Молекула нуклеиновой кислоты, кодирующая tie-2 лиганд, tie- 2 лиганд и способ его получения, вектор, линия клеток cos, антитело, конъюгат tie-2 лиганда, лигандное тело, фармацевтическая композиция, способ предотвращения или ослабления неоваскуляризации и способ идентификации антагониста tie-2 рецептора

Реферат

 

Изобретение относится к генной инженерии, конкретно к генам тирозинкиназ, и может быть использовано для диагностики. TIE-2 лиганд 2 человека представляет собой антагонист TIE-2 рецептора. TIE-2 лиганд получают с помощью вектора pBluescript KS, который содержит нуклеиновую кислоту, кодирующую TIE-2 лиганд. Конъюгат получают путем соединения TIE-2 лиганда с цитотоксическим агентом. Лигандное тело представляет собой TIE-2 лиганд, слитый с констанктным участком иммуноглобулина. Фармацевтическая композиция содержит эффективное количество TIE-2 лиганда или лигандного тела и ее используют в способе предотвращения или ослабления неоваскуляризации. Изобретение позволяет диагностировать и лечить заболевания, затрагивающие эндотелиальные клетки, содержащие TIE-2 рецепторы. Изобретение позволяет разрабатывать диагностические системы для идентификации антагониста TIE-2 рецептора. 11 с. и 5 з.п. ф-лы, 11 ил.

Эта международная заявка заявляет приоритет находящихся на одновременном рассмотрении заявок США № 418595, поданной 6 апреля 1995, № 373579, поданной 17 января 1995, № 353503, поданной 9 декабря 1994, № 348492, поданной 2 декабря 1994, № 330261, поданной 27 октября 1994, № 319932, поданной 7 октября 1994, содержания каждой из которых включены сюда по ссылке. В описании имеются ссылки на различные публикации. Содержание этих публикаций целиком включено в рассматриваемую заявку по ссылке.

Введение

В общих чертах настоящее изобретение относится к области генной инженерии и более конкретно к генам рецепторов тирозинкиназ и их родственных лигандов, к их встраиванию в рекомбинантные ДНК векторы и к получению кодируемых протеинов в реципиентных штаммах микроорганизмов и реципиентных эукариотных клетках. Более конкретно настоящее изобретение относится к новым лигандам, известным как TIE-2 лиганды, которые связывают TIE-2 рецептор, а также к способам получения этих TIE-2 лигандов. В настоящем изобретении предложены также последовательности нуклеиновых кислот, кодирующие TIE-2 лиганды, и способы получения нуклеиновых кислот, кодирующих эти TIE-2 лиганды и их генные продукты. TIE-2 лиганды, так же как и кодирующие их нуклеиновые кислоты, могут быть полезны в диагностике и лечении некоторых заболеваний, затрагивающих эндотелиальные клетки и соответствующие TIE рецепторы, такие как неопластичные заболевания, включая опухолевый ангиогенез, лечение ран, тромбоэмболические заболевания, атеросклероз и воспалительные заболевания. В более общем плане биологически активные TIE-2 лиганды можно использовать для промотирования роста, выживания и/или дифференциации клеток, экспрессирующих TIE-2 рецептор. Биологически активный TIE-2 лиганд можно использовать для ин витро поддержания культуры клеток, экспрессирующих TIE-2 рецептор. Клетки и ткани, экспрессирующие TIE-2 рецептор, включают, например, эндотелиальные клетки сердца и сосудов, эпителий хрусталика и эпикард сердца. В другом варианте такой лиганд можно использовать для поддержки клеток, которые сконструированы для экспрессии TIE-2 рецептора. Далее, TIE-2 лиганды и соответствующие им рецепторы можно использовать в аналитических системах для идентификации агонистов или антагонистов TIE-2 рецептора.

Предпосылки изобретения

Поведение клеток, ответственных за развитие, сохранение и восстановление дифференцированных клеток и тканей регулируется в значительной степени за счет межклеточных сигналов, передаваемых за счет факторов роста и аналогичных лигандов и их рецепторов. Эти рецепторы расположены на поверхности соответствующих клеток, и они связывают пептиды или полипептиды, известные как факторы роста, а также другие гормоноподобные лиганды. Результатом такого взаимодействия являются быстрые биохимические изменения в соответствующих клетках, а также быстрая и длительная перестройка экспрессии клеточных генов. Некоторые рецепторы, связанные с различными клеточными поверхностями, могут связывать специфические факторы роста.

Фосфорилирование тирозинов на протеинах за счет тирозинкиназ представляет одну из ключевых схем, за счет которых сигналы передаются через плазменную мембрану. Некоторые известные в настоящее время гены протеина тирозинкиназы кодируют трансмембранные рецепторы полипептидных факторов роста и гормонов, таких как эпидермальный фактор роста (EGF), инсулин, инсулиноподобный фактор роста (IGF-1), факторы роста, полученные из тромбоцитов (PDGF-A u -В) и факторы роста фибробластов (FGFs) (Heldin et al., Cell Regulation, 1: 555-566 (1990); Ullrich, et al., Cell, 61: 243-54 (1990)).

