Способы и устройства для кодирования и декодирования речевых сигналов

Реферат

 

Изобретение относится к способу и устройству кодирования речевого сигнала, в которых входной речевой сигнал делится на блоки или кадры, которые кодируются на основе элементов кодирования. Устройство кодирования включает в себя первый блок кодирования, предназначенный для нахождения остатков кодирования с линейным предсказанием (КЛП) входного речевого сигнала для выполнения гармонического кодирования, и второй блок кодирования входного речевого сигнала путем кодирования формы сигнала. Для второго блока кодирования используется средство кодирования линейным предсказанием кодового возбуждения, применяющего векторное квантование путем поиска в замкнутом цикле оптимального вектора с использованием метода анализа через синтез. Первый и второй блоки кодирования используются для кодирования вокализированной и невокализированной частей входного речевого сигнала соответственно. Технический результат, достигаемый при реализации изобретения, состоит в том, что обеспечивается воспроизведение взрывных и фрикативных согласных звуков без риска генерирования постороннего звука на переходном участке между вокализированными и невокализированными частями речевого сигнала, что позволяет воспроизводить речь с высокой четкостью. 4 н. и 10 з.п. ф-лы, 24 ил.

Изобретение относится к способу кодирования речевого сигнала, при котором входной речевой сигнал делится на блоки данных или кадры в качестве элементов кодирования и кодируется с использованием элементов кодирования, к способу декодирования, предназначенному для декодирования кодированного указанным образом сигнала, и к способу кодирования-декодирования речевого сигнала.

Известно множество способов кодирования, предназначенных для кодирования звукового сигнала (включая речевые и акустические сигналы) для сжатия сигнала, путем использования статистических свойств сигналов во временной области и в частотной области и психоакустических характеристик органов слуха человека. Способы кодирования можно грубо классифицировать на кодирование во временной области, кодирование в частной области и кодирование путем анализа-синтеза.

Примеры высокоэффективного кодирования речевых сигналов включают в себя синусоидальное аналитическое кодирование, типа гармонического кодирования или кодирования путем многодиапазонного возбуждения, кодирование с использованием поддиапазонов, кодирование с линейным предсказанием, дискретное косинусное преобразование, модифицированное дискретное косинусное преобразование и быстрое преобразование Фурье.

При обычном кодировании путем многодиапазонного возбуждения или гармоническом кодировании невокализированные части речевого сигнала генерируются с помощью схемы генерации шума. Однако этот способ имеет недостаток, заключающийся в том, что взрывные согласные звуки, типа p, k или t (п, к или т), или фрикативные согласные звуки не будут воспроизведены с высокой точностью.

Более того, если кодируемые параметры, имеющие совершенно разные свойства, такие как линейные спектральные пары, интерполируются на переходном участке между вакализированной частью и невокализированной частью, они приводят к созданию посторонних или чуждых звуков.

В дополнение к этому, при обычном синусоидальном синтезируемом кодировании речь низкого тона, прежде всего мужская речь, становится неестественной.

Задачей настоящего изобретения является создание способа и устройства для кодирования речевого сигнала и способа и устройства для декодирования речевого сигнала, посредством которых взрывные или фрикативные согласные звуки могут воспроизводиться безупречно, без риска воспроизведения неестественного звука на переходном участке между вокализированной речью и невокализированной речью, и посредством которых можно производить речь высокой четкости, не создающую ощущения "заполненности".

С помощью соответствующего настоящему изобретению способа кодирования речевого сигнала, при котором входной речевой сигнал делят на временной оси на заранее установленные элементы кодирования и затем кодируют с использованием этих заранее установленных элементов кодирования, согласно изобретению находят разности краткосрочных предсказаний входного речевого сигнала, найденные таким образом разности краткосрочных предсказаний кодируют посредством синусоидального аналитического кодирования, а входной речевой сигнал кодируют посредством кодирования формы сигнала.

Входной речевой сигнал распознают для определения того, является ли он вакализированным или невокализированным. На основании результатов распознавания часть входного речевого сигнала, оцениваемую как вокализированную, кодируют с помощью синусоидального аналитического кодирования, а часть, оцениваемую как невокализированную, обрабатывают путем векторного квантования формы сигнала на временной оси путем поиска в замкнутом цикле оптимального вектора, используя способ анализа через синтез.

