Устройство и способ разнесения передачи с использованием более двух антенн

Реферат

 

Изобретение относится к системам разнесенной передачи. Технический результат заключается в увеличении пропускной способности. В случае, когда подвижная станция (ПС), поддерживающая различные схемы разнесения антенн передачи, входит в зону обслуживания наземной сети радиодоступа универсальной мобильной телекоммуникационной системы (НСРДУ) с разнесением передачи 4-х антенн, НСДРУ может передавать пилот-сигналы и сигналы общих данных в ПС без необходимости модификаций для ПС. Следовательно, мощность распределяется между антеннами НСРДУ, и пропускная способность системы увеличивается. 8 н. и 12 з.п. ф-лы, 6 ил., 4 табл.

Область техники, к которой относится изобретение

Настоящее изобретение относится вообще к системе разнесения передачи и, в частности, к системе, в которой наземная сеть радиодоступа УМТС (UMTS универсальной мобильной телекоммуникационной системы) (UTRAN, НСРДУ) работает совместимо с подвижной станцией (ПС), поддерживающей другой способ разнесения передачи.

Уровень техники

Система мобильной связи третьего поколения разработана для высокоскоростной передачи данных вместе с быстрым прогрессом технологии мобильной связи и увеличением количества передаваемых данных. Система широкополосного множественного доступа с кодовым разделением каналов (Ш-МДКР, W-CDMA), асинхронная схема между НСРДУ, стандартизована как система мобильной связи третьего поколения для Европы, и система множественного доступа с кодовым разделением каналов (МДКР-2000, CDМА-2000) синхронная схема между базовыми станциями, стандартизована как система мобильной связи третьего поколения для Северной Америки. В системах мобильной связи множество ПС взаимодействуют через одну базовую станцию. Когда данные передаются с высокой скоростью, фаза принятого сигнала искажается из-за замирания в радиоканале. Замирание уменьшает амплитуду принятого сигнала от нескольких децибел до десятков децибел. Если искажение не компенсируется при демодуляции данных, качество мобильной связи ухудшается. Таким образом, использованы многие способы разнесения для того, чтобы преодолеть замирание.

МДКР обычно использует избирательный приемник (рейк-приемник) для приема сигнала с разнесением с использованием распространения задержки канала. Несмотря на то, что разнесение приема, полагающееся на распространение задержки, применяется для избирательного приемника, избирательный приемник не работает, если распространение задержки меньше, чем пороговое значение. Разнесение во времени, полагающееся на перемежение и кодирование, используется для канала распространения Доплера. Однако разнесение во времени трудно применить к медленному каналу распространения Доплера.

Следовательно, разнесение в пространстве применяется для канала с малой задержкой распространения и медленного канала распространения Доплера для того, чтобы преодолеть замирание. Для разнесения в пространстве используются, по меньшей мере, две антенны передачи/приема. Несмотря на то, что интенсивность сигнала, переданного через антенну уменьшается из-за замирания, сигнал, переданный через другую антенну, принимается. Разнесение в пространстве разделяется на разнесение приема с использованием приемных антенн и разнесение передачи с использованием передающих антенн. Поскольку трудно установить множество антенн в ПС для разнесения приема с точки зрения стоимости и размера терминала, рекомендуется реализовать способ разнесения передачи в НСРДУ с помощью множества антенн.

Способ разнесения передачи реализуется в алгоритме для приема сигнала линии связи базовая станция-подвижная станция (нисходящей линии связи) и получения усиления разнесения. Алгоритм обычно разделяется на режим без обратной связи и режим с обратной связью. В режиме без обратной связи, если НСРДУ кодирует сигнал данных и передает закодированный сигнал через разнесенные антенны, ПС принимает сигнал из НСРДУ и получает усиление разнесения с помощью его декодирования. В режиме с обратной связью, если ПС оценивает окружение канала, которое сигналы, переданные через передающие антенны базовой станции, будут испытывать, вычисляет весовые коэффициенты, которые максимизируют мощность принимаемых сигналов для передающих антенн на основании оцененных величин, и передает весовые коэффициенты как сигналы в НСРДУ по каналу линии связи подвижная станция-базовая станция (восходящей линии связи), НСРДУ регулирует весовые коэффициенты антенн на основании сигналов весовых коэффициентов, принятых из ПС. Для того чтобы помочь ПС оценить каналы, НСРДУ передает пилот-сигналы через соответствующие передающие антенны в ПС. Затем ПС оценивает каналы в соответствии с пилот-сигналами и получает оптимальные весовые коэффициенты на основании информации канала.

