тем, что имеет: (a) плотность полимера менее 0,87 г/см3 перед формованием, отверждением, облучением или сшивкой; (b) процент постоянной усадки ниже 60 при 23С и растяжение 200%, измеренное при толщине 2 мил (51 мкм) с использованием тензометра Instron, после формования, отверждения, облучения или сшивки; (c) процент релаксации напряжений, ниже или равный 25 при 23С, и растяжение 200%, измеренное при толщине 2 мил (51 мкм) с использованием тензометра Instron, после формования, отверждения, облучения или сшивки, и (d) процент релаксации напряжений, ниже или равный 55 при 38С, и растяжение 200%, измеренное при толщине 2 мил (51 мкм) с использованием тензометра Instron после. Четвертым аспектом изобретения является способ получения эластичного изделия, включающий стадии: (a) получение интерполимера этилена, имеющего плотность ниже 0,87 г/см3, (b) изготовление изделия из интерполимера, и (c) проведение тепловой обработки или ионизирующей радиации изделия, или и того и другого после изготовления. Пятым аспектом изобретения является способ получения эластичного изделия, включающий стадии: (a) получение интерполимера этилена, имеющего плотность ниже 0,87 г/см3; (b) введение в интерполимер радиационно-чувствительной добавки; (c) изготовление изделия из интерполимера, и (d) проведение тепловой обработки или ионизирующей радиации изделия, или и того и другого после изготовления. Предпочтительно изделие изготовляют при использовании экструзионной техники (т.е. способом, состоящим из плавления интерполимера). Пригодные способы экструзии включают, но не ограничиваются этим, формование волокна из расплава, выдувание волокна из расплава, выдувание пленки, отливку пленки, литье под давлением или способы центробежного формования. Предпочтительно экструдату, нити, ткани или их части дают остыть или подвергают их охлаждению закалкой до комнатной температуры (т.е. позволяют им преимущественно отвердиться) перед применением дополнительного нагрева или ионизирующей радиации. В предпочтительном осуществлении изобретения полимер этилена является однородно разветвленным полимером этилена, предпочтительно по существу линейным полимером этилена. В другом предпочтительном осуществлении ионизирующее облучение обеспечивают облучением электронным пучком. Было найдено, что (в отличие от натуральных каучуков) отверждение, облучение или сшивка (увеличенная плотность поперечных связей) не снижают удлинение при разрыве или прочность на разрыв для однородно разветвленных полимеров этилена, имеющих плотность полимера менее 0,89 г/см3, и что изделия (в особенности волокна) из отвержденных облученных или сшитых однородно разветвленных полимеров этилена имеют существенно улучшенную теплостойкость. Было также обнаружено, что существует подмножество полимеров этилена, которые обеспечивают совершенно неожиданную характеристику эластичности, когда они отверждены, облучены или сшиты. В частности, было найдено, что широкий интервал плотностей полимера выше и ниже 0,87 г/см3, отверждение, облучение или сшивка резко снижают характеристику процента постоянной усадки (т.е. улучшают эластичность или эластичное восстановление) и не оказывают существенного влияния на характеристику процента релаксации напряжения или нагрузки при комнатной температуре. Но в то время как для полимера, имеющего плотность равную или большую чем 0,87 г/см3, проявляется склонность к противоположному эффекту (т.е. к увеличению) или к отсутствию влияния на процент релаксации напряжения или нагрузки при повышенных температурах, отверждение, облучение и сшивка неожиданно понижают (т.е. улучшают) характеристику процента релаксации напряжения или нагрузки при повышенных температурах для интерполимера этилена, имеющего плотность полимера ниже 0,87 г/см3 или ДСК-кристалличность ниже 12 мас.% при 23С. Иначе говоря, отверждение, облучение или сшивка является эффективным способом для получения эластичных материалов и изделий, отличающихся превосходными характеристиками релаксации напряжений при повышенной температуре. Совершенно разная реакция на облучение или сшивку не только поразительна сама по себе, но эти результаты поразительны также и по другим причинам. Например, эти результаты удивительны и неожиданны из-за того, что при плотности 0/87 г/см3 полимеры этилена уже преимущественно аморфны. Т.