Композиции длительного высвобождения, способ их получения и применение

Реферат

 

Изобретение относится к области фармацевтической химии и касается композиции длительного высвобождения, содержащей физиологически активное вещество или его соль, оксинафтойную кислоту или ее соль и биодеградируемый полимер или его соль, обладающей улучшенной биодоступностью. 10 с. и 17 з.п. ф-лы, 4 табл.

Данное изобретение относится к композиции длительного высвобождения биологически активного вещества, способу получения этой композиции.

В не прошедшей экспертизу заявке на патент Японии №97334/1995 заявлен препарат длительного высвобождения, в состав которого входит биологически активный пептид или его соль и полимер, подвергающийся биологической деструкции и имеющий на одном конце свободную карбоксильную группу, и способ получения этого препарата.

В патентных публикациях GB 22009937, GB 2234169, GB 2234896, GB 2257909 и ЕР заявлены композиции на основе биодеградируемого полимера, содержащие отдельно приготовленную водонерастворимую соль, такую как памоат пептида или белка, и способ получения этих композиций.

В международной заявке WO 95/15767 заявлен эмбонат (памоат) цетрореликса (антагонист РГЛГ (LH-RH)) и способ его получения, и показано, что характер высвобождения пептида в том случае, когда памоат включен в биодеградируемый полимер, остается таким же, как при использовании только одного памоата.

Данное изобретение обеспечивает новую композицию с высоким содержанием биологически активного вещества, которая позволяет контролировать скорость высвобождения этого вещества.

После проведения всестороннего исследования, направленного на разрешение указанной выше проблемы, авторы данного изобретения обнаружили, что при высоком содержании биологически активного вещества, включенного в состав композиции путем одновременного введения биологически активного вещества и оксинафтойной кислоты в момент формирования композиции, и в том случае, когда оба эти компонента включены в биодеградируемый полимер, биологически активное вещество высвобождается со скоростью, отличной от скорости высвобождения биологически активного вещества из точно такой же композиции биологически активного вещества и оксинафтойной кислоты, приготовленной в отсутствие биодеградируемого полимера, причем скорость выхода биологически активного вещества контролируется выбором соответствующего вида биодеградируемого полимера. На основе этого наблюдения авторы изобретения провели дальнейшие исследования и разработали данное изобретение.

Таким образом, в настоящем изобретении представлены следующие объекты:

(1) композиция длительного высвобождения, содержащая биологически активное вещество или его соль, оксинафтойную кислоту или ее соль и биодеградируемый полимер или его соль,

(2) композиция длительного высвобождения по п.(1), указанному выше, в которой биологически активным веществом является биологически активный пептид,

(3) композиция длительного высвобождения по п.(2), указанному выше, в которой биологически активным пептидом является производное РГЛГ(LН-RН),

(4) композиция длительного высвобождения по п.(1), указанному выше, в которой оксинафтойной кислотой является 3-окси-2-нафтойная кислота,

(5) композиция длительного высвобождения по п.(1), указанному выше, в которой биодеградируемым полимером является полимер -гидроксикарбоновой кислоты,

(6) композиция длительного высвобождения по п.(5), указанному выше, в которой полимером -гидроксикарбоновой кислоты является полимер молочной кислоты - гликолевой кислоты,

(7) композиция длительного высвобождения по п.(6), указанному выше, в которой отношение содержания молочной кислоты к содержанию гликолевой кислоты составляет от 100/0 до 40/60 мол.%,

(8) композиция длительного высвобождения по п.(7), указанному выше, в которой отношение содержания молочной кислоты к содержанию гликолевой кислоты составляет 100/0 мол.%,

(9) композиция длительного высвобождения по п.(6), указанному выше, в которой среднемассовая молекулярная масса полимера составляет примерно от 3000 до 100000,

(10) композиция длительного высвобождения по п.(9), указанному выше, в которой среднемассовая молекулярная масса полимера составляет примерно от 20000 до 50000,

(11) композиция длительного высвобождения по п.(3), указанному выше, в которой производным РГЛГ является пептид, изображаемый следующей формулой:

5-оксо-Pro-His-Trp-Ser-Tyr-Y-Leu-Arg-Pro-Z,

в которой Y означает DLeu, DAla, DTrp, DSer(tBu), D2Nal или DHis(ImBzl); Z означает NH-C2H5 или Gly-NH2,

(12) композиция длительного высвобождения по п.(6), указанному выше, в которой содержание концевых карбоксильных групп полимера составляет 50-90 микромоль на единицу массы (грамм) полимера,

