Способ встраивания нужной днк в геном клетки млекопитающего и векторная система для его осуществления

Реферат

 

Изобретение относится к области генной инженерии и может быть использовано в биотехнологической промышленности. Предложен способ интеграции интересующей ДНК в сайт генома клетки млекопитающего, характеризующийся высокой транскрипционной активностью. Указанный сайт предварительно маркируют путем введения в клетку специально сконструированной плазмиды (“маркерной”), включающей а) фрагмент гетерологичной по отношению к геному клетки ДНК, которая после интеграции в геном дает уникальный сайт для гомологичной рекомбинации; б) фрагмент ДНК, кодирующий часть первого селективного маркера и в) по крайней мере одну маркерную последовательность ДНК, обеспечивающую возможность отбора клеток, в которых успешно прошла интеграция “маркерной” плазмиды. Отобранные на первой стадии клетки затем трансформируют второй (“целевой”) плазмидой, включающей (а) фрагмент ДНК, обладающий достаточной для осуществления рекомбинации гомологией с уникальным сайтом а) “маркерной” плазмиды; б) фрагмент ДНК, кодирующий вторую часть первого селективного маркера, совместная экспрессия которого с элементом (б) “маркерной” плазмиды обеспечивает синтез полного маркерного белка и в) ДНК, которую предполагается встроить в геном. Путем скрининга на экспрессию первого селективного маркера отбирают клетки, в которых ДНК “целевой” плазмиды и соответственно “нужная” ДНК, включилась в состав геномной ДНК. Предложен набор для осуществления способа, содержащий по крайней мере “маркерную” и “целевую” плазмиды. Применение изобретения обеспечивает высокий уровень экспрессии при получении любых рекомбинантных белков. 2 с. и 39 з.п. ф-лы, 10 ил., 5 табл.

Область, к которой относится изобретение

Настоящая заявка относится к способу направленной интеграции нужной экзогенной ДНК в конкретный участок генома клетки млекопитающего. Более конкретно, в настоящем изобретении описан новый способ идентификации транскрипционно активного сайта-мишени ("горячей точки") в геноме млекопитающего, и встраивания нужной ДНК в этот сайт посредством гомологичной рекомбинации. Настоящее изобретение также, но необязательно, относится к способности амплификации гена нужной ДНК в этом сайте путем коинтеграции амплифицируемого селектируемого маркера, например, DHFR, в комбинации с экзогенной ДНК. Кроме того, в настоящем изобретении описано конструирование новых векторов, подходящих для осуществления вышеуказанных способов, а также продуцирование указанными способами клеточных линий млекопитающих, которые содержат нужную экзогенную ДНК, интегрированную в целевой "горячей точке".

Предпосылки создания изобретения

Техника экспрессии рекомбинатных белков как в прокариотических, так и в эукариотических микроорганизмах хорошо разработана. С точки зрения продуцирования белков, клетки млекопитающих имеют значительные преимущества по сравнению с бактериями или дрожжами благодаря своей способности к правильной сборке, гликозилированию и пост-транскрипционной модификации рекомбинантно экспрессированных белков. После трансфекции в клетки-хозяева, рекомбинантные экспрессионные конструкции могут быть сохранены в виде внехромосомных элементов, либо они могут быть интегрированы в геном клетки-хозяина. Генерирование стабильно трансфецированных клеточных линий млекопитающих обычно предусматривает встраивание вышеуказанной конструкции, то есть, ДНК-конструкцию, кодирующую нужный ген, вместе с геном резистентности к лекарственному средству (доминантным селективным маркером) вводят в клетку хозяина; а затем эти клетки выращивают в присутствии лекарственного средства, позволяющего проводить отбор клеток, содержащих успешно интегрированную экзогенную ДНК. Во многих случаях, нужный ген присоединяют к селективному маркеру резистентности к лекарственному средству, который может быть затем подвергнут генной амплификации. Для этих целей чаще всего используют ген, кодирующий дигидрофолат-редуктазу (DHFR). Выращивание клеток в присутствии метотрексата, конкурентного ингибитора DHFR, приводит к повышенному продуцированию DHFR посредством амплификации гена DHFR. По мере амплификации также фланкирующих участков ДНК, осуществляемая ко-амплификация гена, присоединенного к DHFR, в трансфецированной клеточной линии может приводить к увеличению продуцирования белка, что будет обеспечивать высокий уровень экспрессии нужного гена.