Для синусоиадального аналитического кодирования предпочтительно используют векторное или матричное квантование с перцепционным взвешиванием для квантования разностей краткосрочных предсказаний, и в случае такого векторного или матричного квантования с перцепционным взвешиванием рассчитывают весовой коэффициент на основании результатов ортогонального преобразования параметров, полученных из импульсной характеристики весовой передаточной функции.

В соответствии с настоящим изобретением находят остаточные сигналы кратковременного предсказания, типа остаточных сигналов при кодировании с линейным предсказанием (КЛП), входного речевого сигнала, и остаточные сигналы кратковременного предсказания представляют посредством синтезированной синусоидальной волны, в то время как входной речевой сигнал кодируют путем кодирования формой сигнала фазовой передачи входного речевого сигнала, реализуя таким образом эффективное кодирование.

Кроме того, входной речевой сигнал распознают как вакализированный или невокализированный, и на основании результатов распознавания часть входного речевого сигнала, оцененную как вокализированная, кодируют путем синусоидального аналитического кодирования, в то время как часть его, оцененную как невокализированную, обрабатывают с помощью векторного квантования формы сигнала на временной оси посредством поиска в замкнутом цикле оптимального вектора, используя способ анализа через синтез, улучшая тем самым выразительность невокализированной части для воспроизведения речи с высокой четкостью. В частности, такой эффект усиливается посредством повышения скорости передачи. Можно также предотвращать появление постороннего звука на переходном участке между вокализированной и невокализированной частями. Кажущаяся синтезированная речь в вокализированной части уменьшается, создавая более натуральную синтезированную речь.

Путем вычисления весового коэффициента в момент взвешенного векторного квантования параметров входного сигнала, преобразуемого в сигнал частотной области на основании результатов ортогонального преобразования параметров, полученных из импульсного отклика весовой передаточной функции, объем обработки можно уменьшить до частичной величины, тем самым упрощая конструкцию или ускоряя операции обработки.

Фиг.1 представляет блок-схему, изображающую основную структуру устройства кодирования речевого сигнала (кодирующего устройства), предназначенного для осуществления соответствующего настоящему изобретению способа кодирования.

Фиг.2 представляет блок-схему, изображающую основную структуру устройства декодирования речевого сигнала (декодирующего устройства), предназначенного для осуществления соответствующего настоящему изобретению способа декодирования.

Фиг.3 представляет блок-схему, изображающую более подробную структуру показанного на фиг.1 устройства кодирования речевого сигнала.

Фиг.4 представляет блок-схему, изображающую более подробную структуру показанного на фиг.2 декодирующего устройства речевого сигнала.

Фиг.5 представляет блок-схему, изображающую основную структуру квантователя КЛП (кодирования с линейным предсказанием).

Фиг.6 представляет блок-схему более подробной структуры квантователя КЛП.

Фиг.7 представляет блок-схему, изображающую основную структуру векторного квантователя.

Фиг.8 представляет блок-схему, изображающую более подробную структуру векторного квантователя.

Фиг.9 представляет блок-схему последовательности операций, предназначенную для иллюстрации определенного примера обработки для расчета весового коэффициента, используемого для векторного квантования.

Фиг.10 представляет блок-схему, изображающую определенную структуру кодирующей части ЛПКВ (второй кодирующей части) соответствующего настоящему изобретению устройства кодирования речевых сигналов.

Фиг.11 представляет блок-схему последовательности операций, предназначенную для иллюстрации процесса выполнения обработки в устройстве фиг.10.

Фиг.12 изображает уровень гауссова шума и шума после ограничения на разных пороговых уровнях.

Фиг.13 представляет блок-схему последовательности операций, изображающую процесс выполнения обработки во время создания формы кодового словаря путем обучения.

Фиг. 14 иллюстрирует линейные спектральные пары (ЛСП) 10-го порядка, полученные из -параметров, полученных с помощью анализа КЛП 10-го порядка.

Фиг.15 иллюстрирует способ изменения усиления от НВ кадра к В кадру.

Фиг.16 иллюстрирует способ интерполирования спектра и формы сигнала, синтезируемого от кадра к кадру.