(13) композиция длительного высвобождения по п.(3), указанному выше, в которой молярное отношение оксинафтойной кислоты или ее соли к производному РГЛГ или его соли составляет от 3 : 4 до 4 : 3,

(14) композиция длительного высвобождения по п.(13), указанному выше, в которой концентрация производного РГЛГ или его соли составляет от 14% (вес/вес) до 24% (вес/вес),

(15) композиция длительного высвобождения по п.(1), указанному выше, в которой биоактивное вещество или его соль очень мало растворимы в воде или растворимы в воде,

(16) композиция длительного высвобождения по п.(1), указанному выше, которая предназначена для инъекций,

(17) способ получения композиции длительного высвобождения по п.(1), указанному выше, включающий в себя удаление растворителя из смеси биоактивного вещества или его соли, биодеградируемого полимера или его соли и оксинафтойной кислоты или ее соли,

(18) способ получения композиции длительного высвобождения по п.(17), указанному выше, включающий в себя смешивание и диспергирование биоактивного вещества или его соли в растворе, содержащем биодеградируемый полимер или его соль и оксинафтойную кислоту или ее соль в органическом растворителе, и последующее удаление органического растворителя,

(19) способ получения композиции длительного высвобождения по п.(18), указанному выше, в котором биоактивное вещество или его соль используется в виде водного раствора,

(20) способ получения по п.(17), указанному выше, в котором солью биоактивного вещества является соль, образованная свободным основанием или кислотой,

(21) фармацевтический препарат, содержащий композицию длительного высвобождения по п.(1), указанному выше,

(22) средство профилактики или лечения карциномы простаты, гипертрофии простаты, эндометриоза, миомы матки, фибромы матки, преждевременного полового созревания, дисменореи или рака молочной железы или средство контрацепции, содержащее композицию длительного высвобождения по п.3, указанному выше,

(23) композиция длительного высвобождения, содержащая оксинафтоат биоактивного вещества и биодеградируемый полимер или его соль,

(24) способ подавления бурного начального высвобождения биоактивного вещества из композиции длительного высвобождения, включающий в себя использование оксинафтойной кислоты или ее соли,

(25) способ повышения эффективности включения биоактивного вещества в композицию длительного высвобождения, включающий в себя использование оксинафтойной кислоты или ее соли,

(26) оксинафтоат биоактивного пептида,

(27) оксинафтоат биоактивного пептида по п.(26), указанному выше, который растворим в воде или очень мало растворим в воде, и

(28) композиция длительного высвобождения, содержащая оксинафтоат биоактивного пептида.

Далее в данном изобретении представлены следующие объекты:

(29) композиция длительного высвобождения по п.(28), указанному выше, в которой содержание оксинафтойной кислоты или ее соли составляет примерно от 1 до 7 моль, предпочтительно примерно от 1 до 2 моль, на 1 моль биоактивного пептида или его соли,

(30) способ получения композиции длительного высвобождения по п.(17), указанному выше, включающий в себя получение эмульсии вода/масло, в которой дисперсная водная фаза представлена раствором, содержащим биоактивное вещество или его соль, и масляная фаза представлена раствором, содержащим биодеградируемый полимер и оксинафтойную кислоту или ее соль, и последующее удаление растворителя,

(31) способ получения композиции длительного высвобождения по п.(17), указанному выше, включающий в себя получение эмульсии вода/масло, в которой дисперсная водная фаза представлена раствором, содержащим оксинафтойную кислоту или ее соль, и масляная фаза представлена раствором, содержащим биоактивное вещество или его соль и биодеградируемый полимер или его соль, и последующее удаление растворителя,

(32) способ получения композиции длительного высвобождения по п.(28), указанному выше, включающий в себя смешивание и растворение биоактивного пептида или его соли и оксинафтойной кислоты или ее соли, и последующее удаление растворителя, и

(33) способ получения композиции длительного высвобождения по любому из пп.30-32, в котором в качестве способа удаления растворителя используется способ сушки водосодержащих эмульсий.

В данном изобретении могут применяться все без ограничения биологически активные вещества при условии, что они допущены к фармакологическому применению, и это могут быть непептидные и пептидные вещества. К непептидным веществам относятся агонисты, антагонисты и вещества, обладающие ингибирующей ферменты активностью. К пептидным веществам относятся, например, биологически активные пептиды, в частности пептиды с молекулярной массой примерно от 300 до 40000, предпочтительно примерно от 400 до 30000 и более предпочтительно примерно от 500 до 20000.