Разнесение передачи применяется в режиме с обратной связью в патенте США №5634199 “Способ формирования луча подпространства с использованием адаптивных передающих антенн с обратной связью” и патенте США №5471647 “Способ для минимизации перекрестных помех в адаптивных передающих антеннах”. Несмотря на ранее предложенную оценку канала и обратную связь в алгоритме возмущения и матрице усиления, это является нечеткой схемой, которая не подходит для системы с пилот-сигналами из-за медленной скорости сходимости для оценки канала и трудности при получении точных весовых коэффициентов.

Описание (проекта партнерства 3-го поколения (ПП3П) (версия 99)) для УМТС (универсальной мобильной телекоммуникационной системы) предложило квантование и обратную связь весовых коэффициентов для двух антен. Оно описывает только случай, в котором ПС поддерживает разнесение передачи 2-х антенн. Описание не дало пояснения относительно передачи сигнала из НСРДУ с помощью передающих антенн и передачи и приема сигнала в случае, когда ПС с разнесением передачи 2-х антенн сосуществует с ПС с разнесением передачи 4-х антенн. Распространение для четырех антенн с помощью адаптивного использования традиционного способа расширения передачи сигнала через одну антенну для передачи сигнала через две антенны не подходит для ПС с разнесением передачи 2-х антенн. Одновременное использование способа передачи сигнала с использованием двух антенн и способа передачи сигнала с использованием четырех антенн также имеет проблему дисбаланса мощности между антеннами.

Различные пилот-сигналы могут передаваться через множество антенн с помощью мультиплексирования с разделением времени, мультиплексирования с разделением частоты и мультиплексирования с кодовым разделением. В Ш-МДКР мультиплексирование с кодовым разделением может быть выполнено с использованием многочисленных скремблирующих кодов, кодов формирования каналов или многочисленных ортогональных символьных шаблонов пилот-сигнала для того, чтобы передавать различные пилот-сигналы через антенны.

Вообще высокий коэффициент усиления при разнесении и увеличение ОСШ (отношения сигнала к шуму) до 3 дБ получаются при использовании двух передающих антенн по сравнению с традиционной системой, использующей одну передающую антенну. Если разнесение передачи реализуется с помощью более двух антенн, дополнительное усиление при разнесении получается помимо усиления при разнесении в двухантенном передатчике, а увеличение ОСШ возрастает пропорционально числу антенн. Дополнительное усиление при разнесении меньше, чем усиление, полученное при разнесении передачи 2-х антенн, но, так как порядок разнесения увеличивается, усиление при разнесении является очень большим, если увеличивается ОСШ (Ев/Nо).

Описание ПП3П (версия 99) описывает систему УМТС, работающую с разнесением передачи 2-х антенн, но рассматривает необходимость разнесения передачи с использованием более двух антенн. Также должно быть уделено внимание структуре передачи/приема для мобильной телекоммуникационной системы, в которой существующая ПС, принимающая сигналы из двух передающих антенн, сосуществует с ПС, принимающей сигналы более чем от двух антенн. То есть, даже если ПС, предназначенная для того, чтобы осуществлять связь с НСРДУ с разнесением передачи 2-х антенн, расположена в зоне обслуживания НСРДУ, поддерживающей разнесение передачи более чем двух антенн, ПС должна работать нормально, и наоборот, для ПС, предназначенной, чтобы взаимодействовать с НСРДУ с разнесением передачи более чем двух антенн. Также необходимо гарантировать совместимость работы НСРДУ с разнесением передачи более чем 2-х антенн с ПС с разнесением передачи 2-х антенн.

Необходимость совместимости является более настоятельной для общего канала пилот-сигнала (ОКПС) и общего канала данных (ОКД). Несмотря на то, что специализированный канал передает сигнал адаптивно для данного числа антенн в соответствии с характеристиками и версией ПС, общий канал пилот-сигнала и общий канал данных должны работать как в более низкой версии ПС, работающей в традиционной схеме разнесения передачи 2-х антенн, так и в более высокой версии ПС, работающей в схеме разнесения передачи более чем 2-х антенн. То есть общий канал передается с более высокой мощностью, чем специализированный канал, так как система должна обеспечить более высокую надежность сигнала для общего канала. Следовательно, если усиление при разнесении передачи антенны получается из общего канала, передачи сообщений могут проводиться с низкой мощностью передачи, таким образом увеличивая пропускную способность системы. Иначе говоря, число абонентов, допустимых для системы, может быть увеличено.