е. следовало бы ожидать, что кроссовер или переход в эластичное состояние, свойственный отверждению, облучению или сшивке, связан с аморфностью полимера; однако по данным экстракции гексаном при 50С, проведенной в соответствии с методом испытаний Food and Drug Administration (FDA), представленным в 21 37 C.F.R. §§ 177.1520 (d) (3) (ii), полимеры этилена являются преимущественно аморфными при плотности 0,89 г/см3 и ниже. Исходя из таких малых разностей в аморфности и кристалличности, таких резких различий в реакции на облучение или сшивку просто нельзя было и ожидать. Соответственно формованные эластичные изделия по настоящему изобретению обладают уникальным сочетанием свойств, таких как прочность на разрыв, удлинение, эластичное восстановление, стойкость к хлору и ароматическим/полярным растворителям, влагостойкость, тепловое старение, и превосходными механическими характеристиками при высокой температуре по сравнению с традиционными эластичными материалами, например натуральным каучуком и спандексом. Фиг.1 представляет график релаксации напряжений при 23С как функцию Мрад облучения электронным пучком для примеров 1 и 2 по изобретению и сравнительных примеров 3, 4 и 5. Фиг.2 представляет график процента постоянной усадки при 23С как функцию Мрад облучения электронным пучком для примеров 1 и 2 по изобретению и сравнительных примеров 3, 4 и 5. Фиг.3 представляет график процента релаксации напряжений при 38С как функцию Мрад облучения электронным пучком для примера 1 по изобретению и сравнительного примера 4. Фиг.4 представляет сравнение кривых напряжение-деформация для примера 6 по изобретению и сравнительного примера 7. Фиг.5 представляет график процента эластичного восстановления (как процент остаточного удлинения) как функцию процента удлинения (деформации) для примера 6 по изобретению. Термин "эластичный", как он использован здесь, относится к материалу, имеющему постоянную усадку ниже 60%, предпочтительно ниже или равную 25% (т.е. предпочтительно восстановление выше или равно 87,5%) и деформацию 200%, и являющемуся растяжимым до растянутой диагональной длины по меньшей мере на 150% больше своей релаксированной нерастянутой длины. Эластичные материалы называют также "эластомерами" или "эластомерными". Термин "неэластичный", как он использован здесь, означает материал или изделие, которое не является эластичным согласно приведенному здесь определению (т.е. к материалу или изделию, которое имеет процент постоянной усадки выше 25). Эластичные материалы и изделия включают отвержденные облученные или сшитые изделие или сам интерполимер этилена, или и то и другое, а также, но не ограничено этим, волокно, пленку, полосу, тесьму, ленту, лист, покрытие и формованное изделие, включающее отвержденный облученный и/или сшитый интерполимер этилена. Предпочтительными эластичными изделиями являются волокно и пленка. Термин "облученный", как он использован здесь, означает полимер этилена, формованный интерполимер этилена или формованное изделие, включающее полимер этилена, подвергнутый дозе облучения по меньшей мере 3 Мрад (или ее эквиваленту), независимо от того, наблюдалось или нет измеримое понижение процентного содержания извлекаемых ксилолом (т.е. увеличение нерастворимого геля). Иными словами, в результате облучения может не быть существенной сшивки. Термины "сшитый" и "преимущественно сшитый", как они использованы здесь, означают полимер этилена, формованный интерполимер этилена или формованное изделие, включающее полимер этилена, отличающиеся тем, что имеют содержание извлекаемых ксилолом ниже или равное 70 мас.% (т.е. содержание геля большее или равное 30 мас.%), предпочтительно большее или равное 40 мас.% (т.е. содержание геля большее или равное 60 мас.%), где содержание извлекаемых ксилолом (и содержание геля) определяют в соответствии с ASTM D-2765. Термины "отвержденный" и "преимущественно отвержденный", как они использованы здесь, означают интерполимер этилена, формованный интерполимер этилена или формованное изделие, включающее интерполимер этилена, которое подвергалось обработке, вызывающей сшивку. Термины, как они использованы здесь, относятся к интерполимерам этилена, включающим привитый силан. Термины "способный к отверждению" и "способный к сшивке", как они использованы здесь, означают, что интерполимер этилена, формованный интерполимер этилена или формованное изделие, включающее интерполимер этилена, не сшиты и не подвергались