К таким биологически активным пептидам относятся, например, рилизинг-гормон лютеинизирующего гормона (РГЛГ), инсулин, соматостатин, гормоны роста, рилизинг-фактор гормона роста (РФГР), пролактин, эритропоэтин, адренокортикотропный гормон, меланоцитстимулирующий гормон, рилизинг-фактор тиреоидного гормона, тиреотропный гормон, лютеинизирующий гормон, фолликулостимулирующий гормон, вазопрессин, окситоцин, кальцитонин, гастрин, секретин, панкреозимин, холецистокинин, ангиотензин, плацентарный лактоген человека, хорионический гонадотропин человека, энкефалин, эндорфин, киоторфин, туфтсин, тимопоэтин, тимозин, тимостимулин, тимический гуморальный фактор, сывороточный тимический фактор, фактор некроза опухолей, колониестимулирующий фактор, мотилин, дайнорфин, бомбезин, нейротензин, церулеин, брадикинин, атриальный натрийуретический фактор, фактор роста нервов, фактор роста клеток, нейротрофический фактор, пептиды - антагонисты эндотелина, их производные, фрагменты этих пептидов и производные этих фрагментов.

Биологически активный пептид может использоваться в данном изобретении либо как таковой, либо в виде соли, допущенной к фармакологическому применению.

К таким солям относятся соли неорганических кислот (их можно также назвать неорганическими свободными кислотами) (например, соли угольной кислоты (карбонаты и бикарбонаты), соляной кислоты, серной кислоты, азотной кислоты, борной кислоты), соли органических кислот (их можно также назвать органическими свободными кислотами) (например, янтарной кислоты, уксусной кислоты, пропионовой кислоты, трифторуксусной кислоты) и т.д., которые образуются в том случае, когда биологически активный пептид имеет основную группу, такую как аминогруппа.

Когда указанный биологически активный пептид содержит кислую группу, такую как карбоксильная группа, то такие соли образуются неорганическими основаниями (их можно также назвать неорганическими свободными основаниями) (например, щелочных металлов, таких как натрий и калий, щелочноземельных металлов, таких как кальций и магний), органическими основаниями (их можно также назвать органическими свободными основаниями) (например, органическими аминами, такими как триэтиламин, основными аминокислотами, такими как аргинин) и т.д. Биологически активный пептид может образовывать комплексные соединения с металлами (например, комплекс меди, комплекс цинка).

Наиболее предпочтительными примерами описанного выше биологически активного пептида являются производные РГЛГ или их соли, которые эффективны при лечении зависимых от половых гормонов заболеваний, таких как карцинома простаты, гипертрофия простаты, эндометриоз, миома матки, преждевременное половое созревание и рак молочной железы, и эффективны в качестве средств контрацепции.

Примерами производных РГЛГ или их солей могут служить, например, пептиды, описанные в "Treatment with GnRH Analogs: Controversies and Perspectives" (The Parthenon Publishing Group Ltd., публикация 1996 г.), в прошедшей экспертизу заявке на патент Японии №503165/1991, в не прошедших экспертизу заявках на патент Японии №№101695/1991, 97334/1995 и 259460/1996 и в других публикациях.

Производными РГЛГ могут быть агонисты РГЛГ или антагонисты РГЛГ; пригодными для данного изобретения антагонистами РГЛГ могут быть, например, биологически активные пептиды, представленные общей формулой [I]:

X-DD2Nal-D4ClPhe-D3Pal-Ser-A-B-Leu-C-Pro-DAlaNH2,

где X представляет собой N (4Н2 -фуроил)Gly или NAc; A представляет собой один из следующих остатков: NMeTyr, Туr, Aph(Atz) и NMeAph(Atz); В представляет собой один из следующих остатков: DLys(Nic), DCit, DLys(AzaglyNic), DLys(AzaglyFur), DhArg(Et2), DAph(Atz) и DhCi; С представляет собой Lys(Nisp), Arg или hArg(Et2), или их соли.

Пригодными для данного изобретения агонистами РГЛГ могут быть, например, биологически активные пептиды, представленные общей формулой [II]:

5-оксо-Pro-His-Trp-Ser-Tyr-Y-Leu-Arg-Pro-Z,

где Y представляет собой один из следующих остатков: DLeu, DAla, DTrp, DSer (tBu), D2Nal и Dhis (lmBzl); Z представляет собой NH2-C2H5, Gly-NH2, или их соли. В частности, наиболее предпочтительными пептидами являются пептиды, в которых Y является DLeu и Z является NH-C2H5, (то есть пептид, представленный формулой 5-оксо-Pro-His-Trp-Ser-Tyr-DLeu-Arg-Pro-NH-C2H5).