Хотя этот подход дает хорошие результаты, однако описанная система создает ряд проблем, связанных со случайной природой событий интеграции. Эти проблемы возникают из-за того, что уровни экспрессии в значительной степени подвержены влиянию эффектов локального генетического окружения в генном локусе, причем эти явления были хорошо описаны в литературе, и обычно называются "эффектами положения" (см., например, Al-Shawi et al., Mol. Cell. Biol., 10:1192-1198 (1990); Yoshimura et al., Mol. Cell. Biol., 7:1296-1299 (1987)). Поскольку в своем подавляющем большинстве ДНК млекопитающих находится в транскрипционно неактивном состоянии, то способы случайной интеграции не обеспечивают контроля над транскрипционным состоянием интегрированной ДНК. Поэтому может происходить широкое варьирование уровня экспрессии интегрированных генов в зависимости от сайта интеграции. Так, например, интеграция экзогенной ДНК в неактивные или транскрипционно "молчащие" области генома будет приводить к небольшой экспрессии или вовсе к ее отсутствию. В противоположность этому, интеграция в транскрипционно активный сайт может приводить к высокому уровню экспрессии.

Поэтому, если целью исследования является получение высоких уровней экспрессии гена, достижение которых обычно является желаемым результатом методов генной инженерии, то для выявления такого высоко продуцирующего клона, в основном, необходимо скринировать большое число трансфектантов. Кроме того, в некоторых случаях, случайная интеграция экзогенных ДНК в геном может вызвать разрушение важных клеточных генов, что приводит к изменению фенотипа. Из-за этих факторов, генерирование высокоэкспрессирующих стабильных клеточных линий млекопитающих может стать сложным и трудоемким процессом.

Недавно в нашей лаборатории было описано использование ДНК-векторов, содержащих трансляционно ослабленные доминантные селективные маркеры, для экспрессии гена млекопитающих. (Это было описано в заявке на патент США peг. №08/147696, поданной 3 ноября 1993 и недавно признанной патентоспособной).

Эти векторы содержат трансляционно ослабленный ген неомицин-фосфотрансферазы (nео) в качестве доминантного селектируемого маркера, искусственно сконструированного так, чтобы он содержал интрон, в который был встроен ген DHFR вместе с нужным геном или нужными генами. Было обнаружено, что по сравнению со стандартными экспрессирующими векторами млекопитающих, использование этих векторов в качестве экслрессирующих конструкций значительно снижает общее число продуцируемых колоний, резистентных к лекарственному средству, что тем самым облегчает процедуру скрининга. Кроме того, значительный процент клонов, полученных с использованием этой системы, представляет собой высокоэкспрессирующие клоны. Эти результаты, очевидно, обусловлены модификациями, внесенными в селектируемом маркер nео. Вследствие трансляционного ослабления гена neo, трансфецированные клетки не будут продуцировать белок neo на уровне, достаточном для выживания клеток, устойчивых к лекарственному средству, что, тем самым, приводит к снижению общего числа колоний, резистентных к этому лекарственному средству. Кроме того, более высокий процент выживших клонов будет содержать экспрессирующий вектор, интегрированный в сайты в геноме, где базальные уровни транскрипции являются достаточно высокими, что будет приводить к сверхпродуцированию гена neo, и тем самым позволит избежать повреждения гена neo в этих клетках. В соответствии с этим, нужные гены, присоединенные к гену neo, будут подвергаться аналогичному повышению уровня транскрипции. Те же самые преимущества могут быть достигнуты также в результате создания искусственного интрона в гене neo; и в этом случае выживание клонов зависит от синтеза функционального гена neo, который, в свою очередь, зависит от правильного и эффективного сплайсинга интронов neo. Более того, эти критерии, по всей вероятности, являются удовлетворительными в том случае, если ДНК вектора интегрирована в область, которая уже является в высокой степени транскрипционно активной.

После интеграции вектора в транскрипционно активную область, амплификацию гена осуществляют путем отбора на ген DHFR. С применением этой системы можно получить клоны, отобранные с использованием низких уровней метотрексата (50 нМ), содержащих небольшое количество (< 10) копий вектора, который секретирует высокие уровни белка (> 55 пг/клетка/день). Кроме того, это может быть достигнуто за относительно короткий период времени. Однако такая амплификация осуществляется с переменным успехом. Некоторые транскрипционно активные сайты не могут быть амплифицированы, а поэтому частота и степень амплификации из конкретного сайта является непредсказуемой.