Система передающих антенн относится к системе, которая передает сигналы через множество антенн. Передающая радиочастотная (РЧ) система, включающая в себя малошумящий усилитель (МУ), например, является эффективной с точки зрения стоимости и эффективности до тех пор, пока она равномерно распределяет мощность сигналов, передаваемых через антенны. Иначе антенны трудно конструировать, и их стоимость является высокой. Когда баланс мощности передачи установлен между передающими сигналами антенн посредством распределения мощности, только эффективное конструирование системы передачи/приема гарантирует совместимость между различными схемами разнесения передачи.

Сущность изобретения

Следовательно, задачей настоящего изобретения является создание способа и устройства передачи сигнала для разнесения передачи с использованием четырех антенн в НСРДУ.

Другой задачей настоящего изобретения является создание способа и устройства приема для приема сигналов из НСРДУ с разнесением передачи 4-х антенн в ПС.

Дополнительной задачей настоящего изобретения является создание способа и устройства передачи сигнала в системе, работающей в схемах разнесения передачи, использующих различное число антенн.

Еще одной задачей настоящего изобретения является создание способа и устройства передачи пилот-сигнала в системе, работающей в схемах разнесения передачи, использующих различное число антенн.

Еще одной задачей настоящего изобретения является создание способа и устройства приема пилот-сигнала в системе, работающей в схемах разнесения передачи, использующих различное число антенн.

Еще дополнительной задачей настоящего изобретения является создание способа и устройства приема пилот-сигнала для эффективного использования ограниченных ресурсов ортогонального кода в системе, работающей в схемах разнесения передачи, использующих различное число антенн.

Вышеприведенные и другие задачи решаются с помощью создания способа и устройства разнесения передачи антенны. В соответствии с одним аспектом настоящего изобретения в передатчике НСРДУ, имеющим, по меньшей мере, четыре антенны, первый сумматор соединен с первой антенной и суммирует первый расширенный сигнал, созданный с помощью расширения первого символьного шаблона первым ортогональным кодом, и второй расширенный сигнал, созданный с помощью расширения первого символьного шаблона вторым ортогональным кодом, ортогональным первому ортогональному коду. Второй сумматор соединен со второй антенной и суммирует первый расширенный сигнал и третий расширенный сигнал, созданный с помощью расширения первого инвертированного символьного шаблона, полученного в результате инвертирования фазы первого символьного шаблона вторым ортогональным кодом. Третий сумматор соединен с третьей антенной и суммирует четвертый расширенный сигнал, созданный с помощью расширения второго символьного шаблона, ортогонального первому символьному шаблону, первым ортогональным кодом, и пятый расширенный сигнал, созданный с помощью расширения второго символьного шаблона вторым ортогональным кодом. Четвертый сумматор соединен с четвертой антенной и суммирует четвертый расширенный сигнал и шестой расширенный сигнал, созданный с помощью расширения второго инвертированного символьного шаблона, полученного в результате инвертирования фазы второго символьного шаблона вторым ортогональным кодом.

В соответствии с другим аспектом настоящего изобретения в передатчике НСРДУ первый сумматор соединен с первой антенной и суммирует первый расширенный сигнал, созданный с помощью умножения первого символьного шаблона на постоянную усиления и расширения произведения первым ортогональным кодом, и второй расширенный сигнал, созданный с помощью расширения первого символьного шаблона вторым ортогональным кодом, ортогональным первому ортогональному коду. Второй сумматор соединен со второй антенной и суммирует первый расширенный сигнал и третий расширенный сигнал, созданный с помощью расширения первого инвертированного символьного шаблона, полученного в результате инвертирования фазы первого символьного шаблона вторым ортогональным кодом. Третий сумматор соединен с третьей антенной и суммирует четвертый расширенный сигнал, созданный с помощью умножения второго символьного шаблона на постоянную усиления и расширения произведения первым ортогональным кодом, и пятый расширенный сигнал, созданный с помощью расширения второго символьного шаблона вторым ортогональным кодом. Четвертый сумматор соединен с четвертой антенной и суммирует четвертый расширенный сигнал и шестой расширенный сигнал, созданный с помощью расширения второго инвертированного символьного шаблона, полученного в результате инвертирования фазы второго символьного шаблона вторым ортогональным кодом.