Эти пептиды могут быть получены способами, описанными в упоминаемых выше ссылках или заявках на патенты, или основанными на них способами.

Используемые здесь сокращения имеют следующие значения:

N (4Н2-фуроил)Gly: остаток N-тетрагидрофуроилглицина

NAc: N-ацетильная группа

D2Nal: остаток D-3-(2-нафтил)аланина

D4ClPhe: остаток D-3-(4-хлор)фенилаланина

D3Pal: остаток D-3-(3-пиридил)аланина

NMeTyr: остаток N-метилтирозина

Aph(Atz): остаток N-[5’-(3’-амино-1’Н-

1’,2’,4’-триазолил)]фенилаланина

NMeAph(Atz): остаток N-метил-[5’-(3’-амино-1’Н-

1’,2’,4’-триазолил)]фенилаланина

DLys(Nic): остаток D-(e-N-никотиноил)лизина

DCit: остаток D-цитруллина

DLys(AzaglyNic): остаток D-(азаглицилникотиноил)лизина

DLys(AzaglyFur): остаток D-(азаглицилфуранил)лизина

DhArg(Et2): остаток D-(N,N’-диэтил)гомоаргинина

DAph(Atz): остаток D-N-[5’-(3’-амино-1’Н-

1’, 2’, 4’-триазолил)]фенилаланина

DhCi: остаток D-гомоцитруллина

Lys(Nisp): остаток (e-N-изопропил)лизина

hArg(Etz): остаток (N,N’-диэтил)гомоаргинина

Сокращенные названия аминокислот соответствуют сокращениям, используемым в биохимической номенклатуре, принятой комиссией ИЮПАК-ИЮБ [European Journal of Biochemistry, Vol.138, pp.9-37 (1984)] или сокращениям, которые обычно используются в связанных с этой проблемой областях. В случае, когда присутствует оптический изомер аминокислоты, эта аминокислота находится в L-конфигурации, если только не оговорено особо.

Оксинафтойная кислота, используемая в данном изобретении, имеет в своем составе нафталиновое кольцо и имеет одну гидроксильную группу и 1 карбоксильную группу, обе группы могут связываться с различными атомами углерода нафталинового кольца. Поэтому существует всего 14 изомеров с различным положением гидроксильной группы относительно карбоксильной группы, локализованной в положениях 1 и 2 нафталинового кольца. Может быть использован любой из этих изомеров и может быть использована их смесь в различных соотношениях. Как описано далее, предпочтительным является высокое значение константы диссоциации кислоты, или чтобы значение рКа (рКа = -log10Ka, Ka представляет собой константу диссоциации кислоты) было низким. Предпочтение отдается также изомерам, которые очень слабо растворимы в воде.

Предпочтительными являются изомеры, которые растворимы в спиртах (например, этанол, метанол). Используемый здесь термин “растворимы в спиртах” означает, что растворимость составляет, например, не меньше чем 10 г/л метанола.

Что касается значений рКа описанных выше изомеров оксинафтойной кислоты, известно значение только для 3-окси-2-нафтойной кислоты (рКа=2,708, Kagaku Binran Kisohen II, опубликовано в Chemical Society of Japan, September 25,1969); однако полезная информация получена при сравнении значений рКа трех изомеров оксибензойной кислоты. В частности, значения рКа м-оксибензойной кислоты и п-оксибензойной кислоты составляют не менее 4, в то время как значение рКа о-оксибензойной кислоты (салициловая кислота) очень низкое (2,754). Поэтому предпочтительными из 14 приведенных выше изомеров являются изомеры, в состав которых входит нафталиновое кольцо, и карбоксильная и гидроксильная группы связаны с соседними атомами углеродного кольца, т.е. 3-окси-2-нафтойная кислота, 1-окси-2-нафтойная кислота и 2-окси-1-нафтойная кислота. Наиболее предпочтительна 3-окси-2-нафтойная кислота, в состав которой входит нафталиновое кольцо и гидроксильная группа связана с атомом углерода в 3 положении кольца и 1 карбоксильная группа связана с углеродом во 2 положении кольца.