В целом использование этих транскрипционно ослабленных векторов представляет собой значительно усовершенствованный способ по сравнению с другими способами случайной интеграции. Однако, как уже обсуждалось, отсутствие контроля в отношении сайта интеграции создает значительные проблемы.

Одним из способов решения проблем, связанных с случайной интеграцией, является способ целевого переноса гена, в результате чего обеспечивается направленное встраивание экзогенной ДНК в специфический локус в геноме хозяина. Экзогенная ДНК встраивается посредством гомологичной рекомбинации, происходящей между последовательностями ДНК в экспрессирующем векторе и соответствующей гомологичной последовательности в геноме. Однако в дрожжах и других грибковых микроорганизмах, этот тип рекомбинации происходит в природе с высокой частотой, тогда как в высших эукариотических организмах этот тип рекомбинации является исключительно редким событием. Было установлено, что в клетках млекопитающих, частота гомологичной рекомбинации по отношению к негомологичной рекомбинации (случайной интеграции) составляет в пределах от 1/100 до 1/5000 (см., например, Capecchi, Science, 244:1288-1292 (1989); Morrow & Kucherlapati, Curr. Op. Biotech., 4:577-582 (1993)).

В одной из наиболее ранних работ описана гомологичная рекомбинация в клетках млекопитающих, содержащих искусственную систему, созданную в мышиных фибробластах (Thomas et al., Cell, 44:419-428 (1986)). Была создана клеточная линия, содержащая мутированную нефункциональную версию гена neo, интегрированного в геном хозяина, а затем в нее была введена путем целевого переноса вторая нефункциональная копия гена neo, имеющая другую мутацию. Восстановление функционального гена neo может происходить только при направленном переносе гена. Гомологичные рекомбинанты были идентифицированы путем отбора клеток на резистентность к G418, и подтверждена путем анализа геномной ДНК, выделенной из резистентных клонов.

Недавно сообщалось об использовании гомологичной рекомбинации для замены генов тяжелой и легкой цепи иммуноглобулина в эндогенном локусе в антитело-секретирующих клетках (патент США № 5202238, Fell et al., (1993)). Однако этот конкретный способ не имеет широкого применения, поскольку он ограничен продуцированием иммуноглобулинов в клетках, которые эндогенно экспрессируют иммуноглобулины, например, в В-клетках и клетках миеломы. Эта экспрессия также ограничена уровнями однокопийного гена вследствие того, что после гомологичной рекомбинации не происходит ко-амплификации. Кроме того, этот метод осложняется тем фактом, что для продуцирования функционального иммуноглобулина требуются два отдельных события интеграции; одно для гена легкой цепи, а затем одно для гена тяжелой цепи.

Дополнительный пример системы этого типа описан для клеток NS/0, где рекомбинантные иммуноглобулины экспрессируются путем гомологичной рекомбинации в локусе 2А гамма-иммуноглобулина (Hollis et al. Международная патентная заявка # PCT/IB95 (00014) ). Уровни экспрессии, полученные из этого сайта были исключительно высокими - порядка 20 пг/клетку/день от однокопийного интегранта. Однако, как и в примере, указанном выше, экспрессия ограничена этим уровнем вследствие того, что амлифицируемый ген не ко-интегрирован в этой системе. Другие исследователи также сообщали об аберрантном гликозилировании рекомбинантных белков, экспрессированных в клетках NS/0 (см., например, Flesher et al., Biotech. and Bioeng., 48:399-407 (1995)), что тем самым ограничивает применение этого подхода.

Недавно была получена система рекомбинации cre-loxP, происходящая от бактериофага Р1 и использованная для направленного переноса гена в эукариотические клетки. В частности, была описана сайт-специфическая интеграция экзогенной ДНК в геном клеток яичника китайского хомячка (СНО) с использованием рекомбиназы сrе и серия 1ох-содержащих векторов. (Fukushige & Sauer, Proc. Natl. Acad. Sci., USA, 89:7905-7909 (1992) ). Эта система привлекательна тем, что она обеспечивает репродуцируемую экспрессию в одном и том же положении хромосомы. Однако не было сделано каких-либо попыток идентифицировать сайт хромосомы, в котором экспрессия гена является оптимальной, и, как и в предыдущем примере, экспрессия в этой системе ограничена однокопийными уровнями. И в этом случае возникают осложнения, обусловленные тем фактом, что необходимо обеспечивать экспрессию функционального фермента рекомбиназы в клетках млекопитающих.