В каждом случае эти факторы роста проявляют свое действие за счет связывания с внеклеточной частью соответствующих им рецепторов, что приводит к активации внутренней тирозинкиназы, которая присутствует на цитоплазмической части рецептора. Рецепторы факторов роста эндотелиальных клеток представляют особый интерес за счет возможного вовлечения факторов роста в ряд важных физиологических и патологических процессов, таких как васкулогенез, ангиогенез, атеросклероз и воспалительные заболевания (Folk-man, et al., Science, 235: 442-447 (1987)). Кроме того, рецепторы некоторых гемопоэтических факторов роста являются тирозинкиназами; они включают c-fms, который представляет рецептор фактора 1, стимулирующего колонии, Sherr, et al., Cell 41: 665-676 (1985), u c-kit, рецептор примитивного гемопоэтического фактора роста, о котором сообщает Huang, et al., Cell, 63: 225-33(1990).

Рецепторы тирозинкиназ подразделяют на эволюционные подсемейства на основе характеристических структур их эктодоменов (Ullrich., et al.. Cell, 61: 243-54 (1990)). Такие подсемейства включают EGF рецептороподобную киназу (подкласс 1) и подобную рецептору инсулина киназу (подкласс 11), каждая из которых содержит повторенные гомологичные последовательности с высоким содержанием цистеина в своих внеклеточных доменах. Отдельный участок с высоким содержанием цистеина обнаружен также во внеклеточных доменах eph-подобных киназ. Hirai, et al., Science 238: 1717-1720 (1987); Lindberg, et al., Mol. Cell. Biol., 10: 6316-24 (1990); Lhotak, et al., Mol. Cell. Biol. 11: 2496-2502 (1991). PDGF рецепторы а также c-fms и c-kit рецепторы тирозинкиназ можно сгруппировать в подкласс 111, тогда как FGF рецепторы образуют подкласс 1V. Типичным для членов обоих этих подклассов являются внеклеточные складывающиеся фрагменты, стабилизированные внутрицепными дисульфидными связями. Такие так называемые иммуноглобулин (Ig)-подобные складки обнаружены в протеинах иммуноглобулинового суперсемейства, которое включает широкий круг других рецепторов клеточных поверхностей, имеющих либо связанные с клетками, либо растворимые лиганды. Williams, et al., Ann. Rev. Immunol., 6: 381-405 (1988).

Рецепторы тирозинкиназ отличаются по своей специфичности и афинности. Обычно рецепторы тирозинкиназ являются гликопротеинами, которые состоят из (1) внеклеточного домена, способного связывать специфически фактор (факторы) роста; (2) трансмембранного домена, который обычно является альфа-спиральной частью протеина; (3) юкстамембранного домена, где рецептор может регулироваться, например, за счет фосфорилирования протеина; (4) домена тирозинкиназы, который является энзиматическим компонентом рецептора; и (5) карбокситерминального хвоста, который во многих рецепторах участвует в распознавании и связывании с субстратами для тирозинкиназы.

Сообщается, что такие процессы, как альтернативный экзонный сплайсинг и альтернативный выбор генного промотора или сайтов полиаденилирования способны привести к образованию нескольких различных полипептидов из одного и того же гена. Такие полипептиды могут содержать (или могут не содержать) различные домены, перечисленные ранее. Как следствие, некоторые внеклеточные домены могут быть экспрессированы как отдельные секретируемые протеины и некоторые формы рецепторов могут не содержать домена тирозинкиназы, а содержать только внеклеточный домен, встроенный в плазменную мембрану за счет трансмембранного домена плюс короткого карбокситерминального хвоста.

Ген, кодирующий эндотелиальную клеточную трансмембранную тирозинкиназу, вначале идентифицированную за счет RT-PCR как неизвестный гомологичный тирозинкиназе кДНК фрагмент из клеток лейкемии человека, описан Partanen et al., Proc. Natl Acad. Sci. USA, 87: 8913-8917 (1990). Этот ген и кодируемый им протеин названы "tie", что является сокращением для "тирозинкиназы с доменами, гомологичными с Ig и EGF". Partanen et al., Mol. Cell Biol. 12: 1698-1707 (1992).

Сообщалось, что tie мРНК присутствует во всех тканях плода человека и мышиного эмбриона. После изучения tie посредник был локализован в клетках сердца и в сосудистых эндотелиальных клетках, tie мРНК были локализованы в эндотелии кровесносных сусодов и эндокарде мышиных эмбрионов на 9,5-18,5 день их существования. Была показана усиленная tie экспрессия во время неоваскуляризации, связанной с развитием фолликул яичников и гранулированием тканей в кожных ранах. Korhonen et al., Blood 80: 2548-2555 (1992). Таким образом, предполагается что tie играет роль в ангиогенезе, что важно для разработки способов лечения твердых опухолей и некоторых других заболеваний, зависящих от ангиогенеза, таких как диабетическая ретинопатия, псориаз, атеросклероз и артриты.