Оксинафтойная кислота может использоваться в виде соли. К солям относятся, например, соли неорганических оснований (например, образованных щелочными металлами, такими как натрий и калий, щелочноземельными металлами, такими как кальций и магний), органических оснований (например, органических аминов, таких как триэтиламин, основных аминокислот, таких как аргинин), и соли и комплексные соли переходных металлов (например, цинка, железа, меди).

Пример способа получения соли оксинафтойной кислоты и биоактивного вещества, разработанного в данном изобретении, приводится ниже.

(1) Раствор оксинафтойной кислоты в гидратированном органическом растворителе пропускали через слабоосновную ионообменную колонку, чтобы адсорбировать кислоту и насытить колонку. Затем избыточную часть оксинафтойной кислоты удаляли с помощью гидратированного органического растворителя, после чего через колонку пропускали раствор биоактивного вещества в гидратированном органическом растворителе для осуществления ионного обмена; растворитель удаляли из полученного элюата. В качестве указанного гидратированного органического растворителя могут использоваться такие органические растворители как спирты (например, метанол, этанол), ацетонитрил, тетрагидрофуран и диметилформамид. Удаление растворителя для осаждения соли достигается использованием общеизвестного способа или способа, основанного на ранее известном методе. Примером такого способа может быть способ, в котором растворитель выпаривается в условиях вакуума с помощью роторного испарителя, и т.д.

(2) Через слабоосновную ионообменную колонку, после предварительно проведенного обмена ионов на гидроксильные ионы, пропускали раствор биоактивного вещества или его соли в гидратированном органическом растворителе для замещения основных групп гидроксильными группами. Оксинафтойную кислоту в количестве, не превышающем молярный эквивалент, добавляют к полученному элюату и растворяют с последующим концентрированием; преципитированную соль отмывают водой, сколько это необходимо, и высушивают.

Так как соль биоактивного вещества и оксинафтойной кислоты очень слабо растворима в воде, хотя растворимость зависит еще и от природы используемого биоактивного вещества, сама указанная соль биоактивного пептида как таковая, представляющая собой потенциально длительно высвобождающееся вещество, может использоваться в качестве препарата биоактивного вещества длительного высвобождения и так же может быть использована для получения композиции длительного высвобождения.

Биодеградируемыми полимерами, используемыми в данном изобретении, могут быть, например, полимеры и сополимеры, которые синтезируются на основе одного или более чем одного вида а - гидроксимонокарбоновых кислот (например, гликолевой кислоты, молочной кислоты), гидроксидикарбоновых кислот (например, яблочной кислоты), гидрокситрикарбоновых кислот (например, лимонной кислоты) и т.д., и на основе кислот, имеющих свободные карбоксильные группы, или их смесей; сложные полиэфиры - цианакриловой кислоты; полиаминокислоты (например, поли-g-бензил-L-глутаминовая кислота); и сополимеры малеинового ангидрида (например, сополимеры стирола и малеиновой кислоты).

Связывание мономеров может быть в виде статистического полимера, блоксополимера или привитого сополимера. В том случае, когда в структуре молекул упоминаемых выше а - гидроксимонокарбоновых кислот, а - гидроксидикарбоновых кислот и а - гидрокситрикарбоновых кислот имеется оптически активный центр, они могут иметь D-, L- или DL-конфигурацию. Среди них полимеры молочной кислоты -гликолевой кислоты [упоминаемые в дальнейшем также как поли(лактид-со-гликолид), поли(молочная кислота-со-гликолевая кислота) или сополимер молочной кислоты - гликолевой кислоты, что в общем относится к гомополимерам и сополимерам молочной кислоты - гликолевой кислоты, если только не оговорено особо; гомополимеры молочной кислоты называются также полимерами молочной кислоты, полимолочными кислотами, полилактидами и т.д. и гомополимеры гликолевой кислоты называются полимерами гликолевой кислоты, полигликолевыми кислотами, полигликолидами и т.д.], при этом предпочтение отдается сложным поли(-цианакриловым эфирам) и т.д. Большее предпочтение отдается полимерам молочной кислоты - гликолевой кислоты. Более предпочтительны для применения полимеры молочной кислоты - гликолевой кислоты, имеющие свободную карбоксильную группу на одном конце.

Биодеградируемый полимер может быть в виде соли. Примерами солей могут служить соли неорганических оснований (например, образованных щелочными металлами, такими как натрий и калий, щелочноземельными металлами, такими как кальций и магний), органических оснований (например, органических аминов, таких как триэтиленамин, основных аминокислот, таких как аргинин) и соли и комплексные соли переходных металлов (например, цинка, железа, меди).