Сообщалось также об использовании гомологичной рекомбинации между введенной ДНК-последовательностью и ее эндогенным хромосомным локусом для разработки эффективных способов генной манипуляции в клетках млекопитающих, а также в дрожжевых клетках (см., например, Bradley et al., Meth. Enzymol., 223:855-879 (1993); Capecchi, Science, 244:1288-1292 (1989); Rothstein et al., Meth. Enzymol., 194; 281-301 (1993)). До настоящего времени исследования, относящиеся к целевому переносу гена в большинство клеток млекопитающих, были направлены на разрушение гена ("нокаут") или сайт-направленный мутагенез локусов отобранных целевых генов в стволовых клетках мышиных эмбрионов (ES). Создание этих мышиных моделей "нокаута" дало возможность ученым определять конкретные структурно-функциональные выходы и оценивать биологическую ценность мириадов мышиных генов. Эта область исследований также имеет важное значение с точки зрения возможного применения в генной терапии.

Недавно, Celltech (Kent, U.К.) описали векторы, которые были нацелены на транскрипционно активные сайты в клетках N30, не требующих амплификации гена (Peakmann et al., Hum. Antibod. Hybridomas, 5:65-74 (1994)). Однако в этой работе не сообщалось, что уровни секреции иммуноглобулинов в этих неамплифицированных клетках могут превышать 20 пг/клетку/день, а в амплифицированных клетках СНО могут быть получены уровни, которые достигают 100 пг/клетку/день (там же).

Было бы в высокой степени желательно разработать такую систему целевого переноса гена, которая могла бы обеспечивать репродуцируемую интеграцию экзогенной ДНК в предварительно определенный сайт генома, о котором известно, что он является транскрипционно активным. Кроме того, было бы также желательно, чтобы такая система целевого переноса гена могла облегчить ко-амплификацию встроенной ДНК после ее интеграции. Конструирование такой системы позволило бы осуществлять репродуцируемую и высокоэффективную экспрессию любого представляющего интерес клонированного гена в клетке млекопитающего и несомненно представляло бы большой интерес для исследователей.

В этой заявке нами была описана новая экспрессирующая система млекопитающих, полученная на основе гомологичной рекомбинации, происходящей между двумя искусственными субстратами, содержащимися в двух различных векторах. В частности, в этой системе используются два новых экспрессирующих вектора млекопитающих, названных "маркирующим вектором" и "вектором целевого переноса".

В основном маркирующий вектор обеспечивает идентификацию и маркирует сайт генома млекопитающего, являющийся транскрипционно активным, то есть сайт, в котором уровни экспрессии гена являются высокими. Этот сайт может рассматриваться как "горячая точка" в этом геноме. После интеграции этого маркирующего вектора, рассматриваемая экспрессирующая система обеспечивает интеграцию другой ДНК в этом сайте, то есть вектора целевого переноса, посредством гомологичной рекомбинации, происходящей между ДНК-последовательностями, общими для этих двух векторов. Эта система имеет значительные преимущества по сравнению с другими системами гомологичной рекомбинации.

В отличие от большинства других систем гомологичной рекомбинации, используемых в клетках млекопитающих, эта система не дает фонового уровня. Поэтому клетки, которые подвергаются лишь случайной интеграции вектора, не проходят отбор. Таким образом, нужный ген, клонированный в плазмиду для целевого переноса, экспрессируется на высоких уровнях из маркированной "горячей точки". В соответствии с этим, рассматриваемый способ экспрессии гена позволяет в основном или полностью решить проблемы, связанные с системами случайной интеграции, подробно описанными выше. Более того, эта система обеспечивает репродуцируемую и высокоэффективную экспрессию любого рекомбинантного белка в одном и том же транскрипционно активном сайте генома млекопитающего. Кроме того, амплификация гена может быть осуществлена в этом конкретном транскрипционно активном сайте путем включения амплифицируемого доминантного селективного маркера (например, DHFR) как части маркирующего вектора.