Фиг.17 иллюстрирует способ перекрытия на границе раздела между вокализированной (В) частью и невоказизированной (НВ) частью.

Фиг.18 иллюстрирует операцию добавления шума во время синтеза вокализированного звука.

Фиг.19 иллюстрирует пример расчета амплитуды шума, добавляемого во время синтеза вокализированного звука.

Фиг.20 иллюстрирует пример построения постфильтра.

Фиг.21 иллюстрирует период обновления усиления и период обновления коэффициента постфильтра.

Фиг.22 иллюстрирует обработку переходного участка на границе раздела кадров для коэффициентов усиления и фильтрации постфильтра.

Фиг.23 представляет блок-схему, изображающую структуру передающей части портативного оконечного устройства (терминала), в котором используется соответствующее настоящему изобретению устройство кодирования речевого сигнала.

Фиг.24 представляет блок-схему, изображающую структуру принимающей части портативного оконечного устройства, в котором используется соответствующее настоящему изобретению декодирующее устройство речевого сигнала.

Предпочтительные варианты осуществления настоящего изобретения подробно будут описаны со ссылками на чертежи.

На фиг.1 показана основная конструкция устройства кодирования (кодера), предназначенного для осуществления соответствующего настоящему изобретению способа кодирования речевого сигнала.

Как показано на фиг.1, кодирующее устройство имеет первый блок кодирования 110, предназначенный для отыскания остатков кратковременных предсказаний, типа остатков кодирования с линейным предсказанием (КЛП), входного речевого сигнала, для выполнения синусоидального анализа, типа гармонического кодирования, и второй блок кодирования 120, предназначенный для кодирования входного речевого сигнала с помощью кодирования формы сигнала, имеющего фазовую воспроизводимость, и что первый блок кодирования 110 и второй блок кодирования 120 используются для кодирования вокализированной (В) части входного сигнала и для кодирования невокализированной (НВ) части входного сигнала соответственно.

В первом блоке кодирования 110 осуществляется кодирование, например, остатков КЛП синусоидальным аналитическим кодированием типа гармонического кодирования или кодирования многополосного возбуждения (МПВ). Во втором блоке кодирования 120 осуществляется выполнение линейного предсказания с кодовым возбуждением (ЛПКВ) путем векторного квантования с использованием поиска в замкнутом цикле оптимального вектора, а также способ анализа через синтез.

В показанном на фиг.1 варианте осуществления речевой сигнал, подаваемый на входную клемму 101, поступает на фильтр с инвертированием КЛП 111 и блок анализа и квантования КЛП 113 первого блока кодирования 110. Коэффициенты КЛП, или так называемые -параметры, получаемые с помощью блока анализа и квантования КЛП 113, поступают на фильтр с инвертированием КЛП 111 первого блока кодирования 110. С фильтра 111 с инвертированием КЛП выводятся остатки КЛП входного речевого сигнала. С блока анализа и квантования КЛП 113 выводится квантованный выходной сигнал линейных спектральных пар (ЛСП) и подается на выходную клемму 102, как будет объяснено ниже. Остатки КЛП с фильтра 111 с инвертированием КЛП поступают в блок 114 синусоидального аналитического кодирования. Блок 114 синусоидального аналитического кодирования выполняет определение основного тона и рассчитывает амплитуду спектральной огибающей, а также устанавливает различие между В и НВ с помощью блока 115 распознавания В-НВ. Данные амплитуды спектральной огибающей с блока 114 синусоидального аналитического кодирования поступают в блок 116 векторного квантования. Индекс кодового словаря из блока 116 векторного квантования в качестве выходного сигнала с векторным квантованием спектральной огибающей подается через выключатель 117 на выходную клемму 103, в то время как выходной сигнал блока 114 синусоидального аналитического кодирования подается через выключатель 118 на выходную клемму 104. Выходной сигнал распознавания В-НВ блока 115 распознавания В-НВ поступает на выходную клемму 105 и, в качестве управляющего сигнала, на выключатели 117, 118. Если входной речевой сигнал является вакализированным (В) звуком, выбираются индекс и основной тон и выводятся на выходные клеммы 103, 104 соответственно.