Два структурно родственных протеина TIE рецептора крыс, как сообщалось, кодируются различными генами с родственными профилями экспрессии. Один ген, названный tie-1, является крысиным гомологом tie человека. Maisonpierre, et al., OncogeneS: 1631-1637 (1993). Другой ген, tie-2, может быть крысиным гомологом мышиного tek гена, который подобно tie, как сообщалось, должен экспрессироваться в мышах исключительно в эндотелиальных клетках и их предположительных предшественниках. Dumout et al., Oncogene 8: 1293-1301 (1993).

Как было обнаружено, оба гена широко экспрессированы в эндотелиальных клетках эмбриональных и постнатальных тканей. Значительные уровни tie-2 транскриптов присутствуют также в других популяциях эмбриональных клеток, включая эпителий хрусталика, эпикард сердца и участки мезенхимы. Maisonpierre et al., Oncogene 8: 1631-1637 (1993).

Преимущественная экспрессия TIE рецептора в сосудистом эндотелии предполагает, что TIE играет роль в развитии и сохранении сосудистой системы. Сюда включены роли в детерминации, дифференциации, пролиферации эндотелиальных клеток, в миграции клеток и копировании в элементы сосудов. Сообщалось, что анализ мышиных эмбрионов с дефицитом TIE-2 показал, что TIE-2 важны для ангиогенеза, особенно для образования сети сосудов в эндотелиальных клетках. Sato, T.N. et al., Nature 376: 70-74 (1994). В зрелой сосудистой системе TIE могут функционировать как фактор выживания, сохранения эндотелиальных клеток и в реакциях на влияние патогенов.

Краткое содержание изобретения

В настоящем изобретении предложена композиция, содержащая TIE-2 лиганд, практически не содержащий других протеинов. В настоящем изобретении предложена также изолированная молекула нуклеиновой кислоты, кодирующая TIE-2 лиганд. Выделенная нуклеиновая кислота может быть ДНК, кДНК или РНК. В настоящем изобретении предложен также вектор, включающий выделенную молекулу нуклеиновой кислоты, кодирующую TIE-2 лиганд. Предложена также система хозяин-вектор для продуцирования в подходящих клетках хозяина полипептида, обладающего активностью TIE-2 лиганда. Клетки подходящих хозяев могут быть бактериальными, дрожжевыми, клетками насекомых или млекопитающих. В настоящем изобретении предложен также способ получения полипептида, обладающего биологической активностью TIE-2 лиганда, который включает выращивание клеток системы хозяин-вектор в условиях, обеспечивающих продуцирование полипептида и выделение полученного таким образом полипептида.

Настоящее изобретение, в котором описана изолированная молекула нуклеиновой кислоты, кодирующая TIE-2 лиганд, предлагает далее для развития лиганда фрагмент, или производное его, или другую молекулу, которая является агонистом или антагонистом рецептора, в качестве терапевтического агента для лечения пациентов, страдающих нарушениями, включающими клетки, ткани или органы, которые экспрессируют TIE рецептор. В настоящем изобретении предложено также антитело, которое специфически связывает такую терапевтическую молекулу. Это антитело может быть моноклональным или поликлональным. В настоящем изобретении предложен также способ использования такого моноклонального или поликлонального антитела для определения количества терапевтических молекул в образце, взятом у пациента с целью контроля за ходом лечения.

В настоящем изобретении предложено также антитело, которое специфически связывает TIE-2 лиганд. Это антитело может быть моноклональным или поликлональным. Таким образом, настоящее изобретение предлагает также терапевтические композиции, включающие антитело, которое специфически связывает ТIЕ-2 лиганд, в фармацевтически приемлемом носителе. В настоящем изобретении предложен также способ блокирования роста кровеносных сосудов у млекопитающих за счет введения эффективного количества терапевтической композиции, включающей антитело, которое специфически связывает TIE-2 лиганд, в фармацевтически приемлемом носителе.

В настоящем изобретении предложена далее терапевтическая композиция, включающая ТIЕ-2 лиганд в фармацевтически приемлемом носителе. В настоящем изобретении предложен также способ промотирования неоваскуляризации у пациента за счет введения ему эффективного количества терапевтической композиции, содержащей TIE-2 лиганд, в фармацевтически приемлемом носителе. В одном варианте способ можно использовать для промотирования заживления ран. В другом варианте способ можно использовать для лечения ишемии.