Цели настоящего изобретения

Таким образом, целью настоящего изобретения является разработка улучшенного способа целевого переноса нужной ДНК в специфический сайт клетки млекопитающего.

Более конкретной целью настоящего изобретения является разработка нового способа целевого переноса нужной ДНК в специфический сайт клетки млекопитающего посредством гомологичной рекомбинации.

Другой конкретной целью настоящего изобретения является получение новых векторов для обеспечения сайт-специфической интеграции нужной ДНК в клетке млекопитающего.

Другой целью настоящего изобретения является получение новых клеточных линий млекопитающего, содержащих нужную ДНК, интегрированную в заранее определенный сайт, который обеспечивает высокий уровень экспрессии.

Более конкретной целью настоящего изобретения является разработка нового способа достижения сайт-специфической интеграции нужной ДНК в клетках яичника китайского хомячка (СНО).

Другой более конкретной целью настоящего изобретения является разработка нового способа интеграции генов иммуноглобулина или любых других генов в клетках млекопитающих в заранее определенных хромосомных сайтах, которые обеспечивают высокий уровень экспрессии.

Другой конкретной целью настоящего изобретения является получение новых векторов или комбинаций векторов, подходящих для интеграции генов иммуноглобулина в клетки млекопитающих в заранее определенные сайты, которые обеспечивают высокий уровень экспрессии.

Другой целью настоящего изобретения является получение клеточных линий млекопитающих, содержащих гены иммуноглобулина, интегрированных в заранее определенные сайты, которые обеспечивают высокий уровень экспрессии.

Еще более конкретной целью настоящего изобретения является разработка нового способа интеграции генов иммуноглобулина в клетках СНО, которые обеспечивают высокий уровень экспрессии, а также получение новых векторов или комбинаций векторов, подходящих для такой интеграции генов иммуноглобулина в клетках СНО.

Кроме того, конкретной целью настоящего изобретения является получение новых клеточных линий СНО, которые содержат гены иммуноглобулина, интегрированные в заранее определенные сайты, обеспечивающие высокий уровень экспрессии, и которые были амплифицированы путем отбора с использованием метотрексата для секреции еще больших количеств функциональных иммуноглобулинов.

Фиг.1 изображает карту маркирующей плазмиды настоящего изобретения, названной Desmond. Эта плазмида показана в кольцевой форме (1а) и в линеаризованном варианте, используемом для трансфекции (1b).

Фиг.2 (а) изображает карту плазмиды целевого переноса, названную "Molly". Показанная здесь плазмида Molly кодирует гены иммуноглобулина против CD20, экспрессия которых описана в Примере 1.

Фиг.2(b) изображает линеаризованную версию Molly после ее гидролиза рестриктазами KpnI и PacI. Эту линеаризованную форму использовали для трансфекции.

Фиг.3 иллюстрирует возможное сравнение первичных интегрированных в СНО-геном последовательностей Desmond и вставленных последовательностей плазмиды целевого переноса Molly. Представлена также одна из возможных структур последовательноси Molly, интегрированной в последовательность Desmond после гомологичной рекомбинации.

Фиг.4 иллюстрирует Саузерн-анализ однокопийных клонов Desmond. Образцами являлись:

Дорожка 1: маркер размера HindIII-ДНК

Дорожка 2; клон Desmond 10F3

Дорожка 3: клон Desmond 10C12

Дорожка 4: клон Desmond 15C9

Дорожка 5: клон Desmond 14B5

Дорожка 6: клон Desmond 9В2.

Фиг.5 иллюстрирует Нозерн-анализ однокопийных клонов Desmond. Образцами являлись: Панель А: Нозерн-клоны, зондированные CAD- и DHFR-зондами, как показано на рисунке. Панель В: дубликатные Нозерн-клоны, зондированные CAD- и HisD-зондами, как показано РНК-образцами, загруженными на Панелях А и В, являлись: дорожка 1: клон 9B2; дорожка 2: клон 10C12; дорожка 3: клон 14В12; дорожка 4: клон 15C9; дорожка 5: контрольная РНК из клеток СНО, трансфецированных HisD- и DHFR-содержащей плазмидой; дорожка 6; нетрасфецированные СНО.