Второй блок кодирования 120 фиг.1 в настоящем варианте осуществления изобретения имеет конфигурацию схемы кодирования с линейным предсказанием кодового возбуждения (кодирования ЛПКВ) и осуществляет векторное квантование формы сигнала временной области, используя поиск замкнутым циклом, применяя способ анализа через синтез, при котором выходной сигнал шумового кодового словаря 121 синтизуется с помощью синтзирующего фильтра с взвешиванием, полученный в результате речевой сигнал с весовыми коэффициентами поступат на схему вычитания 123; определяется погрешность между речевым сигналом с взвешиванием и речевым сигналом, поступающим на входную клемму 101, а оттуда через перцепционный взвешивающий фильтр 125; полученная погрешность поступает на схему вычислений расстояний 124 для осуществления вычислений расстояний, и с помощью шумового кодового словаря 121 отыскивается вектор минимизирования ошибки. Это кодирование ЛПКВ используется для кодирования невокализированной части речевого сигнала, как объяснялось выше. Индекс кодового словаря, в качестве НВ данных из шумового кодового словаря 121, выводится на выход 107 через выключатель 127, который включается, когда результатом распознавания В-НВ является невокализированный (НВ) сигнал.

Фиг.2 представляет блок-схему, иллюстрирующую основную структуру устройства декодирования речевого сигнала, соответствующего показанному на фиг.1 устройству кодирования речевого сигнала, предназначенного для выполнения соответствующего изобретению способа декодирования речевого сигнала.

Как показано на фиг.2, индекс кодового словаря в качестве выходного сигнала квантования линейных спектральных пар (ЛСП) с выхода 102 (фиг.1) подается на вход 202. Выходные сигналы выходов 103, 104 и 105 (фиг.1), то есть выходные сигналы основного тона, распознавания В-НВ и индексные данные в качестве выходных данных квантования огибающей подаются на входы 203-205 соответственно, индексные данные в качестве данных для невокализированных сигналов подаются с выхода 107 (фиг.1) на вход 207.

Индекс в виде выходного сигнала квантования огибающей с входа 203 поступает в блок 212 инверсного векторного квантования, предназначенный для инверсного векторного квантования, с целью отыскания спектральной огибающей остатков КЛП, которая поступает в синтезатор вокализированного речевого сигнала 211. Синтезатор вокализированного речевого сигнала 211 синтезирует остатки кодирования с линейным предсказанием (КЛП) вакализированной части речевого сигнала путем синусоидального синтеза. На синтезатор 211, кроме того, поступает основной тон и выходной сигнал распознавания В-НВ со входов 204, 205. Остатки КЛП вакализированного речевого сигнала с блока 211 синтеза вакализированного речевого сигнала подаются на фильтр 214 синтеза КЛП. Индексные данные НВ сигнала со входа 207 поступают в блок 220 синтезирования невокализированных звуков, где имеется ссылка на шумовой кодовый словарь для извлечения остатков КЛП невокализированной части. Эти остатки КЛП также подаются в фильтр 214 синтеза КЛП. В фильтре 214 синтеза КЛП остатки КЛП вокализированной части и остатки КЛП невокализированной части обрабатываются путем синтеза КЛП. В качестве альтернативы суммированные вместе остатки КЛП вокализированной части и остатки КЛП невокализированной части могут обрабатываться путем синтеза КЛП. Индексные данные ЛСП со входа 202 поступают в блок 213 воспроизведения параметров КЛП, откуда полученные -параметры КЛП подаются на фильтр 214 синтеза КЛП. Синтезированные фильтром 214 синтеза КЛП речевые сигналы поступают на выход 201.

На фиг.3 представлена более подробно структура кодирующего устройства речевого сигнала, показанного на фиг.1. На фиг.3 части или элементы, подобные изображенным на фиг.1, обозначены теми же ссылочными позициями.

В показанном на фиг.3 кодирующем устройстве речевого сигнала, поступающие на вход 101 речевые сигналы фильтруются фильтром 109 верхних частот (ФВЧ) для удаления сигналов ненужного диапазона и затем подаются в схему анализа КЛП 132 блока 113 анализа-квантования КЛП и в фильтр КЛП 111 с инвертированием КЛП.