В другом варианте в настоящем изобретении предложен вариант, в котором TIE-2 лиганд может быть конъюгирован с цитотоксическим агентом и на основании этого может быть приготовлена терапевтическая композиция. В настоящем изобретении предложено также рецепторное тело, которое специфически связывает ТIЕ-2 лиганд. В настоящем изобретении предложена терапевтическая композиция, включающая рецепторное тело, которое специфически связывает TIE-2 лиганд, в фармацевтически приемлемом носителе. Предложен также способ блокирования роста кровеносных сосудов у млекопитающих за счет введения эффективного количества терапевтической композиции, включающей рецепторное тело, которое специфически связывает TIE-2 лиганд, в фармацевтически приемлемом носителе.

В настоящем изобретении предложен также антагонист TIE-2 рецептора, а также способ ингибирования биологической активности TIE-2 лиганда у млекопитающих, включающий введение млекопитающему эффективного количества TIE-2 антагониста. В соответствии с изобретением антагонистом может быть антитело или другая молекула, способная к специфическому связыванию либо TIE-2 лиганда, либо TIE-2 рецептора. Так например, антагонистом может быть TlE-2 рецепторное тело.

Краткое описание чертежей.

Фиг.1А и 1В: TIE-2 рецепторное тело (TIE-2 РВ) ингибирует развитие кровеносных сосудов в хориоаллантоевой мембране цыпленка (САМ). Отдельный кусочек поглощающей гелеобразной пены (Gelfoam), смоченный 6 мкг PBS, вводят немедленно под САМ однодневных эмбрионов цыпленка. После трех дней инкубирования четырехдневные эмбрионы и окружающие их САМ удаляют и исследуют. Фиг.1A: эмбрионы, обработанные ЕНК-1 RB (rЕНК-1 экто/ h IgGI Fc) оказались жизнеспособными и обладали нормально развитыми кровеносными сосудами в окружающих их САМ. Фиг.1В: все эмбрионы, обработанные TIE-2 RB (r TIE-2 экто / h IgGI Fc) погибли, уменьшившись в размере и были почти полностью лишены окружающих кровеносных сосудов.

Фиг.2: Вектор pJFE14.

Фиг.3: Рестрикционная карта gt10.

Фиг.4: Последовательности нуклеиновой кислоты и выделенной аминокислоты (однобуквенный код) человеческого TIE-2 лиганда из клона gt10, кодирующие htie-2 лиганд 1.

Фиг.5: Последовательности нуклеиновой кислоты и выделенной аминокислоты (однобуквенный код) человеческого TIE-2 лиганда из T98G клона.

Фиг.6: Последовательности нуклеиновой кислоты и выделенной аминокислоты (однобуквенный код) человеческого TIE-2 лиганда из клона pBluescript KS, кодирующие человеческий TIE-2 лиганд 2.

Фиг.7: Результаты Вестерн-блоттинга, демонстрирующие активацию TIE-2 рецептора за счет TIE-2 лиганда 1 (полоса L1), но не за счет TIE-2 лиганда 2 (полоса L2), контроль (Моск.) активация также отсутствует.

Фиг.8: Результаты Вестерн-блоттинга, демонстрирующие, что предварительная обработка НАЕС клеток избытком TIE-2 лиганда 2 (полоса 2) препятствует последующей способности разбавленного ТIЕ-2 лиганда 1 активировать TIE-2 рецептор (TIE-2-R) по сравнению с тем, что происходит при предварительной обработке НАЕС клеток MOCK средой (полоса 1).

Фиг.9: Гистограммное представление связывания с иммобилизованной поверхностью крысиного TIE2 IgG TIE2 лиганда в С2С12 ras, Rat2 ras, SHEP и T98G концентрированной (10х) кондиционированной среде. Специфическое связывание крысиных TIE2 (rТIЕ2) демонстрируется значительным снижением связывающей активности в присутствии 25 мкг/мл растворимых TIE2 RB по сравнению с меньшим снижением в присутствии растворимых trkB RB.

Фиг.10: Связывание рекомбинантного человеческого TIE-2 лиганда 1 (hTL1) и человеческого TIE-2 лиганда 2 (hTL2) в cos клеточных надосадочных жидкостях с иммобилизованной поверхностью человеческих TIE-2 RB. Специфическое связывание человеческих TIE-2 определяют, инкубируя образцы по 25 мгк/мл либо растворимого человеческого TIE2 RB, либо trkB RB; значительное снижение активности связывания наблюдается не только для образцов, инкубированных с TIE2 RB человека.

Фиг.11: Результаты Вестерн-блоттинга, демонстрирующие, что TIE-2 рецепторное тело (обозначенное TIE-2 RB или, как здесь, TIE2-Fc) блокирует активацию TIE-2 рецепторов за счет TIE-2 лиганда 1 (TL1) в HUVEC клетках, тогда как неродственное рецепторное тело (TRKB-Fc) не блокирует эту активацию.