Фиг.6 иллюстрирует Саузерн-анализ клонов, полученных в результате гомологичной интеграции Molly в Desmond. Образцами являются: дорожка 1: маркер размера HindIII-ДНК; дорожка 2: 20F4; дорожка 3: 5F9; дорожка 4: 21С7; дорожка 5: 24G2; дорожка 6: 25Е1; дорожка 7: 28С9; дорожка 8: 29F9; дорожка 9: 39G11; дорожка 10: 42F9; дорожка 11: 50G10; дорожка 12: плазмидная ДНК Molly, линеаризованная ферментом BgIII (верхняя полоса) и разрезанная ферментами BgIII и KpnI (нижняя полоса); дорожка 13: нетрансфецированная Desmond.

Фиг.7А-7С представляют Список последовательностей для Desmond.

Фиг.8A-8I представляют Список последовательностей для плазмиды Molly, содержащей ген иммуноглобулина против CD20.

Фиг.9 представляет карту плазмиды целевого переноса, "Mandy", где показаны гены, которые кодируют иммуноглобулин против CD23 и экспрессия которых описана в Примере 5.

Фиг.10А-10N представляет список последовательностей плазмиды "Mandy", содержащей гены иммуноглобулина против CD23, описанные в Примере 5.

Подробное описание изобретения

Настоящее изобретение относится к новому способу интеграции нужной экзогенной ДНК в целевой сайт генома клеток млекопитающих посредством гомологичной рекомбинации. Настоящее изобретение также относится к новым векторам для достижения сайт-специфический интеграции ДНК в целевой сайт генома клеток млекопитающих.

Более конкретно, рассматриваемый способ клонирования обеспечивает сайт-специфическую интеграцию нужной ДНК в клетке млекопитающего путем трансфекции этой клетки "маркерной плазмидой", содержащей уникальную последовательность, которая является чужеродной для генома этих клеток млекопитающих, с последующей трансфекцией "плазмидой целевого переноса", содержащей последовательность, которая обеспечивает гомологичную рекомбинацию с уникальной последовательностью, содержащейся в маркерной плазмиде, и кроме того, включающей нужную ДНК, которую необходимо интегрировать в клетку млекопитающего. В основном, интегрированная ДНК будет кодировать нужный белок, такой как иммуноглобулин или другой гликопротеин, секретируемый клетками млекопитающего.

В рассматриваемой системе гомологичной рекомбинации, в качестве селективного доминантного маркера используется ген неомицин-фосфотрансферазы. Этот конкретный маркер был использован исходя из следующих ранее опубликованных данных:

(i) продемонстрированной способности этого маркера к направленному переносу и сохранению функции мутированного варианта гена neo (как было указано ранее); и

(ii) нашей разработки трансляционно ослабленных экспрессирующих векторов, в которых ген neo был искусственно создан в виде двух экзонов с нужным геном, встроенным в интрон, где указанные экзоны neo правильно сплайсируются и транслируются in vivo, продуцируя функциональный белок и тем самым сообщая полученной клеточной популяции резистентность к G418. В этом применении, ген neo был разделен на три экзона. Третий экзон neo присутствует на "маркерной" плазмиде и интегрируется в геном клетки хозяина после интеграции маркерной плазмиды в клетки млекопитающего. Экзоны 1 и 2 присутствуют на плазмиде целевого переноса, и разделены интроном, в который был клонирован, по крайней мере, один нужный ген. Гомологичная рекомбинация вектора целевого переноса с интегрированным маркерным вектором приводит к правильному сплайсингу всех трех экзонов гена neo и тем самым к экспрессии функционального белка neo (как было определено путем отбора на резистентность колоний к G418). Перед конструированием рассматриваемой экспрессирующей системы, нами был проведен экспериментальный тест на функциональность такой трижды сплайсированной neo-конструкции в клетках млекопитающих. Результаты этого контрольного эксперимента показали, что все три neo-экзона были правильно сплайсированы, что дало основание предположить о технической реализуемости настоящего изобретения.

Хотя настоящее изобретение проиллюстрировано с использованием гена neo, а более конкретно гена neo с тройным расщеплением, однако общая методика должна быть эффективной с использованием других доминантных селективных маркеров.