В схеме анализа КЛП 132 блока 113 анализа-квантования КЛП применяется взвешивающая функция Хэмминга с длиной волны входного сигнала порядка 256 выборок в качестве блока, и методом автокорреляции находится коэффициент линейного предсказания, то есть так называемый -параметр. Интервал кадрирования в качестве блока вывода данных устанавливается равным примерно 160 выборок. Если частота выборки fs например, равна 8 кГц, то интервал одного кадра равен 20 мс, или 160 выборок.

-параметр со схемы 132 анализа КЛП поступает в схему 133 преобразования -ЛСП для преобразования в параметры линейных спектральных пар (ЛСП). Это преобразует -параметр, определяемый с помощью коэффициента фильтра прямого типа, например, в десять, то есть в пять пар параметров ЛСП. Это преобразование выполняется, например, методом Ньютона-Рапсона. Причина, по которой -параметры преобразуют в параметры ЛСП, заключается в том, что параметр ЛСП превосходит по интерполяционным характеристикам -параметры.

Параметры ЛСП со схемы 133 преобразования -ЛСП квантуются матричным или векторным способом с помощью квантователя ЛСП 134. До векторного квантования можно определить разность между кадрами или собрать множество кадров для выполнения матричного квантования. В настоящем случае два кадра длительностью по 20 мс параметров ЛСП, рассчитываемых каждые 20 мс, обрабатывают вместе посредством матричного квантования и векторного квантования.

Квантованный выходной сигнал квантователя 134, то есть индексные данные квантования ЛСП, подается на вход 102, а квантованный ЛСП вектор подается на схему интерполяции ЛСП 136.

Схема 136 интерполяции ЛСП интерполирует векторы ЛСП, квантуемые каждые 20 мс или 40 мс, для обеспечения восьмикратной скорости. То есть вектор ЛСП корректируется каждые 2,5 мс. Причина этого заключается в том, что, если остаточный сигнал обрабатывается путем анализа через синтез с помощью способа гармонического кодирования-декодирования, огибающая синтезированного сигнала представляет весьма достоверную форму колебания, так что при резком изменении коэффициентов ЛСП каждые 20 мс, вероятно, будет формироваться посторонний шум. То есть, если коэффициент КЛП изменять постепенно, каждые 2,5 мс, можно предотвратить появление такого постороннего шума.

Для инверсной фильтрации входного речевого сигнала с использованием интерполированных ЛСП-векторов, формируемых каждые 2,5 мс, параметры ЛСП преобразуются с помощью схемы 137 ЛСП/ преобразования в -параметры, которые являются коэффициентами фильтра, например фильтра прямого типа десятого порядка. Выходной сигнал схемы 137 ЛСП/ преобразования подается в схему 111 фильтра с инвертированием КЛП, который затем осуществляет инверсную фильтрацию для формирования равномерного выходного сигнала, используя корректируемый каждые 2,5 мс -параметр. Выходной сигнал фильтра 111 с инвертированием КЛП поступает в схему 145 ортогонального преобразования, то есть схему дискретного косинусного преобразования (ДКП) блока 114 синусоидального аналитического кодирования, типа схемы гармонического кодирования.

-параметр со схемы 132 анализа КЛП блока 113 анализа-квантования КЛП поступает на схему 139 расчета перцепционного взвешивающего фильтра, где обнаруживаются данные для перцепционного взвешивания. Эти взвешивающие данные поступают в перцепционный взвешивающий векторный квантователь 116, перцепционный взвешивающий фильтр 125 и фильтр 122 синтеза с перцепционным взвешиванием второго блока кодирования 120.

Блок 114 синусоидального аналитического кодирования схемы гармонического кодирования анализирует выходной сигнал фильтра 111 с инвертированием КЛП методом гармонического кодирования. То есть выполняются выявление высоты тона, вычисления амплитуд Am соответственных гармоник и распознавание вакализированного (В) - невокализированного (НВ) звуков, и ряд амплитуд Am или огибающих соответственных гармоник, изменяющихся с изменением основного тона, преобразуются в постоянные путем размерного преобразования.