Подробное описание изобретения

Как будет более подробно описано далее, заявители выделили за счет экспрессионного клонирования новый лиганд, который связывает TIE-2 рецептор. Настоящее изобретение включает TIE-2 лиганд, а также его аминокислотную последовательность и также функционально эквивалентные молекулы, в которых аминокислотные остатки замещены на остатки внутри последовательности, приводящие к молчащему изменению. Так например, один или более из аминокислотных остатков в последовательности можно заменить другой аминокислотой (аминокислотами) аналогичной полярности, которая действует как функциональный эквивалент, и получить молчащую замену. Заместители аминокислот в последовательности можно выбрать из других членов того класса, к которому принадлежит эта аминокислота. Так например, класс неполярных (гидрофобных) аминокислот включает аланин, лейцин, изолейцин, валин, пролин, фенилаланин, триптофан и метионин. Полярные нейтральные аминокислоты включают глицин, серин, треонин, цистеин, тирозин, аспарагин и глутамин. Позитивно заряженные (основные) аминокислоты включают аспарагиновую кислоту и глутаминовую кислоту. В объем настоящего изобретения включены также протеины или их фрагменты или производные, которые демонстрируют такие же или сходные биологические активности, и производные, которые дифференциально модифицированы во время или после трансляции, например, за счет гликозилирования, протеолитического расщепления, связывания с молекулой антитела или другим клеточным лигандом, и т.д.

Настоящее изобретение включает также нуклеотидную последовательность, которая кодирует протеин, описываемый здесь как TIE-2 лиганд 1, а также клетки, которые генетически сконструированы таким образом, чтобы продуцировать протеин, например, за счет трансфекции, трансдукции, инфицирования, электропорации или микроинъекции нуклеиновой кислоты, кодирующей TIE-2 лиганд 1, описываемый здесь, в подходящий вектор экспрессии.

Далее настоящее изобретение охватывает нуклеотидную последовательность, кодирующую протеин, описываемый здесь как TIE-2 лиганд 2, а также клетки, которые генетически сконструированы таким образом, чтобы продуцировать протеин, например, за счет трансфекции, трансдукции, инфицирования, электропорации или микроинъекции нуклеиновой кислоты, кодирующей TIE-2 лиганд 2, описываемый здесь, в подходящий вектор экспрессии.

Специалисту должно быть ясно, что настоящее изобретение охватывает ДНК и РНК последовательности, которые гибридизуются с выделенной последовательностью, кодирующей TIE-2 лиганд, в условиях умеренной жесткости, как определено, например, Sambrook et al., Molecular Cloning: A Laboratory Manual, 2 ed. vol.1, pp 101-104, Cold Spring Harbor Laboratory Press (1989). Так, молекула нуклеиновой кислоты, рассматриваемая в настоящем изобретении, включает молекулу, имеющую последовательность, выделенную из аминокислотной последовательности TIE-2 лиганда, полученную, как указано ранее, а также молекулу, имеющую последовательность нуклеиновых кислот, которая гибридизуется с такой последовательностью нуклеиновых кислот, а также последовательность нуклеиновых кислот, которая дегенеративна в отношении вышеуказанных последовательностей как результат генетического кода, но которая кодирует лиганд, который связывает TIE-2 рецептор.