В соответствии с третьим аспектом настоящего изобретения в способе передачи сигнала в НСРДУ первый расширенный сигнал, созданный с помощью расширения первого символьного шаблона первым ортогональным кодом, суммируют со вторым расширенным сигналом, созданным с помощью расширения первого символьного шаблона вторым ортогональным кодом, ортогональным первому ортогональному коду, и сумму передают через первую антенну. Первый расширенный сигнал суммируют с третьим расширенным сигналом, созданным с помощью расширения первого инвертированного символьного шаблона, полученного в результате инвертирования фазы первого символьного шаблона вторым ортогональным кодом, и сумму передают через вторую антенну. Четвертый расширенный сигнал, созданный с помощью расширения второго символьного шаблона, ортогонального первому символьному шаблону, первым ортогональным кодом, суммируют с пятым расширенным сигналом, созданным с помощью расширения второго символьного шаблона вторым ортогональным кодом, и сумму передают через третью антенну. Четвертый расширенный сигнал суммируют с шестым расширенным сигналом, созданным с помощью расширения второго инвертированного символьного шаблона, полученного в результате инвертирования фазы второго символьного шаблона вторым ортогональным кодом, и сумму передают через четвертую антенну.

В соответствии с четвертым аспектом настоящего изобретения в способе передачи сигнала в НСРДУ первый расширенный сигнал, созданный с помощью умножения первого символьного шаблона на постоянную усиления и расширения произведения первым ортогональным кодом, суммируют со вторым расширенным сигналом, созданным с помощью расширения первого символьного шаблона вторым ортогональным кодом, ортогональным первому ортогональному коду, и сумму передают через первую антенну. Первый расширенный сигнал суммируют с третьим расширенным сигналом, созданным с помощью расширения первого инвертированного символьного шаблона, полученного в результате инвертирования фазы первого символьного шаблона вторым ортогональным кодом, и сумму передают через вторую антенну. Четвертый расширенный сигнал, созданный с помощью умножения второго символьного шаблона на постоянную усиления и расширения произведения первым ортогональным кодом, суммируют с пятым расширенным сигналом, созданным с помощью расширения второго символьного шаблона вторым ортогональным кодом, и сумму передают через третью антенну. Четвертый расширенный сигнал суммируют с шестым расширенным сигналом, созданным с помощью расширения второго инвертированного символьного шаблона, полученного в результате инвертирования фазы второго символьного шаблона вторым ортогональным кодом, и сумму передают через четвертую антенну.

В соответствии с пятым аспектом настоящего изобретения в передатчике НСРДУ первый сумматор соединен с первой антенной и суммирует первый расширенный сигнал, созданный с помощью расширения первого символьного шаблона первым ортогональным кодом, и второй расширенный сигнал, созданный с помощью расширения первого символьного шаблона вторым ортогональным кодом, ортогональным первому ортогональному коду. Здесь первый ортогональный код имеет элементарные посылки из всех нулей (0), а второй ортогональный код имеет нули (0) в первой половине элементарных посылок и единицы (1) во второй половине элементарных посылок. Второй сумматор соединен со второй антенной и суммирует первый расширенный сигнал с третьим расширенным сигналом, созданным с помощью расширения первого инвертированного символьного шаблона, полученного в результате инвертирования фазы первого символьного шаблона вторым ортогональным кодом. Третий сумматор соединен с третьей антенной и суммирует четвертый расширенный сигнал, созданный с помощью расширения второго символьного шаблона, ортогонального первому символьному шаблону, первым ортогональным кодом, и пятый расширенный сигнал, созданный с помощью расширения второго символьного шаблона вторым ортогональным кодом. Четвертый сумматор соединен с четвертой антенной и суммирует четвертый расширенный сигнал и шестой расширенный сигнал, созданный с помощью расширения второго инвертированного символьного шаблона, полученного в результате инвертирования фазы второго символьного шаблона вторым ортогональным кодом.

Краткое описание чертежей

Вышеприведенные и другие задачи, признаки и преимущества настоящего изобретения станут более понятными из следующего подробного описания, взятого совместно с сопровождающими чертежами, на которых:

фиг.1 схематически иллюстрирует типичную конфигурацию системы разнесения передачи 4-х антенн;

фиг.2 схематически иллюстрирует конфигурацию системы разнесения передачи 4-х антенн в соответствии с вариантом осуществления настоящего изобретения;

фиг.3 – блок-схема передатчика с разнесением передачи для передачи пилот-сигналов в соответствии с вариантом осуществления настоящего изобретения;

фиг.4 – блок-схема приемника с разнесением передачи для оценки пилот-сигнала в соответствии с вариантом осуществления настоящего изобретения;

фиг.5 – блок-схема передатчика с разнесением передачи для передачи общих данных в соответствии с вариантом осуществления настоящего изобретения; и

фиг.6 – блок-схема приемника с разнесением передачи для оценки общих данных в соответствии с вариантом осуществления настоящего изобретения.