В показанном на фиг.3 иллюстративном примере блока 114 синусоидального аналитического кодирования используется обыкновенное гармоническое кодирование. В частности, в случае кодирования путем многодиапазонного возбуждения (МДВ) при построении модели предполагается, что вокализированные части и невокализированные части имеются в каждой частотной области или полосе в один и тот же момент времени (в одном и том же блоке или кадре). При других способах гармонического кодирования однозначно оценивается, является ли речевой сигнал в одном блоке или одном кадре вакализированным или невокализированным. В последующем описании данный кадр оценивается как НВ, если все полосы являются НВ, поскольку речь идет о кодировании методом МДВ. Конкретные примеры технического приема описанного выше метода аналитического синтеза для МДВ можно найти в заявке на патент Японии №4-91442, зарегистрированной на имя правопреемника настоящей заявки на патент.

На блок 141 поиска основного тона в разомкнутом контуре и счетчик 142 пересечения нулевого уровня блока 114 кодирования синусоидальным анализом (фиг.3) подается входной речевой сигнал со входа 101 и сигнал с фильтра верхних частот (ФВЧ) 109 соответственно. На схему 145 ортогонального преобразования блока 114 кодирования синусоидальным анализом поступают остатки КЛП или остатки линейного предсказания с фильтра 111 с инвертированием КЛП. Блок 141 поиска основного тона разомкнутым циклом принимает остатки КЛП входных сигналов для осуществления сравнительно грубого поиска основного тона путем поиска в разомкнутом контуре. Извлекаемые данные грубого поиска основного тона поступают в блок 146 точного поиска основного тона путем описываемого ниже поиска в замкнутом контуре. С блока 141 поиска основного тона в разомкнутом контуре максимальное значение нормированной автокорреляции r(р), полученное путем нормирования максимального значения автокорреляции остатков КЛП вместе с грубыми данными основного тона выводятся вместе с грубыми данными основного тона для подачи в блок 115 распознавания В-НВ.

Схема 145 ортогонального преобразования выполняет ортогональное преобразование типа дискретного преобразования Фурье (ДПФ) для преобразования остатков КЛП на временной оси в данные спектральных амплитуд на частотной оси. Выходной сигнал схемы 145 ортогонального преобразования подается в блок 146 точного поиска основного тона и блок 148 спектральной оценки, конфигурированный для вычисления амплитудно-частотной характеристики или огибающей.

На блок 146 точного поиска основного тона подаются сравнительно грубые данные основного тона, получаемые с помощью блока 141 поиска основного тона в разомкнутом контуре, и данные частотной области, получаемые с помощью ДПФ блоком 145 ортогонального преобразования. Блок 146 точного поиска основного тона смещает данные основного тона на несколько выборок со скоростью 0,2-0,5 относительно полученных данных грубого значения основного тона для получения в конечном счете значения точных данных основного тона, имеющего оптимальную десятичную запятую (плавающую запятую). Метод анализа через синтез используется в качестве способа точного поиска для выбора основного тона так, чтобы энергетический спектр оказался ближе всего к энергетическому спектру первоначального звука. Данные основного тона с блока 146 точного поиска основного тона в замкнутом контуре подаются на выход 104 через выключатель 118.

В блоке 148 спектральной оценки амплитуда каждой гармоники и спектральная огибающая в виде суммы гармоник оцениваются на основании спектральной амплитуды и основного тона в виде выходного сигнала ортогонального преобразователя остатков КЛП и подаются в блок 146 точного поиска основного тона, блок 115 распознавания В-НВ и блок 116 векторного квантования с перцепционным взвешиванием.

Блок 115 распознавания В-НВ распознает В-НВ сигналы кадра на основании выходного сигнала схемы 145 ортогонального преобразования, оптимального основного тона с блока 146 точного поиска основного тона, данных амплитудно-частотной характеристики с блока 148 спектральной оценки, максимального значения нормированной автокорреляции r(р) с блока 141 поиска основного тона в разомкнутом контуре и значении счета пересечений нулевого уровня со счетчика 142 пересечений нулевого уровня. Кроме того, должно также использоваться граничное местоположение основанного на полосе распознавания В-НВ для МПВ в качестве условия для распознавания В-НВ. Выходной сигнал распознавания блока 115 распознавания В-НВ поступает на выход 105.