Как более подробно обсуждается ниже, настоящее изобретение имеет множество преимуществ по сравнению со стандартными способами экспрессии генов, включая как способ случайной интеграции, так и способ целевого переноса гена. В частности, настоящее изобретение относится к способу, который позволяет осуществить репродуцируемую сайт-специфическую интеграцию нужной ДНК в транскрипционно активный домен клетки млекопитающего. Более того, поскольку рассматриваемый способ позволяет вводить искусственную область "гомологии", которая действует как уникальный субстрат для гомологичной рекомбинации, и встраивать нужную ДНК, то для эффективного осуществления настоящего изобретения не требуется, чтобы эта клетка эндогенно содержала или экспрессировала специфическую ДНК.

Таким образом, этот способ генетически применим ко всем клеткам млекопитающих и может быть использован для экспрессии любого типа рекомбинантного белка.

Использование трижды сплайсированного селективного маркера, например, рассматриваемой трижды сплайсированной neo-конструкции, дает гарантию того, что все продуцированные G418-резистентные колонии будут образовываться в результате событий гомологичной рекомбинации (случайные интегранты не будут продуцировать функциональный ген neo, а следовательно, они не будут выживать при С418-отборе). Таким образом, настоящее изобретение позволяет легко проводить скрининг на нужное событие гомологичной рекомбинации. Кроме того, очевидно, что частота дополнительных случайных интеграций в клетке, которая подвержена событиям гомологичной рекомбинации, является низкой.

Исходя из вышеуказанного, очевидно, что значительное преимущество настоящего изобретения заключается в том, что оно позволяет, в основном, снизить число колоний, которое необходимо скринировать для идентификации высокопродуктивных клонов, то есть, клеточных линий, содержащих нужную ДНК, которая секретирует соответствующий белок на высоких уровнях. В среднем, клоны, содержащие интегрированную нужную ДНК, могут быть идентифицированы путем скрининга от около 5 до 20 колоний (по сравнению с несколькими тысячами, которые должны быть скринированы при использовании стандартной техники случайной интеграции, или несколькими сотнями, которые должны быть скринированы с использованием ранее описанных векторов с интронной инсерцией). Кроме того, поскольку сайт интеграции был предварительно отобран и содержит транскрипционно активный домен, все экзогенные ДНК, экспрессированные в этом сайте, должны продуцировать сравнимые, т.е. высокие уровни нужного белка.

Кроме того, настоящее изобретение является более предпочтительным в том, что оно обеспечивает инсерцию амплифицированного гена после интеграции маркерного вектора. Таким образом, если нужный ген направлен в этот сайт посредством гомологичной рекомбинации, то настоящее изобретение позволяет экспрессировать ген, еще более усиливаемый посредством амплификации генов. В этой связи в литературе сообщалось, что различные геномные сайты имеют различную способность к амплификации генов (Meinkoth et al, Mol. Cell. Biol., 7:1415-1424 (1987)). Следовательно, эта техника является более предпочтительной, поскольку она позволяет помещать нужный ген в специфический сайт, который является как транскрипционно активным, так и легко амплифицируемым. Поэтому, эта техника должна приводить к существенному снижению временных затрат, необходимых для выделения таких высокоэффективных продуцентов.

В частности, стандартные методы конструирования в высокой степени экспрессирующих клеточных линий млекопитающих могут занимать от 6 до 9 месяцев, тогда как настоящее изобретение позволяет выделять эти клоны, в среднем, лишь за 3-6 месяцев. Это обусловлено тем фактом, что для получения удовлетворительных уровней экспрессии генов, выделенные стандартным способом клоны обычно должны подвергаться, по крайней мере, трем циклам амплификации гена, резистентного к лекарственному средству. Поскольку гомологично продуцированные клоны были генерированы из предварительно выбранного сайта, который представляет собой высоко экспрессионный сайт, то для достижения нужного уровня продуцирования требуется проведение меньшего числа циклов амплификации.

Кроме того, настоящее изобретение обеспечивает репродуцируемый отбор высокопродуктивных клонов, в которых вектор интегрируется с низким числом копий, обычно с одной копией. Это является преимуществом, которое позволят повысить стабильность клонов и избежать других возможных нежелательных побочных эффектов, связанных с высоким числом копий. Как описано выше, в рассматриваемой системе гомологичной рекомбинации используется комбинация "маркерной плазмиды" и "плазмиды целевого переноса", которые более подробно описаны ниже.