обработке, вызывающей сшивку, хотя интерполимер этилена, формованный интерполимер этилена или формованное изделие, включающее интерполимер этилена, включают добавку (добавки) или функциональную группу, которая должна вызывать сшивку при такой обработке. При осуществлении настоящего изобретения отверждение, облучение или сшивка могут быть выполнены любыми известными в практике способами, включающими, но не ограниченными этим, облучение электронным пучком, бета-облучение, гамма-облучение, коронарное облучение, перекиси, аллильные соединения и УФ-облучение как с катализатором сшивки, так и без него. Предпочтительным является облучение электронным пучком. Подходящее оборудование для облучения электронным пучком выпускается Energy Services, Inc., Wilmington, Mass. с показателями по меньшей мере 100 кэВ и по меньшей мере 5 кВт. Термин "чувствительная к облучению (pro-rad) добавка", как он использован здесь, означает соединение, которое не активируется при обычном изготовлении или переработке интерполимера этилена, но может быть активировано при приложении температур (тепла), существенно более высоких, чем обычные температуры изготовления или переработки, или ионизирующей энергии, или и того и другого, для того, чтобы вызвать заметное гелеобразование или предпочтительно существенную сшивку. Термин "гомофильный", как он использован здесь, относится к волокну, которое имеет единственную полимерную область или домен и не имеет других отличающихся полимерных областей (как это имеет место у двухкомпонентных волокон). Термин "полученный дутьем из расплава" использован здесь в обычном смысле по отношению к волокнам, сформованным путем экструдирования расплавленной термопластичной полимерной композиции через множество тонких, обычно круговых капилляров головки экструдера в виде расплавленных нитей или моноволокон в конвергирующие высокоскоростные газовые потоки (например, воздуха), функция которых привести нити или моноволокна к уменьшенным диаметрам. После этого моноволокна или нити уносятся высокоскоростными газовыми потоками и откладываются на собирающей поверхности, чтобы сформировать ткань из случайно распределенных выдутых из расплава волокон со средним диаметром ниже 10 мкм. Термин "полученные прядением из расплава" использован здесь в обычном смысле по отношению к волокнам, сформованным путем экструдирования расплавленной термопластичной полимерной композиции в виде моноволокон через множество тонких, обычно круговых капилляров головки фильеры, с последующим быстрым уменьшением диаметра экструдированных моноволокон и затем отложением моноволокон на собирающей поверхности для формирования ткани из случайно распределенных полученных прядением из расплава волокон со средним диаметром обычно между 7 и 30 мкм. Термин "нетканый", как он использован здесь и в обычном смысле, означает ткань, имеющую структуру из отдельных волокон или нитей, которые хаотично наложены друг на друга, но не определяемым образом, как в случае тканых тканей. Эластичное волокно по настоящему изобретению может быть применено для получения нетканых материй, так же как композитных структур, включающих нетканую материю в сочетании с неэластичными материалами. Термин "сопряженные" относится к волокнам, которые образованы из по меньшей мере двух полимеров, экструдированных из отдельных экструдеров, но выдутых или полученных прядением вместе, чтобы сформировать одно волокно. В практике сопряженными волокнами часто называют многокомпонентные или двухкомпонентные волокна. Обычно полимеры отличаются друг от друга, хотя сопряженными волокнами могут быть и однокомпонентные волокна. Полимеры обычно отличаются один от другого, хотя сопряженные волокна могут быть однокомпонентными волокнами. Полимеры обычно располагают в преимущественно постоянно расположенных разных зонах по поперечному сечению сопряженных волокон и непрерывно растягивают их вдоль длины сопряженных волокон. Конфигурацией сопряженных волокон может быть, например, структура "оболочка - сердцевина" (где один полимер окружен другим), структура "бок о бок", структура пирога или структура "острова-в-море". Сопряженные волокна описаны в патенте США №5108820 (Kaneko et al.), патенте США №5336552 (Strack et al.) и патенте США №5382400 (Pike et al.). Эластичное волокно по настоящему изобретению может быть, например, сердцевиной или оболочкой в сопряженной конфигурации