В выходном элементе блока 148 спектральной оценки или во входном элементе блока 116 векторного квантования имеется блок преобразования количества данных (элемент, осуществляющий преобразование частоты дискретизации). Блок преобразования количества данных используется для установления амплитудных данных огибающей на постоянную величину с учетом того, что количество полос разбиения на частотной оси и число данных отличаются при изменении основного тона. То есть, если эффективная полоса занимает область частот до 3400 кГц, эффективная полоса может быть разбита на 8-63 полосы, в зависимости от основного тона. Количество mMX+1 амплитудных данных получаемое от полосы к полосе, изменяется от 8 до 63. Таким образом, блок преобразования количества данных преобразует амплитудные данные переменного количества mMx+1 в заранее установленное количество М данных, например 44 данных.

Амплитудные данные или данные огибающей заранее установленного количества М, например 44, с блока преобразования количества данных, обеспечиваемые на выходном элементе блока 148 спектральной оценки или входном элементе блока 116 векторного квантования, обрабатываются вместе, исходя из заранее установленного количества данных, например 44 данных, в качестве элемента, с помощью блока 116 векторного квантования, путем выполнения векторного квантования со взвешиванием. Это взвешивание обеспечивается выходным сигналом схемы 139 расчета перцепционно взвешивающего фильтра. Индекс огибающей с векторного квантователя 116 выводится с помощью выключателя 117 на выходную клемму 103. До взвешиваемого векторного квантования целесообразно определить межкадровую разницу, используя подходящий коэффициент рассеяния для вектора, составляющего заранее установленное количество данных.

Далее приводится описание второго блока кодирования 120. Второй блок кодирования 120 имеет так называемую схему кодирования ЛПКВ (линейное предсказание кодового возбуждения) и используется, в частности, для кодирования невокализированной части входного речевого сигнала. В схеме кодирования ЛПКВ для невокализированной части входного речевого сигнала шумовой выходной сигнал, соответствующий остаткам КЛП невокадизированного звука, в качестве характерного выходного значения шумового кодового словаря, или так называемого вероятностного кодового словаря 121, поступает через схему 126 управления усилением в синтезирующий фильтр 122 с перцепционным взвешиванием. Взвешивающий синтезирующий фильтр 122 КЛП синтезирует входной шум путем синтеза КЛП и подает полученный невокализированный сигнал с взвешиванием в вычитающее устройство 123. На вычитающее устройство 123 подается сигнал, поступающий со входа 101 через фильтр верхних частот (ФВЧ) 109 и перцепционно взвешенный перцепционным взвешивающим фильтром 125. Вычитающее устройство находит разность или погрешность между упомянутым сигналом и сигналом с синтезирующего фильтра 122. Между тем, отклик при отсутствии входного сигнала синтезирующего фильтра с перцепционным взвешиванием предварительно вычитается из выходного сигнала перцепционно взвешивающего фильтра 125. Эта погрешность подается на схему 124 вычисления расстояния для вычисления расстояния. Характерное векторное значение, которое снижает до минимума погрешность, отыскивается в шумовом кодовом словаре 121. Вышеприведенное описание представляет собой краткое изложение векторного квантования сигнала временной области, используя поиск в замкнутом контуре посредством способа анализа через синтез.

В качестве данных для невокализированной части (НВ) из второго кадрирующего устройства 120, использующего структуру кодирования ЛПКВ, выводятся индекс формы кодового словаря из шумового кодового словаря 121 и индекс усиления кодового словаря из схемы усиления 126. Индекс формы, который является НВ данными из шумового кодового словаря 121, поступает на выход 107s через выключатель 127s, в то время как индекс коэффициента усиления, который является НВ данными схемы усилени 126, поступает на выход 107g через выключатель 127g.

Эти выключатели 127s, 127g и выключатели 117, 118 включаются и выключаются в зависимости от результатов решения В-НВ с блока 115 распознавания В-НВ. В частности, выключатели 117, 118 включаются, если результаты распознавания В-НВ речевого сигнала кадра, передаваемого в данный момент, показывают вокализированный (В) сигнал, а выключатели 127s, 127g включаются, если речевой сигнал передаваемого в данный момент кадра невокализированный (НВ).