В том случае, когда в качестве биодеградируемого полимера используется полимер молочной кислоты - гликолевой кислоты, предпочтительно соотношение их содержания (мол.%) примерно от 100/0 до 40/60, более предпочтительно примерно от 100/0 до 50/50. Также предпочтительными для использования являются гомополимеры молочной кислоты, в которых соотношение содержания кислот составляет 100/0.

Соотношение оптических изомеров молочной кислоты в одной минимальной повторяющейся единице указанного полимера молочной кислоты - гликолевой кислоты составляет предпочтительно от 75/25 до 25/75, речь идет об отношении D-конфигурации/L-конфигурации (моль/мол.%). Обычно используются полимеры молочной кислоты - гликолевой кислоты, в которых соотношение D-конфигурации/L-конфигурации (моль/мол.%) составляет примерно от 60/40 до 30/70.

Среднемассовая молекулярная масса указанного полимера молочной кислоты - гликолевой кислоты обычно составляет примерно от 3000 до 100000, преимущественно примерно от 3000 до 60000, более предпочтительно примерно от 3000 до 50000 и еще более предпочтительно примерно от 20000 до 50000.

Степень дисперсности (среднемассовая молекулярная масса/среднечисловая молекулярная масса) обычно примерно равна значению от 1,2 до 4,0, более предпочтительно от 1,5 до 3,5.

Содержание свободных карбоксильных групп в указанном полимере молочной кислоты - гликолевой кислоты составляет предпочтительно примерно от 20 до 1000 мкмоль, более предпочтительно от 40 до 1000 мкмоль на единицу массы (грамм) полимера.

Приведенные здесь среднемассовая молекулярная масса, среднечисловая молекулярная масса и степень дисперсности - это молекулярные массы и степень дисперсности, определенные на основе сравнения с полистиролом с помощью гель-проникающей хроматографии (ГПХ), при которой в качестве эталонов использовали 15 полистиролов со среднемассовой молекулярной массой 1110000, 707000, 455645, 354000, 189000, 156055, 98900, 66437, 37200, 17100, 9830, 5870, 2500, 1304 и 504 соответственно. Измерения проводили с помощью прибора для высокоскоростной ГПХ (производства Toso, HLC-8120GPC, определяемый показатель - показатель преломления) и колонки для ГПХ типа KF804Lx2 (производства Showa Denco), при этом в качестве подвижной фазы использовали хлороформ.

Термин “содержание свободных карбоксильных групп” используется здесь по отношению к содержанию, определяемому методом мечения (в дальнейшем упоминается в виде “содержания карбоксильных групп, определяемого методом мечения”). Детали методики определения содержания карбоксильных групп описаны ниже. Сначала навеску W (мг) полимолочной кислоты растворяют в 2 мл смеси 5 N соляной кислоты/ацетонитрила (объем/объем = 4/96); добавляют 2 мл 0,01 М раствора гидрохлорида о-нитрофенилгидразина (ОНФГ) (5 N соляная кислота/ацетонитрил/ этанол = 1,02/35/15) и 2 мл 0,15 М раствора 1-этил-3-(3-диметиламинопропил)карбодиимида гидрохлорида (пиридин/этанол = 4/96 объем/объем), реакция продолжается в течение 30 минут при 40С, после чего растворитель удаляется. После промывания водой (4 раза) остаток растворяют в 2 мл ацетонитрила; добавляют 1 мл 0,5 моль/л раствора гидроокиси калия в этаноле, после чего реакция продолжается 30 мин при 60С. Реакционную смесь разбавляют 1,5 N водным раствором гидроокиси натрия до Y мл; определяется оптическая плотность А (см-1) при 544 нм с использованием в качестве контроля 1,5 N водного раствора гидроокиси натрия. Отдельно определяют содержание свободных карбоксильных групп С (моль/л) в стандартном водном растворе DL-молочной кислоты путем титрования щелочью. Определив значение оптической плотности В (см-1) при 544 нм гидразида DL-молочной кислоты, полученного методом мечения ОНФГ, можно рассчитать молярное содержание свободных карбоксильных групп на единицу массы (грамм) полимера с использованием уравнения:

[СООН] (моль/г)=(AYC)/(WB).

Хотя указанное содержание карбоксильных групп может быть также определено растворением биодеградируемого полимера в смеси растворителей толуол-ацетон-метанол и выявлением карбоксильных групп путем титрования этого раствора спиртовым раствором гидроокиси калия с использованием фенолфталеина в качестве индикатора (значение, полученное этим методом, в дальнейшем употребляется как “содержание карбоксильных групп, определяемое методом щелочного титрования”), желательно рассчитывать содержание на основе метода мечения, описанного выше, так как конечная точка титрования может быть определена не точно из-за конкуренции, обусловленной гидролитической реакцией главной цепи сложного полиэфира, во время титрования.