Подробное описание предпочтительных вариантов осуществления

Предпочтительный вариант осуществления настоящего изобретения будет описан ниже со ссылкой на сопровождающие чертежи. В следующем описании хорошо известные функции или конструкции не описаны подробно, так как они затеняли бы изобретение излишними деталями.

Фиг.1 иллюстрирует типичную конфигурацию системы разнесения передачи 4-х антенн.

Ссылаясь на фиг.1, НСРДУ 101 имеет четыре антенны, преобразует пользовательский сигнал подходящим образом для передачи через антенны с №1 по №4 и передает преобразованные сигналы через антенны с №1 по №4. ПС 103 принимает сигналы, переданные через антенны с №1 по №4, по каналам h1 по h4, соответственно. ПС 103 восстанавливает исходные данные передачи из принятых сигналов с помощью демодуляции и декодирования.

Фиг.2 схематически иллюстрирует конфигурацию системы разнесения передачи 4-х антенн в соответствии с вариантом осуществления настоящего изобретения. ПС 203, поддерживающая способ разнесения передачи 2-х антенн, принимает четыре пилот-сигнала из НСРДУ 201, как будто она принимала из двух антенн в системе разнесения передачи 4-х антенн. То есть, ПС 203 принимает сигналы из антенн №1 и №2 по каналу hА и сигналы из антенн №3 и №4 по каналу hВ.

Для случая, когда ПС с разнесением передачи 2-х антенн входит в зону обслуживания НСРДУ 201 с разнесением передачи 4-х антенн, структура передатчика в НСРДУ 201 будет описана со ссылкой на фиг.3.

Фиг.3 – блок-схема передатчика с разнесением передачи, изображающая способ передачи пилот-сигнала в соответствии с вариантом осуществления настоящего изобретения. Выходные пилот-сигналы из антенн №1 по №2 (347 по 353) выражаются в следующих уравнениях, соответственно:

где р1(t) – символьный шаблон 301 пилот-сигнала, символьный шаблон №1 [A, A], а р2(t) – символьный шаблон 303 пилот-сигнала, символьный шаблон №2 [A, -A] или [-А, А], ортогональный символьному шаблону [А, А] пилот-сигнала.

Коды Уолша или коды сОПКР1(t) и сОПКР2(t) ортогонального переменного коэффициента расширения ОПКР, которыми расширяются символьные шаблоны 301 и 303 пилот-сигнала, являются ОПКР 1 305 и ОПКР 2 315.

Как изображено на фиг.3, передатчик НСРДУ передает символьные шаблоны пилот-сигнала с двумя различными ортогональными кодами ОПКР 1 305 и ОПКР 2 315 так, что приемник в ПС может различать пилот-сигналы, принятые от передающих антенн. Так как дополнительный ортогональный код должен быть использован для того, чтобы идентифицировать каждую передающую антенну, дополнительно потребляются ресурсы ортогонального кода. Для эффективного использования ограниченных ресурсов ортогонального кода предпочтительно, чтобы первый ортогональный код ОПРК 1 305 представлял все нули (0) в своих элементарных посылках, а второй ортогональный код ОПКР 2 315 представлял нули (0) в первой половине элементарных посылок и единицы (1) во второй половине элементарных посылок. Например, ОПКР 1 305 может быть “0000…0000”, а ОПКР 2 315 “0000…000111…1111”.

Код сск (t) является скремблирующим кодом 337 с той же самой скоростью элементарной посылки, как скорость элементарной посылки ортогональных кодов. Константа g является постоянной 355 усиления, используемой для того, чтобы гарантировать функционирование ПС, поддерживающей традиционный способ разнесения передачи 2-х антенн.