На фиг.4 показана более подробно структура изображенного на фиг.2 декодирующего устройства речевого сигнала. На фиг.4 использованы те же самые ссылочные позиции для обозначения показанных на фиг.2 аналогичных элементов.

На фиг.4 выходной сигнал векторного квантования пар ЛСП соответствует выходу 102 (фиг.1 и 3), то есть индексу кодового словаря, подаваемому на вход 202.

Индекс ЛСП поступает на инверсный векторный квантователь 231 линейных спектральных пар для блока 213 воспроизведения параметров КЛП, чтобы обеспечить обратное векторное квантование для данных линейной спектральной пары (ЛСП), которые затем поступают на схемы интерполяции ЛСП 232, 233 для интерполирования. Полученные в результате интерполированные данные преобразуются с помощью схем 234, 235 ЛСП/ преобразования в -параметры, которые подаются на фильтр 214 синтеза КЛП. Схема 232 интерполяции ЛСП и схема 234 ЛСП/ преобразования предназначены для вокализированного (В) звука, а схема 233 интерполяции ЛСП и схема 235 ЛСП/ предназначена для невокализированного (НВ) звука. Синтезирующий КЛП фильтр 214 состоит из синтезирующего КЛП фильтра 236 вокализированной части речевого сигнала и синтезирующего КЛП фильтра 237 невокализированной части речевого сигнала. То есть интерполирование коэффициента КЛП осуществляется независимо для вокализированной части речевого сигнала и для невокализированной части речевого сигнала с целью предотвращения вредных эффектов, которые в противном случае могут создаваться в переходном участке от невокализированной части речевого сигнала к вокализированной части речевого сигнала или наоборот из-за интерполирования пар ЛСП полностью различающихся свойств.

На вход 203 фиг.4 подаются данные кодового индекса, соответствующие спектральной огибающей Amc взвешенным векторным квантованием, соответствующей выходному сигналу с вывода 103 кодирующего устройства (фиг.1 и 3). На вход 204 подаются данные основного тона с вывода 104 (фиг.1 и 3), а на вход 205 подаются данные распознавания В-НВ с вывода 105 (фиг.1 и 3).

Индексные данные с векторным квантованием спектральной огибающей Am со входа 203 поступают на инвертирующий векторный квантователь 212 для обратного векторного квантования, где осуществляется преобразование, обратное преобразованию количества данных. Получаемые в результате данные спектральной огибающей подаются в схему 215 синусоидального синтеза.

Если разница между кадрами обнаруживается до векторного квантования спектра во время кодирования, то разность между кадрами декодируется после инвертирующего векторного квантования для получения данных спектральной огибающей.

На схему 215 синусоидального синтеза подается основной тон со входа 204 и данные распознавания В-НВ со входа 205. Со схемы 215 синусоидального синтеза выводятся данные разности КЛП, соответствующие выходному сигналу показанного на фиг.1 и 3 инверсного фильтра КЛП 111 и подаются на сумматор 218. Методика синусоидального синтеза описана, например, в заявках на патенты Японии №4-91442 и 6-198451, правопреемника настоящей заявки.

Данные огибающей инвертирующего векторного квантователя 212 и основной тон и данные распознавания В-НВ со входов 204, 205 поступают на схему 216 синтеза шума, конфигурированную для добавления шума к вокализированной (В) части. Выходной сигнал схемы 216 синтеза шума поступает на сумматор 218 через схему 217 перекрытия и суммирования с взвешиванием. В частности, шум добавляется к вокализированной части сигналов остатков КЛП, учитывая то, что, если возбуждение в качестве входного сигнала на синтезирующий КЛП фильтр вокализированного звука образуется путем синтеза гармонической волны, ощущение наполненности возникает в звуке низкого основного тона, такого как мужская речь, и качество звука резко изменяется между вокализированным звуком и невокализированным звуком, создавая таким образом ненатуральное слуховое ощущение. Такой шум учитывает параметры, относящиеся к данным кодирования речевого сигнала, таких как основной тон, амплитуда спектральной огибающей, максимальная амплитуда в кадре или уровень остаточного сигнала, в связи со входным сигналом синтезирующего КЛП фильтра вокализированной части речевого сигнала, то есть возбуждения.

Суммарный выходной сигнал