или и тем и другим. Интерполимер этилена, подлежащий облучению, отверждению или сшивке, имеет плотность при 23С ниже 0,89 г/см3, предпочтительно ниже 0,87 г/см3, более предпочтительно ниже или равную 0/865 г/см3, предпочтительно в интервале от 0,865 г/см3 до 0,855 г/ссм3, измеренную в соответствии с ASTM D792. При плотностях выше 0,89 г/см3 желаемое улучшенное эластичное поведение при высоких температурах (в особенности низкий процент релаксации напряжения или нагрузки) не достигается. Плотности ниже 0,855 г/см3 не являются предпочтительными из-за низкой прочности, очень низкой температуры плавления и проблем обращения с полимером перед сшивкой (слипание и склеивание). Предпочтительно интерполимер этилена характеризуют как имеющий ДСК-кристалличность ниже 26 мас.%, предпочтительно ниже 12 мас.%, более предпочтительно меньшую или равную 8,5 мас.%, и наиболее предпочтительно меньшую или равную 6%. Предпочтительно интерполимер этилена характеризуют как имеющий индекс расплава (I2) ниже 50, более предпочтительно ниже 10 г/10 мин, определенный в соответствии с ASTM D-1238, условие 190С/2,16 кг. В форме волокна, полученного прядением из расплава, облученный отвержденный или сшитый полимер этилена по настоящему изобретению обычно имеет в выражении Abs[E:/Eo]+Abs[T/T0 величину ниже 0,75, предпочтительно ниже 0,6, более предпочтительно ниже 0,5. Облученный отвержденный или сшитый полимер этилена по настоящему изобретению (и изготовленные из него изделия) отличается тем, что имеет процент постоянной усадки ниже 60 при 23С, предпочтительно меньший или равный 25 при 23С, более предпочтительно меньший или равный 20 и наиболее предпочтительно меньший или равный 15 при 23С и при 38С и 200% деформации, при измерении при толщине 2 мил (51 мкм) с использованием тензометра Instron, или предпочтительно процент удлинения при усадке меньший или равный 25, более предпочтительно 20, наиболее предпочтительно 15 при 23С и 100% деформации. Облученный отвержденный или сшитый полимер этилена по настоящему изобретению (и изготовленные из него изделия) отличается тем, что имеет процент релаксации напряжений меньший или равный 25 при 23С и деформации 200%, и меньший или равный 55, предпочтительно меньший или равный 50, более предпочтительно меньший или равный 30 и наиболее предпочтительно меньший или равный 20 при 38С и деформации 200%, при измерении при толщине 2 мил (51 мкм) с использованием тензометра Instron. Облучение может быть осуществлено путем использования высокой энергии ионизирующих электронов, ультрафиолетовых лучей, рентгеновских лучей, гамма-лучей и бета-частиц, и их сочетания. Предпочтительно электроны применяются вплоть до дозировок 70 Мрад. Источником облучения может быть генератор электронного пучка, работающий в интервале от 150 кВ до 6 МВ с мощностью выхода, способной обеспечить требуемую дозу. Вольтаж может регулироваться до соответствующего уровня, которым может быть, например, 100000, 300000, 1000000, или 2000000, или 3000000, или 6000000, или больше, или меньше. В практике известны многие другие аппараты для облучения полимерных материалов. Облучение обычно проводят при дозе между 3 и 35 Мрад, предпочтительно между 8 и 20 Мрад. Кроме того, облучение может обычно проводиться при комнатной температуре, хотя могут применяться также более высокие и низкие температуры, например, от 0 до 60С. Предпочтительно облучение проводят после формования или изготовления изделия. Кроме того, в предпочтительном осуществлении интерполимер этилена, в который введена радиационно-чувствительная добавка, облучают излучением электронного пучка при 8-20 Мрад. Сшивка может быть ускорена катализатором сшивки и может быть использован любой катализатор, который будет выполнять эту функцию. Подходящие катализаторы обычно включают органические основания, карбоновые кислоты и металлоорганические соединения, включающие органические титанаты и комплексы карбоксилатов свинца, кобальта, железа, никеля, цинка и олова, дибутиллаурат олова, диоктилмалеат олова, дибутилацетат олова, дибутилдиоктоат олова, ацетат олова, октоат олова, нафтенат свинца, каприлат цинка и нафтенат кобальта. Карбоксилаты олова, особенно дибутиллаурат олова и диоктилмалеат олова особенно эффективны для данного изобретения. Катализатор (или смесь катализаторов) присутствуют в каталитическом количестве, обычно между 0,015 и 0,035 частей на 