Пилот-сигнал А, передаваемый через антенну с помощью НСРДУ 201, может быть 1 или –1 при модуляции ДФМ (двоичной фазовой манипуляции) и 1+j при модуляции КФМ (квадратурной фазовой манипуляции). Следовательно, первый символьный шаблон 310 пилот-сигнала умножается на постоянную g 355 усиления в умножителе 357 и на ортогональный код ОПКР 1 305 в умножителе 307 и подается на вход сумматора 329. Ортогональный код ОПКР 1 имеет длину 256 элементарных посылок в качестве примера. Первый символьный шаблон 301 пилот-сигнала также умножается на ортогональный код ОПКР 2 в умножителе 317 и подается на вход сумматора 329. Сумматор 329 суммирует выходные сигналы умножителей 307 и 317. Сумма умножается на скремблирующий код 337 в умножителе 339 и передается через первую антенну 347.

Тем временем умножитель 325 умножает произведение первого символьного шаблона 301 пилот-сигнала и второго ортогонального кода ОПКР 2 315 на –1. Затем сумматор 331 суммирует выходной сигнал умножителя 307 и выходной сигнал умножителя 325, и сумма передается через вторую антенну 349. Несмотря на то, что умножитель 325 инвертирует фазу входного сигнала с помощью умножения его на –1, инвертирование фазы может быть выполнено в любом входном терминале или выходном терминале в передатчике НСРДУ.

Второй символьный шаблон 303 пилот-сигнала умножается на коэффициент усиления 355 в умножителе 359 и на ортогональный код ОПКР 1 305 в умножителе 311. Второй символьный шаблон 303 пилот-сигнала также умножается на ортогональный код ОПКР 2 315 в умножителе 321. Сумматор 333 суммирует выходные сигналы умножителей 311 и 321. Сумма умножается на скремблирующий код 337 с помощью умножителя 342 и передается через третью антенну 351.

Тем временем умножитель 327 умножает произведение второго символьного шаблона 303 пилот-сигнала и ортогонального кода ОПКР 2 305 на –1. Несмотря на то, что умножитель 327 инвертирует фазу входного сигнала с помощью умножения его на -1, инвертирование фазы может быть выполнено в любом входном терминале или выходном терминале в передатчике НСРДУ, как отмечено выше. Затем сумматор 335 суммирует выходные сигналы умножителей 311 и 327. Сумма умножается на скремблирующий код 337 в умножителе 345 и передается через четвертую антенну.

В вышеупомянутой структуре передатчика сумматоры 329, 331, 333 и 335 могут быть включены в один сумматор для суммирования входных сигналов. Также умножители 339, 341, 343 и 345 могут быть включены в один умножитель для комплексного расширения, так как они являются одинаковыми при умножении скремблирующего кода 337 на свои соответствующие входные сигналы. Умножители 325 и 327 инвертируют сигналы, направленные во вторую и четвертую антенны 349 и 353, и их позиции могут быть изменены, до тех пор, пока они выполняют функцию полноценно. Например, умножитель 325 может инвертировать символьный шаблон входного пилот-сигнала или ортогональный код ОПКР 2 315 перед умножителем 317. Тот же самый эффект получается, когда умножитель 325 удаляется и вместо этого сумматор 331 вычитает выходной сигнал умножителя 317 из выходного сигнала умножителя 307. Таким же образом возможно, чтобы умножитель 327 инвертировал символьный шаблон входного пилот-сигнала или ортогональный код ОПКР 2 315 перед умножителем 321 или, чтобы сумматор 335 вычитал выходной сигнал умножителя 321 из выходного сигнала умножителя 311 при удалении умножителя 327. Если постоянная g 355 равна 1, блок усиления удаляется из вышеописанной структуры технического обеспечения. Постоянная g 355 усиления является заданной постоянной или переменной, которая адаптивно управляется на заданной основе (символьной, интервальной или кадровой) в соответствии с окружением канала или обстоятельствами пользователей.

Фиг.4 – блок-схема приемника с разнесением передачи для оценки пилот-сигналов как эквивалента передатчика с разнесением передачи, изображенного на фиг.3, в соответствии с осуществлением настоящего изобретения.

На фиг.4 четыре выходных сигнала приемника, а именно величины оцененного канала для антенн с 347 по 353 с первой по пятую, выражаются в следующих уравнениях:

где r(t) – сигнал, принятый в ПС 203 через антенну 401; p1(t) – символьный шаблон 413 пилот-сигнала; p2(t) – символьный шаблон 423 пилот-сигнала, ортогональный символьному шаблону 413 пилот-сигнала; код сОПКР1(t) – первый ортогональный код ОПКР 1 407; код сОПКР2(t) – второй ортогональный код ОПКР 2 411; код сСК(t) – скремблирующий код 403.