Любой из способов, известных специалистам для встраивания ДНК фрагментов в вектор, может быть использован для конструирования вектор экспрессии, кодирующих TIE-2 лиганд за счет использования соответствующих контрольных сигналов транскрипции/трансляции и кодирующих протеин последовательностей. Эти способы могут включать ин витро рекомбинантные ДНК и синтетические методики, а также ин виво рекомбинации (генетические рекомбинации). Экспрессию последовательности нуклеиновых кислот, кодирующую TIE-2 лиганд или его пептидный фрагмент, можно регулировать за счет второй последовательности нуклеиновых кислот таким образом, что протеин или пептид экспрессируется в хозяине, трансформированном рекомбинантной ДНК молекулой. Так например, экспрессию TIE-2 лиганда здесь описываемого, можно контролировать любым промоторным/энхансерным элементом, известным специалистам. Промоторы, которые можно использовать для контроля за экспрессией лиганда, включают (но не ограничиваются этим) длинный терминальный повтор, как описано у Squinto et al. /Cell 65: 1-20 (1991)/; SV40 ранний промоторный участок (Bernoist and Chambon, Nature 290: 304-310), CMV промотор, M-MuLV 5' терминальный повтор, промотор, содержащийся в 3' длинном терминальном повторе вируса саркомы Рауса (Yamamoto, et al.. Cell 22: 787-797 (1980)), промотор гена тимидинкиназы вируса герпеса (Wagner et al., Proc. Nail Acad. Sci. USA 78: 144-1445 (1981)), промотор аденовируса, регуляторные последовательности гена металлотионеина (Brinster et al., Nature 296: 39-42 (1982)); такие прокариотные векторы экспрессии, как промотор -лактамазы (Villa-Kamaroff, et al., Proc. Natl. Acad. Sci. USA 75: 3727-3731 (1978)) или tac промотор (DeBoer, et al., Proc. Natl. Acad. Sci. USA 80: 21-25 (1983)), см. также "Useful proteins from recombinant bacteria" в Scientific American, 242: 74-94 (1980); промоторные элементы из дрожжей или других грибков, такие как Gal 4 промотор, ADH (алкогольдегидрогеназа) промотор, РGК (фосфоглицеринкината) промотор, промотор щелочной фосфатазы и следующие участки транскрипционного контроля животных, которые демонстрируют тканеспецифичность и были использованы в трансгенных животных: контрольный участок гена эластазы 1, который активен в ацинарных клетках поджелудочной железы (Swift et al., Cell. 38: 639-646 (1984); Ornitz et al., Cold Spring Harbor Symp. Quant. Biol. 50: 399-409 (1986); MacDonald, Hepatology 7: 425-515 (1987); контрольный участок инсулинового гена, который активен в бета-клетках поджелудочной железы (Hanahan, Nature 315: 115-122 (1985)), контрольный участок гена иммуноглобулина, который активен в лимфоидных клетках (Grosschedl et al., 1984, Cell 38: 647-658; Adames et al., 1985, Nature 318: 533-538; Alexander et al., 1987, Mol. Cell. Biol. 7: 1436-1444), контрольный участок вируса мышиной опухоли молочной железы, который активен в клетках яичников, груди, лимфоидных и тучных клетках (Leder et al., 1986, CEll 45: 485-495), контрольный участок гена альбумина, который активен в печени (Pinkert et al., 1987, Genes and Devel 1: 268-276), контрольный участок гена альфа-фетопротеина, который активен в печени (Krumlauf et al., 1985, Mol. Cell. Biol. 5: 1639-1648; Hammer et al., 1987, Science 235: 53-58); контрольный участок гена альфа 1-антитрипсина, который активен в печени (Kelsey et al., 1987, Genes and Devel. 1: 161-171), контрольный участок гена бета-глобина, который активен в миелоидных клетках (Mogram et al., 1985, Nature 315: 338-340; Kollias et al., 1986, Cell 46: 89-94); контрольный участок гена основного протеина миелина, который активен в олигодендроцитных клетках мозга (Readhead et al., 1987, Cell 48: 703-712); контрольный участок гена легкой цепи-2 миозина, который активен в скелетных мышцах (Shani, 1985, Nature 314: 283-286), и контрольный участок гена гормона высвобождения гонадотропина, который активен в гипоталамусе (Mason et al., 1986, Science 234: 1372-1378). Далее изобретение охватывает получение антисмысловых соединений, которые способны специфически гибридизоваться с последовательностью РНК, кодирующей TIE-2 лиганд для модулирования его экспрессии (Ecker, патент США № 5166195, выданный 24 ноября 1992 г.).

Таким образом, в соответствии с настоящим изобретением векторы экспрессии, способные к репликации в бактериальных или эукариотных хозяевах, содержащие нуклеиновую кислоту, кодирующую TIE-2 лиганд, как он здесь раскрыт, используют для трансфекции хозяина и за счет этого прямой экспрессии такой нуклеиновой кислоты для получения ТГЕ-2 лиганда, который можно затем выделить в биологически активной форме. В том смысле, как здесь использован, биологически активная форма включает форму, способную связываться с TIE-2 рецептором и вызывать такую биологическую реакцию, как диференцированное функционирование или влияние на фенотип клетки, экспрессирующей этот рецептор. Такие биологически активные формы должны, например, включать фосфорилирование домена тирозинкиназы рецептора TIE-2.

Векторы экспрессии, содержащие генную вставку, можно идентифицировать в результат четырех общих подходов: (а) ДНК-ДНК гибридизации, (b) по наличию или отсутствию "маркерных" генных функций, (с) по экспрессии встроенных последовательностей и (d) определению с помощью РСR. В первом подходе наличие чужеродной генной вставки в векторе экспрессии можно детектировать за счет ДНК-ДНК гибридизации, используя зонды, включающие последовательности, которые гомологичны гену, кодирующему встроенный TIE-2 лиганд. Во втором подходе систему рекомбинантный вектор/хозяин можно идентифицировать и отобрать на основании присутствия или отсутствия определенных "маркерных" генных функций (например, по активности тимидинкиназы, по устойчивости к антибиотикам, по фенотипу трансформации, по образованию тел окклюзии в бакуловирусах и т.д.), вызываемому за cчет встраивания в вектор чужеродных генов. Так например, если кодирующая ТIЕ-2 лиганд нуклеиновая кислота встроена в последовательность маркерного гена вектора, рекомбинанты, содержащие эту вставку, можно идентифицировать по отсутствию функций маркерного гена. В третьем подходе рекомбинантные векторы экспрессии можно идентифицировать, анализируя продукт чужеродного гена, экспрессируемый рекомбинантом. Такой анализ может быть основан, например, на физических или функциональных свойствах генного TIE-2 продукта, например, за счет связывания лиганда с TIE-2 рецептором или его частью, которая может быть связана, например, с детектируемым антителом, или его частью, или за счет связывания с антителами, выработанными против протеина TIE-2 лиганда или его части.