Скорость деструкции/элиминации биодеградируемого полимера варьирует в широких пределах, в зависимости от структуры сополимера, молекулярной массы или содержания свободных карбоксильных групп. Однако продолжительность выхода лекарственного средства может быть увеличена благодаря снижению относительной доли гликолевой кислоты или увеличению молекулярной массы и снижению содержания карбоксильных групп, так как в случае полимеров молочной кислоты - гликолевой кислоты деструкция/элиминация обычно замедляется при снижении относительной доли гликолевой кислоты. Однако поскольку содержание свободных карбоксильных групп влияет на эффективность включения биоактивного вещества в состав препарата, оно должно быть выше определенного уровня. По этой причине предпочтительно в биодеградируемом полимере, полученном для препарата длительного высвобождения пролонгированного типа (например, 6 месяцев и более), в данном случае для полимера молочной кислоты - гликолевой кислоты, использование полимолочной кислоты (например, D-молочной кислоты, L-молочной кислоты, DL-молочной кислоты, предпочтительно DL-молочной кислоты и т.д.), среднемассовая молекулярная масса и содержание карбоксильных групп в которой, определяемые, как описано выше, составляют примерно от 20000 до 50000 и примерно от 30 до 95 мкмоль/г, предпочтительно примерно от 40 до 95 мкмоль/г, наиболее предпочтительно примерно от 50 до 90 мкмоль/г.

Указанный “полимер молочной кислоты - гликолевой кислоты” может быть получен, например, способом некаталитической дегидратационной поликонденсации (не прошедшая экспертизу заявка на патент Японии №28521/1986) из молочной кислоты и гликолевой кислоты или полимеризацией с раскрытием цикла из лактида и соединения сложного циклического диэфира, такого как гликолид, с участием катализатора (Encyclopedic Handbook of Biomaterials and Bioengineering Part A: Materials, Volume 2, Marcel Dekker, Inc., 1995). Хотя полимер, полученный упомянутым выше известным способом полимеризации с раскрытием цикла, не всегда содержит свободную карбоксильную группу на одном конце, он также может использоваться после модификации, приводящей к образованию полимера, имеющего определенное количество карбоксильных групп на единицу массы благодаря проведению гидролитической реакции, описанной в ЕП-А-0839525.

Описанный выше “полимер молочной кислоты - гликолевой кислоты, имеющий свободную карбоксильную группу на одном конце”, может быть получен без проблем общеизвестным способом (например, некаталитической дегидратационной поликонденсацией, не прошедшая экспертизу заявка на патент Японии №28521/1986) или способом, описанным ниже.

(1) Сначала в присутствии производного гидроксимонокарбоновой кислоты (например, трет-бутил-D-лактата, бензил-L-лактата) с защищенной карбоксильной группой или производного гидроксидикарбоновой кислоты (например, дибензилтартроната, ди-трет-бутил-2-гидроксиэтилмалоната) с защищенной карбоксильной группой, соединение сложного циклического эфира подвергается реакции полимеризации с участием катализатора полимеризации.

Примерами описанных выше “производного гидроксимонокарбоновой кислоты с защищенной карбоксильной группой” или “производного гидроксидикарбоновой кислоты с защищенной карбоксильной группой” служат производные гидроксикарбоновых кислот с карбоксильной группой (-СООН), амидированной (-CONH2) или эстерифицированной (-COOR), причем предпочтение отдается производным гидроксикарбоновых кислот с карбоксильной группой (-СООН), которая эстерифицирована (-COOR) и т.д.

Примером R в сложных эфирах здесь могут служить C1-6 алкильные группы, такие как метил, этил, н-пропил, изопропил, н-бутил и трет-бутил, С3-8 циклоалкильные группы, такие как циклопентил и циклогексил, С6-12 арильные группы, такие как фенил и -нафтил, и C7-14 аралкильные группы, такие как фенил-С1-2 алкильные группы, такие как бензил и фенетил, и -нафтил-C1-2 алкильные группы, такие как -нафтилметил. Среди этих групп предпочтительны трет-бутильные группы, бензильные группы и т.д.