Символьные шаблоны пилот-сигнала и скремблирующий код являются теми же самыми, что использовались в НСРДУ, и известны заранее для ПС.

Принятый сигнал r(t) преобразуется в сигнал основной полосы частот и подается в устройство 405 сжатия сигнала. Устройство 405 сжатия сигнала сжимает сигнал основной полосы частот скремблирующим кодом 403 и подает сжатый сигнал в устройства 408 и 409 ортогонального сжатия сигнала. Устройство 408 ортогонального сжатия сигнала сжимает входной сигнал первым ортогональным кодом ОПКР 1 407, а устройство 409 ортогонального сжатия сигнала сжимает входной сигнал вторым ортогональным кодом ОПКР 2 411. Накопитель 440 накапливает выходной сигнал устройства 408 ортогонального сжатия сигнала на символьной основе, умножитель 415 умножает накопленный сигнал на первый символьный шаблон 413 пилот-сигнала, а накопитель 425 накапливает выходной сигнал умножителя 415 и усиливает накопленный сигнал с обратной величиной первого усиления.

Тем временем умножитель 417 умножает выходной сигнал накопителя 440 на второй символьный шаблон 423 пилот-сигнала, а накопитель 427 накапливает выходной сигнал умножителя 417 и усиливает накопленный сигнал с обратной величиной второго усиления.

Накопитель 441 накапливает выходной сигнал устройства 409 ортогонального сжатия сигнала на символьной основе, умножитель 419 умножает накопленный сигнал на первый символьный шаблон 413 пилот-сигнала, а накопитель 429 накапливает выходной сигнал умножителя 419. Умножитель 421 умножает выходной сигнал накопителя 441 на второй символьный шаблон 423 пилот-сигнала, а накопитель 431 накапливает выходной сигнал умножителя 421.

Сумматор 433 суммирует сигналы, принятые из накопителей 425 и 429, и выводит сумму как сигнал символьного шаблона пилот-сигнала, переданный из первой антенны 347. Сумматор 435 суммирует сигналы, принятые от накопителей 427 и 431, и выводит сумму как сигнал символьного шаблона пилот-сигнала, переданный от второй антенны 349. Сумматор 437 вычитает сигнал, принятый от накопителя 429, от сигнала, принятого от накопителя 425, и выводит разность как сигнал символьного шаблона пилот-сигнала, переданный из третьей антенны 351. Сумматор 439 вычитает сигнал, принятый от накопителя 431, из сигнала, принятого от накопителя 427, и выводит разность как сигнал символьного шаблона пилот-сигнала, переданный из четвертой антенны 353.

Структура системы разнесения передачи для передачи/приема символьных шаблонов пилот-сигнала в соответствии с варинтом осуществления настоящего изобретения описана выше со ссылкой на фиг.3 и 4. Теперь будет дано описание структуры системы разнесения передачи для передачи/приема символьных шаблонов общих данных в соответствии с вариантом осуществления настоящего изобретения со ссылкой на фиг.5 и 6.

Фиг.5 – блок-схема передатчика с разнесением передачи, изображающая его структуру передачи общих данных в соответствии с вариантом осуществления настоящего изобретения. Выходные сигналы данных четырех антенн с №1 по №4 (547 по 553) выражаются в следующих уравнениях, соответственно:

где [s(2t)s(2t+1)] – кодовый блок 501 РППВ опорной антенны, [-s*(2t+1)s*(2t)] - кодовый блок 503 РППВ разнесенной антенны, комплексно ортогональный символьному шаблону 501 двух данных, и коды Уолша или коды ОПКР сОПКР1(t) и сОПКР2(t) представляют ОПКР 1 505 и ОПКР 2 515, соответственно. Код сСК(t) – скремблирующий код, а g – постоянная 555 усиления, используемая для того, чтобы гарантировать функционирование ПС, поддерживающей разнесение передачи 2-х антенн.