Клетки настоящего изобретения могут кратковременно или предпочтительно, конститутивно и постоянно экспрессировать ТIЕ-2 лиганды, как это здесь описано. В четвертом подходе можно получить ДНК нуклеотидные праймеры, соответствующие tie-2 специфической ДНК последовательности. Эти праймеры можно затем использовать в PCR tie-2 генных фрагментов (PCR Protocols: A Guide To Methods and Applications, Edited by Michael A. Innis et al.. Academic Press (1990)).

Рекомбинантный лиганд можно выделить любым способом, который обеспечивает последующее образование стабильного биологически активного протеина. Так например (но не с точки зрения ограничений), лиганд можно выделить из клеток либо как растворимые протеины, либо как тела включения, из которых лиганды можно экстрагировать количественно с помощью 8М гаунидинийхлорида и диализа. С целью дальнейшей очистки лиганда можно использовать обычную ионообменную хроматографию, хроматографию гидрофобных взаимодействий, хроматографию с обращенной фазой или гельфильтрацию.

В дополнительных вариантах изобретения рекомбинантный TIE-2 лиганд кодирующий ген можно использовать для инактивации или "нокаута" эндогенных генов за счет гомологической рекомбинации и тем самым создать клетки с дефицитом TIE-2 лиганда, ткани или животных. Так например, (и не с целью ограничений), рекомбинантный TIE-2 лиганд кодирующий ген можно сконструировать так, чтобы он содержал встраиваемую мутацию, например, nео ген, который должен инактивировать нативный TIE-2 лиганд кодирующий ген. Такая конструкция под контролем подходящего промотора может быть встроена в такие клетки, как стволовые клетки эмбриона, такими способами, как трансфекция, трансдукция или инъекции. Клетки, содержащие такую конструкцию, можно затем отобрать по устойчивости к G418. Клетки, в которых отсутствует интактный ген, кодирующий TIE-2 лиганд, можно затем идентифицировать, например, за счет Саузерн-блоттинга, PCR определения, Норзерн-блоттинга или анализа экспрессии. Клетки, в которых отсутствует интактный ген, кодирующий TIE-2 лиганд, можно затем слить с клетками эмбриона на ранней стадии для создания трансгенных животных с дефицитом такого лиганда. Таких животных можно использовать для определения специфических ин виво процессов, которые обычно зависят от этого лиганда.

В настоящем изобретении предложены также антитела к TIE-2 лигандам, которые можно использовать для детектирования лигандов, например, в диагностических целях. Для получения моноклональных антител, направленных на TIE-2 лиганд, можно использовать любые методики, которые могут обеспечить получение молекул антител при непрерывном культивировании клеточных линий. Так например, в объем изобретения входит методика с использованием гибридом, исходно разработанная Kohler and Milstein (1975, Nature 256: 495-497), а также триомная методика, методика с использованием гибридом В-клеток человека (Kozbor et al., 1983, Immunology Today 4: 72), и методика EBV-гибридом для получения моноклональных антител человека (Cole et al., 1985, В "Monoclonal Antibodies and Cancer Therapy," Alan R. Liss, Inc. pp.77-96) и тому подобные.

Моноклональные антитела могут быть моноклональными антителами человека или химерными человеческими-мышиными (или других видов) моноклональными антителами. Моноклональные антитела человека можно получить любой из многочисленных методик, известных специалистам (например, Teng et al., 1983, Proc. Natl. Acad. Sci. USA 80: 7308-7312; Kozbor et al., 1983, Immunology Today 4: 72-79; Olsson et al., 1982, Meth. Enzymol. 92: 3-16). Химерные молекулы антител можно получить так, чтобы они содержали мышиный антиген-связывающий домен с постоянными человеческими участками (Morrison et al., 1984, Proc. Natl. Acad. Sci. USA 81: 6851; Takeda et al., 1985, Nature 314: 452).

Различные известные специалистам процедуры можно использовать для получения поликлональных антител к эпитопам описываемых здесь TIE-2 лигандов. Для получения антител можно иммунизовать различных животных-хозяев за счет инъекций TIE-2 лиганда или его фрагмента или производного, таких как (но не ограничиваясь ими) кролики, мыши и крысы.

Для усиления иммунологической реакции можно использовать различные адъюванты в зависимости от видов хозяев, которые включают (но не ограничиваются ими) адъюванты Фрейнда (полный и неполный), такие минеральные гели, как гидроксид алюминия, такие поверхностно-активные вещества, как лизолецитин, плуроновые полиолы, полианионы, пептиды, масляные эмульсии, гемоцианины лимфы улитки, динитрофенол, и такие потенциально полезные человеческие адъюванты, как BCG (Bacille Calmette-Guerin) u Corynebacterium paryum.