Указанное “соединение сложного циклического эфира” относится к циклическим соединениям, имеющим, по меньшей мере, одну сложноэфирную связь в цикле. В частности, к таким соединениям относятся соединения сложных циклических моноэфиров (лактоны) или соединения сложных циклических диэфиров (лактиды).

Примером указанного “соединения сложного циклического моноэфира” могут служить лактоны с 4-членным кольцом (-пропиолактон, -бутиролактон, -изовалеролактон, -капролактон, -изокапролактон, -метил--валеролактон и т.д.), лактоны с 5-членным кольцом (-бутиролактон, -валеролактон и т.д.), лактоны с 6-членным кольцом (-валеролактон и т.д), лактоны с 7-членным кольцом (-капролактон и т.д.), п-диоксанон и 1,5-диоксепан-2-он.

Примером указанного “соединения сложного циклического диэфира” могут служить соединения, представленные формулой:

где R1 и R2, которые либо идентичны, либо не идентичны, представлены атомом водорода или C1-6 алкильной группой, такой как метил, этил, н-пропил, изопропил, н-бутил или трет-бутил, причем предпочтение отдается лактидам, имеющим в качестве R1 атом водорода и в качестве R2 метильную группу или имеющим атом водорода в качестве R1 и R2 и т.д.

В частности, к таким соединениям относятся гликолиды, L-лактиды, D-лактиды, DL-лактиды, мезо-лактиды и 3-метил-1,4-диоксан-2,5-дион (включая оптически активные конфигурации).

Примером указанного “катализатора полимеризации” являются оловоорганические катализаторы (например, октилат олова, ди-н-бутилоловодилаурилат, тетрафенилолово), алюминиевые катализаторы (например, триэтилалюминий) и цинковые катализаторы (например, диэтилцинк).

С точки зрения простоты удаления после реакции предпочтительны алюминиевые катализаторы и цинковые катализаторы; с точки зрения безопасности в случае неполного удаления предпочтительны цинковые катализаторы.

В качестве используемых растворителей катализаторов полимеризации могут быть бензол, гексан и толуол, причем предпочтение отдается гексану и толуолу.

Что касается “способа полимеризации”, то это может быть способ проведения полимеризации в массе, при котором продукт реакции находится в расплавленном состоянии, или способ проведения полимеризации в растворе, при котором продукт реакции растворен в соответствующем растворителе (например, бензол, толуол, ксилол, декалин, диметилформамид). Хотя нет ограничений для температуры полимеризации, при инициации реакции полимеризации в массе она не должна быть ниже, чем температура, при которой продукт реакции находится в расплавленном состоянии, обычно от 100 до 300С, и для полимеризации в растворе это обычно от комнатной температуры до 150С; если температура реакции превышает температуру кипения реакционного раствора, реакцию проводят с дефлегмацией с использованием конденсатора или в реакторе высокого давления. Принимая во внимание температуру полимеризации, определяют другие соответствующие условия реакции, желаемые физические свойства полимера и т.д., например время полимеризации может быть от 10 минут до 72 часов. После окончания реакции полимеризация останавливается добавлением кислоты (например, хлорной кислоты, уксусного ангидрида, трифторуксусной кислоты), с растворением реакционной смеси, если это необходимо, в соответствующем растворителе (например, ацетоне, дихлорметане, хлороформе), после чего смесь перемешивается с растворителем, который не растворяет нужный продукт (например, спирт, вода, эфир, изопропиловый эфир) или осаждается другим способом, после чего выделяется полимер, имеющий защищенную карбоксильную группу на -конце.

В способе полимеризации, представленном в данной заявке, вместо традиционных протонных агентов передачи цепи, таких как метанол, используются производные гидроксикарбоновых кислот (например, трет-бутил-D-лактат, бензил-L-лактат) с защищенной карбоксильной группой или производные гидроксидикарбоновых кислот (например, дибензилтартронат, ди-трет-бутил-L-2-гидроксиэтилмалонат) с защищенным карбоксилом.

Использование производных гидроксикарбоновых кислот (например, трет-бутил-D-лактата, бензил-L-лактата) с защищенной карбоксильной группой или производных гидроксидикарбоновых кислот (например, дибензилтартроната, ди-трет-бутил-L-2-гидроксиэтилмалоната) с защищенным карбоксилом в качестве протонных агентов передачи цепи делает возможным 1) контроль молекулярной массы за счет различной комбинации исходных материалов и 2) освобождение карбоксильной группы на -конце полученного биодеградируемого полимера благодаря реакции удаления защитных групп после полимеризации.

(2) Во-втор