100 частей смолы. Представительные радиационно-чувствительные добавки включают, но не ограничиваются этим, азосоединения, органические перекиси и полифункциональные винильные или аллильные соединения, такие как, например, триаллилцианурат, триаллилизоцианурат, тетраметакрилат пентаэритрита, глютаровый альдегид, диметакрилат этиленгликоля, диаллил-малеат, дипропаргилмалеат, дипропаргилмоноаллилцианурат, перекись дикумила, перекись ди-трет-бутила, трет-бутилпербензоат, перекись бензоила, гидроперекись кумола, трет-бутилпероктоат, перекись метилэтилкетона, 2,5-диметил-2,5-ди(трет-бутилперокси)гексан, перекись лаурила, трет-бутилперацетат, азо-бис-изобутилнитрит и их сочетания. Предпочтительными радиационно-чувствительными добавками для использования в настоящем изобретении являются соединения, которые имеют полифункциональные (т.е. по меньшей мере две) группы, такие как С=С, C=N или С=O. По меньшей мере одна радиационно-чувствительная добавка может быть введена в интерполимер этилена любым известным из практики методом. Однако предпочтительно радиационно-чувствительную добавку (добавки) вводят через концентрат маточной смеси, включающий такую же или отличную базовую смолу, что и интерполимер этилена. Предпочтительно концентрация радиационно-чувствительной добавки в концентрате маточной смеси относительно высока, например, 25 мас.% (в расчете на общую массу концентрата). По меньшей мере одну радиационно-чувствительную добавку вводят в полимер этилена в любом эффективном количестве. Предпочтительно количество по меньшей мере одной радиационно-чувствительной добавки составляет от 0,001 до 5 мас.%, более предпочтительно от 0,005 до 2,5 мас.%, и наиболее предпочтительно от 0,015 до 1 мас.% (в расчете на общую массу интерполимера этилена). Термин "полимер", как он использован здесь, относится к полимерным соединениям, полученным путем полимеризации мономеров одного и того же или разного типа. Родовое название "полимер", как оно использовано здесь, охватывает термины "гомополимер", "сополимер", "терполимер", а также "интерполимер". Термин "интерполимер", как он использован здесь, относится к полимерам, полученным путем полимеризации по меньшей мере двух разных типов мономеров. Родовое название "интерполимер", как оно использовано здесь, включает термин "сополимеры" (который обычно применяют по отношению к полимерам, полученным из двух различных мономеров), а также термин "терполимеры" (который обычно применяют по отношению к полимерам, полученным из трех различных мономеров). Термин "однородно разветвленный полимер этилена" использован здесь в обычном смысле по отношению к интерполимеру этилена, в котором сомономер случайно распределен в молекуле данного полимера и у которого преимущественно все полимерные молекулы имеют одно и то же мольное соотношение этилена к сомономеру. Термин относится к интерполимеру этилена, который получен с использованием так называемых гомогенных или односайтовых каталитических систем, известных в практике, таких как циглеровские ванадиевая, гафниевая и циркониевая каталитические системы и металлоценовые каталитические системы, например каталитические системы с напряженной геометрией, которые подробно описаны здесь ниже. Однородно разветвленные полимеры этилена для применения в настоящем изобретении могут быть также описаны, как имеющие меньше 15 мас.%, предпочтительно меньше 10 мас.%, более предпочтительно меньше 5 и наиболее предпочтительно ноль (0) мас.% полимера со степенью короткоцепочечного разветвления, меньшей или равной 10 метилам на 1000 атомов углерода. Иначе говоря, полимер не содержит заметной фракции полимера высокой плотности (например, отсутствует фракция, имеющая плотность, равную или большую 0,94 г/см3) по определению, например, с использованием метода элюционного фракционирования при растущей температуре (ЭФРТ) и анализов методами инфракрасной спектроскопии и 13С ядерно-магнитного резонанса (ЯМР). Предпочтительно однородно разветвленный полимер этилена характеризуется тем, что имеет узкую кривую профиля ЭФРТ с единственным плавлением и почти полное отсутствие заметной доли полимера с высокой плотностью, определенной с использованием метода элюционного фракционирования при растущей температуре (обозначенного здесь аббревиатурой ЭФРТ). Распределение состава интерполимера этилена может быть легко определено из данных ЭФТР, как описано, на