Обратный поворотный клапан
Реферат
Изобретение относится к арматуростроению и предназначено для использования в конструкциях ОПК, работающих в различных областях техники. Обратный поворотный клапан содержит корпус, установленный на шарнирном соединении с осью подвижный затвор, разделяющий проточную часть на входную и выходную полости, в котором на затворе со стороны входной полости под углом к его уплотнительной поверхности и параллельно оси расположена первая пластина, связанная с затвором посредством ребер жесткости, расположенных параллельно друг другу и оси затвора. Клапан снабжен дополнительными пластинами с номерами i+1, расположенными параллельно оси подвижного шарнира. Все пластины расположены с зазором друг относительно друга и уплотнительной поверхности затвора под углами 1 к уплотнительной поверхности затвора. Ребра жесткости связывают указанные пластины и затвор и расположены перпендикулярно пластинам и оси подвижного шарнира, где i=1, 2, 3 порядковый номер пластины в направлении от затвора. Изобретение направлено на уменьшение коэффициента гидравлического сопротивления и минимизации количества пластин, а также стабилизацию потока рабочей среды. 1 з.п. ф-лы, 6 ил.
Область техники. Изобретение относится к арматуростроению и может быть использовано в конструкции обратного клапана. Предшествующий уровень техники. Известен обратный поворотный клапан (ОПК), содержащий корпус, установленный на шарнирном соединении с осью подвижный затвор, разделяющий проточную часть корпуса на входную и выходную полости, в котором на затворе со стороны входной полости под углом к его уплотнительной поверхности и параллельно оси расположена пластина, связанная с затвором посредством ребер жесткости, расположенных параллельно друг другу и оси подвижного шарнира (см. патент DE 545879 A, F 16 K 15/03, 09.03.1932). Недостатком данного технического решения является то, что отсутствует механизм выбора наименьшего количества пластин за счет оптимизации их размеров, т.к. необоснованное увеличение количества пластин приводит к росту коэффициента гидравлического сопротивления, массе и инерционности системы "затвор - пластины - ребра". Заявленное изобретение решает задачу уменьшения коэффициента гидравлического сопротивления и минимизации количества пластин путем выполнения их с максимально возможными размерами, а также стабилизации потока рабочей среды. Поставленная задача решается в обратном поворотном клапане, содержащем корпус, установленный на шарнирном соединении с осью подвижный затвор, разделяющий проточную часть корпуса на входную и выходную полости, в котором на затворе со стороны входной полости под углом к его уплотнительной поверхности и параллельно оси расположена пластина, связанная с затвором посредством ребер жесткости, расположенных параллельно друг другу, путем снабжения его дополнительными пластинами с номерами i+1, расположенными параллельно оси подвижного шарнира с зазором друг относительно друга и по отношению к вышеуказанной пластине под углом i к уплотнительной поверхности затвора, при этом ребра жесткости связывают указанные пластины, затвор и расположены перпендикулярно пластинам и оси подвижного шарнира, где i=1, 2, 3. Сущность изобретения заключается в возможности выполнения пластин с различными углами их наклона, отсутствии "лишних" пластин, т.к. их размеры максимально возможны в заданной конструкции ОПК, что позволяет уменьшить их количество для обеспечения работоспособности ОПК, снизить металлоемкость и гидравлическое сопротивление ОПК. Изобретение поясняется чертежами: на фиг.1 изображен ОПК в разрезе, положение “закрыто”, на фиг.2 изображен ОПК в разрезе, положение “открыто”, на фиг.3 - вид 1 на фиг.2, на фиг.4 - сечение 2-2 фиг.2, на фиг.5 - расчетная схема для выбора наибольших размеров пластин, усилий, действующих на затвор и пластины, на фиг.6 - нормальное сечение торовой поверхности, внутри которой перемещаются пластины. ОПК (фиг.1, 2) содержит корпус 1, установленный на шарнирном соединении 2 с осью 3, подвижный затвор 4 с уплотнительной поверхностью 5, разделяющий проточную часть корпуса 1 на входную 6 и выходную 7 полости. Для герметизации со стороны горловины 8 установлены пробка 9, сухари 10, диск 11, крепежный элемент 12. На затворе 4 со стороны входной полости 6 под углами i (i=const в частном случае) к его уплотнительной поверхности 5 и параллельно оси 3 шарнирного соединения 2 расположены с зазором друг относительно друга и уплотнительной поверхности 5 затвора 4 пластины 13, связанные друг с другом и с затвором посредством поперечных ребер жесткости 14, расположенных параллельно друг другу и перпендикулярно пластинам 13, уплотнительной поверхности 5 и оси 3 подвижного шарнира 2. Со стороны входной полости 5 установлено седло 15 с уплотняющей поверхностью 16 и диаметром d отверстия для прохода текучей среды. Уплотнительная поверхность 5 имеет геометрическую ось 17. Ось 3 имеет геометрическую ось 18. Пластины 13, ребра жесткости 14 из условия работоспособности должны перемещаться по торовому пространству с центром 18 и радиусами тора Rmin, Re, Rmax и диаметром d в нормальном сечении, равном диаметру d проточной части седла 15 входной полости (фиг.6). Проекции пластин 13 и ребер 14 на плоскость нормального сечения тора должны иметь размеры не более bo и аo по длине и ширине (фиг.6). Из геометрии (фиг.5) следует: r=(А+Сi)2+m2i, (1) откуда, где r - радиус перемещения по