Сигнал А данных, передаваемый в систему разнесения передачи 4-х антенн, может быть 1 или –1 при модуляции ДФМ и {1+j, -1+j, 1-j, -1-j} при модуляции КФМ. Сигнал А данных может быть подвергнут высокоэффективной модуляции, такой как 8ФМ (8-ричная фазовая манипуляция), 16КАМ (16–ричная квадратурная амплитудная модуляция) и 64КАМ (64-ричная квадратурная амплитудная модуляция). Здесь предполагается, что одна из схем режима без обратной связи РППВ (разнесение передачи на основе пространственно-временного блочного кодирования) применяется к сигналу А данных. РППВ применяется к специализированному физическому каналу (СФК), первичному общему управляющему физическому каналу (П_ОУФК), вторичному общему управляющему физическому каналу (В_ОУФК), каналу синхронизации (КС), каналу указания страницы (КУС), каналу указания сбора данных (КУСД) и физическому совместно используемому каналу нисходящей линии связи (ФСИКНЛ). В настоящем изобретении соответствующие каналы антенн оцениваются с помощью выполнения декодирования РППВ относительно общего канала пилот-сигнала. Если сигнал А данных вводится в последовательность символа S1 в течение периода Т1 кодирования разнесения передачи и символа S2 в течение периода Т2 кодирования разнесения передачи, последовательные символы S1S2 передаются через антенну №1 (547) в виде S1S2, а через антенну №2 (549) в виде –S2*S2* после кодирования РППВ. Для того чтобы описать символьное кодирование РППВ на основе битов канала, предполагается, что символы S1 и S2 являются битами b0b1 и b2b3 канала, соответственно. После кодирования РППВ антенна №1 (547) выводит биты b0b1b2b3(S1S2), а антенна №2 выводит биты –b2b3b0–b1(-S2*S1*) для входного сигнала S1S2, то есть b0b1b2b3. Здесь антенна №1 (547) является опорной антенной, а антенна №2 (549) является разнесенной антенной.

Символьные шаблоны S1S2 и –S2*S1* соответственно называются кодовым блоком 501 РППВ опорной антенны и кодовым блоком 503 РППВ разнесенной антенны. Умножитель 557 умножает кодовый блок 501 РППВ опорной антенны на постоянную g 555 усиления, а умножитель 507 умножает выходной сигнал умножителя 557 на первый ортогональный код ОПКР 1 505. Первый ортогональный код ОПКР 1 505 имеет длину 256 элементарных посылок в качестве примера. Умножитель 517 умножает кодовый блок 501 РППВ опорной антенны на второй ортогональный код ОПКР 2 515. Сумматор 529 суммирует выходные сигналы умножителей 507 и 517, а умножитель 539 умножает сумму на скремблирующий код 537. Выходной сигнал умножителя 539 передается через антенну №1 (547).

Тем временем умножитель 525 умножает произведение кодового блока 501 РППВ опорной антенны и второго ортогонального кода ОПКР 2 515 на –1. Сумматор 531 суммирует выходные сигналы умножителей 507 и 525. Умножитель 541 умножает сумму на скремблирующий код 537. Выходной сигнал умножителя 541 передается через антенну №2 (549).

Умножитель 559 умножает кодовый блок 503 РППВ разнесенной антенны на постоянную g 555 усиления, а умножитель 511 умножает выходной сигнал умножителя 559 на первый ортогональный код ОПКР 1 505. Умножитель 521 умножает кодовый блок 503 РППВ разнесенной антенны на второй ортогональный код ОПКР 2 515. Сумматор 533 суммирует выходные сигналы умножителей 511 и 521, а умножитель 543 умножает сумму на скремблирующий код 537. Выходной сигнал умножителя 543 передается через антенну №3 (551).

Тем временем умножитель 527 умножает произведение кодового блока 503 РППВ разнесенной антенны и второго ортогонального кода ОПКР 2 515 на –1. Сумматор 535 суммирует выходные сигналы умножителей 511 и 527. Умножитель 545 умножает сумму на скремблирующий код 537. Выходной сигнал умножителя 545 передается через антенну №4 (553).

В вышеприведенной структуре передатчика сумматоры 529, 531, 533 и 535 могут быть включены в один сумматор для суммирования входных сигналов. Также умножители 539, 541, 543 и 545 могут быть включены в один умножитель для комплексного расширения, так как они являются одинаковыми при умножении скремблирующего кода 537 на свои соответствующие входные сигналы. Умножители 525 и 527 инвертируют сигналы, направленные в антенны №2 и №4 (549 и 553), и их позиции могут быть изменены до тех пор, пока они выполняют функцию полноценно. Например, умножитель 525 может инвертировать символьный шаблон входных данных или ортогональный код ОПКР 2 515 перед умножителем 517. Тот же самый эффект получается, когда умножитель 525 удаляется и вместо этого сумматор 531 вычитает выходной сигнал умножителя 517 из выходного сигнала умножителя 507. Таким же образом возможно, чтобы