Молекулярные клоны антител к выбранным эпитопам ТIЕ-2 лиганда можно получить известными способами. Рекомбинантную методику (например, Maniatis et al., 1982, Molecular Cloning, A Laboratory Manual, Cold Sprind Harbor Laboratory, Cold Sprind Harbor, New York) можно использовать для конструирования последовательностей нуклеиновых кислот, которые кодируют молекулы моноклональных антител или их связывающие антиген участки.

В настоящем изобретении предложены молекулы антител, а также фрагменты таких молекул антител. Фрагменты антител, которые содержат идиотип молекулы, можно создать известными способами. Так например, такие фрагменты включают, но не ограничиваются F (ab')2 фрагмент, который можно получить за счет переваривания пепсина молекулы антитела; Fab' - фрагменты, которые можно получить, восстанавливая дисульфидные мостики F(ab')2 фрагмента; и Fab-фрагменты, которые можно получить, обрабатывая молекулы антител папаином и восстанавливающим агентом. Молекулы антител можно выделить известными методиками, например, за счет иммуноабсорбции или иммуноафинной хроматографии, такими хроматографическими методиками, как ВЭЖХ (высокоэффективная жидкостная хроматография), или их сочетаниями.

Настоящее изобретение включает также иммуноанализ для определения количества TIE-2 лиганда в биологических образцах за счет:

а) осуществления контактирования биологического образца с, по крайней мере, одним антителом, которое специфически связывает TIE-2 лиганд так, чтобы это антитело образовывало комплекс с любым TIE-2 лигандом, присутствующим в образце;

б) определение количества комплекса и, тем самым, определение количества ТIЕ-2 лиганда в биологическом образце.

Далее настоящее изобретение охватывает анализ для определения количества TIE-2 рецепторов в биологических образцах за счет:

а) осуществления контактирования биологического образца с, по крайней мере, одним лигандом изобретения таким образом, чтобы этот лиганд образовывал комплекс с TIE-2 рецептором,

б) определения количества комплексов, тем самым, определяя количество TIE-2 рецепторов в биологическом образце.

В настоящем изобретении предложено также использование TIE-2 лиганда для поддержания выживания, и/или роста, и/или дифференциации клеток, экспрессирующих ТIЕ-2 рецептор. Таким образом, лиганд можно использовать в качестве дополнения для поддержания, например, культуры эндотелиальных клеток. Далее, открытые заявителями родственного лиганда для TIE-2 рецептора обеспечивает использование систем анализа, пригодных для идентификации агонистов или антагонистов TIE-2 рецептора. Такие аналитические системы могут пригодиться при идентификации молекул, способных промотировать ингибирование ангиогенеза. Так например, в одном варианте антагонисты TIE-2 рецептора можно идентифицировать как тестовые молекулы, которые способны вмешиваться во взаимодействие TIE-2 рецептора с биологически активным ТIЕ-2 лигандом. Такие антагонисты идентифицируют по их способности 1) блокировать связывание биологически активного TIE-2 лиганда с рецептором при измерении, например, с использованием BlAcore биосенсорной технологии (BlAcore; Pharmacia Biosensor, Piscataway, NY), или 2) блокировать способность биологически активно TIE-2 лиганда вызывать биологическую реакцию. Такие биологические реакции включают (но ими не ограничиваются) фосфорилирование TIE-2 рецептора или расположенных в прямом направлении компонентов схемы трансдукции TIE-2 сигнала или выживание, рост или диференциацию содержащих TIE-2 клеток.

В одном варианте клетки, сконструированные, чтобы экспрессировать TIE-2 рецептор, могли бы зависеть от роста при добавлении TIE-2 лиганда. Такие клетки обеспечивают подходящие аналитические системы для идентификации дополнительных агонистов TIE-2 рецептора или антагонистов, способных влиять на активность TIE-2 лиганда на таких клетках. В другом варианте аутокринные клетки, сконструированные так, что они способны к совместной экспрессии и TIE-2 лиганда и рецептора, могут представлять подходящие системы для анализа потенциальных агонистов или антагонистов.

Поэтому настоящее изобретение можно использовать для введения ТIЕ-2 рецепторов в клетки, которые обычно не экспрессируют этот рецептор, тем самым позволяя этим клеткам демонстрировать сильные и легко различимые реакции на лиганд, который связывает этот рецептор. Тип выбранной реакции зависит от используемых клеток, а не от специфического рецептора, вводимого в эти клетки. Соответствующие клеточные линии можно выбрать таким образом, чтобы получить реакцию, представляющую ценность для анализов, так же как и обнаружить молекулы, которые могут действовать на рецепторы тирозинкиназы. Эти молекулы могут быть молекулами любого типа, включая (но не ограничиваясь ими) пептиды и непептидные молекулы, которые будут действовать в описываемых системах рецептор-специфическим образом.

Одно