торовому пространству передних кромок пластин 13, м; r=Rср+bо/2 (3) А - расстояние от оси 18 до уплотнительной поверхности 5 затвора 4, м; Сi - расстояние от уплотнительной поверхности 5 до передней кромки i-й пластины 13, м; i=1, 2, 3... - порядковый номер пластины; mi - расстояние от оси 18 до передней кромки i-й пластины в плоскости параллельной уплотнительной поверхности 5 затвора 4, м. Можно записать: R2=(A+Ci+bi-sin)2+M2i, (4) где Мi - расстояние от оси 18 до задней кромки i-й пластины в плоскости, параллельной уплотнительной поверхности 5 затвора 4, м; R - радиус перемещения по торовому пространству задних кромок пластин 13; i - угол наклона i-й пластины к плоскости уплотнительной поверхности 5 затвора 4, град. R=(Rс+bо/2), м, (6) Мi=(mi+bi-cos), м, (7) где после подстановки (7) в (4) и преобразований получим Величина аэродинамической подъемной силы, действующей на каждую из пластин 13, может быть определена по формуле Fi=Si·Су··V2/2, (9) где Si=ai·bi; (10) - площадь i-й пластины 13; Су=2i - поправочный коэффициент; i - угол наклона пластин 13 к направлению потока (5...20 град), в данном случае к уплотняемой поверхности 5 затвора 4, которая параллельна вектору скорости потока, в рад. (см. Краснов М.Ф. Прикладная аэродинамика. - Л.: Высшая школа, 1974). Для уравновешенной системы сумма моментов относительно геометрической оси 18 равна нулю, поэтому можно записать основное расчетное уравнение Kи-Po-L-FiКi=0, (11) где Ки - коэффициент запаса, учитывающий пульсацию скорости потока, Кп=1,3 для коэффициента пульсации 0,2; Ро - вес затвора вместе с пластинами и ребрами жесткости; Fi - аэродинамическая подъемная сила, действующая на i-ю пластину 13, Н; L - плечо приложения силы Рo, м; Ки - плечо приложения силы Fi, м. Введенный автором угол i - угол наклона i-й пластины к плоскости уплотнительной поверхности 5 указан в общем виде. Это значит, что углы наклона пластин 13 могут отличаться. Например, 1 пластина 13 имеет наклон 5, 2 пластина 13 имеет наклон 7, 3 пластина 13 имеет наклон 6. Оптимальный угол наклона каждой из пластин определяется экспериментально или путем компьютерного моделирования (пакет моделирования "Star-CD") на конкретной конструкции и заданных параметрах рабочей среды (построение модели можно осуществить с применением пакета Mechanical Desctop). Причем частичная или полная непараллельность пластин 13 приводит к уменьшению гидравлического сопротивления, стабилизации потока, снижению турбулентности, коэффициента пульсации, вибрации, что может быть объяснено разделением основного потока на ряд потоков с различными векторами скоростей и сложным характером взаимодействием их друг с другом на выходе после пластин 13. Определение размеров пластин 13 и ребер 14 с учетом приведенного выше алгоритма обеспечивает выбор минимально необходимого количества пластин 13 с максимально возможными размерами из условия работоспособности (11), что позволяет максимально снизить коэффициент гидравлического сопротивления и обеспечить минимально возможную массу и инерционность системы "затвор 4 - пластины 13 - ребра 14". Это позволяет использовать данное изобретение для ОПК, затвор которого имеет пластины и ребра, с Ду до 3000 мм для высокоскоростных пульсирующих газовых, многокомпонентных и жидких сред. Области использования данного технического решения ОПК: - паровая и газовая арматура, газовая, нефтяная промышленность; - технологические газогидравлические процессы; - системы транспортирования газообразных сред.Формула изобретения
1. Обратный поворотный клапан, содержащий корпус, установленный на шарнирном соединении с осью подвижный затвор, разделяющий проточную часть корпуса на входную и выходную полости, в котором на затворе со стороны входной полости под углом к его уплотнительной поверхности и параллельно оси расположена первая пластина, связанная с затвором посредством ребер жесткости, расположенных параллельно друг другу и оси затвора, отличающийся тем, что он снабжен дополнительными пластинами с номерами i+1, расположенными параллельно оси подвижного шарнира, причем все пластины расположены с зазором друг относительно друга и уплотнительной поверхности затвора под углами i к уплотнительной поверхности затвора, при этом ребра жесткости связывают указанные пластины, затвор и расположены перпендикулярно пластинам и оси подвижного шарнира, где i = 1, 2, 3... - порядковый номер пластины в направлении от затвора. 2. Обратный поворотный клапан по п.1, отличающийся тем, что наибольшие длина и ширина пластин и ребер выбираются из условия, что их проекции на нормальное сечение тора, с осью вращения в геометрической оси шарнира и образующей окружностью, равной диаметру проходного отверстия седла, представляют вписанный прямоугольник в окружность этого диаметра, с размерами ао и bо, а действительная ширина пластин равна ао, а длина пластин bi определяется по зависимости где Сi - расстояние от уплотнительной поверхности до передней кромки i-й пластины, i = 1, 2, 3...; А - расстояние от оси вращения тора до уплотнительной поверхности затвора, м; i - угол наклона i-й пластины к плоскости уплотнительной поверхности затвора, град.; R - радиус перемещения по торовому пространству задних кромок пластин, м; mi - расстояние от оси вращения тора до передней кромки i-й пластины в плоскости, перпендикулярной уплотнительной поверхности затвора.РИСУНКИ
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5, Рисунок 6