"Маркерная плазмида", которая используется для мечения и идентификации транскрипционной "горячей точки", содержит, по крайней мере, следующие последовательности:

(i) область ДНК, которая является гетерологичной или уникальной для генома клетки млекопитающего, которая функционирует как источник гомологии, обеспечивая гомологичную рекомбинацию (с ДНК, содержащейся во второй плазмиде целевого переноса). Более конкретно, эта уникальная область ДНК (i), в основном, содержит бактериальную, вирусную, дрожжевую, синтетическую или другую ДНК, которая обычно не присутствует в геноме нормальной клетки млекопитающего и которая, кроме того, не обладает значительной гомологией или идентичностью последовательности по отношению к ДНК, присутствующей в геноме данной клетки млекопитающего. В основном, эта последовательность должна достаточно отличаться от ДНК млекопитающего тем, что не подвергается значительной рекомбинации с геномом клетки-хозяина посредством гомологичной рекомбинации. Так как некоторые другие исследователи отмечали повышение частоты целевой рекомбинации по мере увеличения размера области гомологии (Capecchi, Science, 244:1288-1292 (1989)), то размер такой уникальной ДНК будет, в основном, составлять, по крайней мере, около 2-10 тысяч пар оснований или выше, а более предпочтительно, по крайней мере, около 10 т.п.о.

Верхний предел размера уникальной ДНК, которая служит в качестве сайта для гомологичной рекомбинации с последовательностью во втором целевом векторе, главным образом, обусловлен возможными ограничениями стабильности (если ДНК слишком крупная, то она не может быть легко интегрирована в хромосому, что затрудняет работу с очень крупными ДНК).

(ii) ДНК, включающей фрагмент селективной маркерной ДНК, обычно экзона доминантного селективного маркерного гена. Главным отличительным признаком этой ДНК является то, что она не кодирует функциональный селектируемый маркерный белок, несмотря на то, что она экспрессируется совместно с последовательностью, содержащейся в целевой плазмиде. Обычно целевая плазмида содержит остальные экзоны доминантного селективного маркерного гена (которые не присутствуют в "плазмиде направленного переноса"). В основном функциональный селективный маркер должен продуцироваться только, если происходит гомологичная рекомбинация (приводящая к связыванию и экспрессии этой маркерной ДНК-последовательности(i) вместе с частью (частями) фрагмента селективной маркерной ДНК, которая содержится в целевой плазмиде).

Как было указано, настоящее изобретение иллюстрирует использование гена неомицин-фосфотрансферазы в качестве доминантного селективного маркера, который "расщепляется" на два вектора. Однако подходящими могут быть также и другие селективные маркеры, например ген гистидинол-дегидрогеназы сальмонеллы, ген гигромицин-фосфотрансферазы, ген тимидин-киназы вируса простого герпеса, ген аденозин-дезаминазы, ген глутамин-синтетазы и ген гипоксантин-гуанинфосфорибозил-трансферазы.

(iii) ДНК, кодирующую функциональный селективный маркерный белок, где указанный селективный маркер отличается от селективной маркерной ДНК (ii). Этот селективный маркер обеспечивает успешный отбор клеток млекопитающих, где маркерная плазмида успешно интегрируется в клеточную ДНК. Более предпочтительно, чтобы эта маркерная плазмида содержала два таких доминантных селективных маркерных ДНК, расположенных на противоположных концах вектора. Этот вариант является преимущественным, поскольку в этом случае интегранты могут быть отобраны с использованием различных селективных агентов и, кроме того, могут быть отобраны клетки, которые содержат полный селективный вектор. Помимо этого, один маркер может быть амплифицируемым маркером для облегчения амплификации гена, как обсуждалось ранее. Может быть использован любой из доминантных селективных маркеров, перечисленных в (ii), а также могут быть использованы другие маркеры, хорошо известные специалистам.

Более того, маркерная плазмида может, но необязательно, дополнительно содержать редкий сайт рестрикции эндонуклеазы. Этот вариант является потенциально желательным, поскольку в этом случае может быть облегчено расщепление. Такой редкий рестрикционный сайт, если он присутствует, должен быть расположен почти у середины уникальной области, которая служит в качестве субстрата для гомологичной рекомбинации. Предпочтительно, чтобы такая последовательность составляла, по крайней мере, около 12 нуклеотидов. Сообщалось, что введение двухцепочечного разрыва с помощью аналогичной методики увеличивает частоту гомологичной рекомбинации (Choulika et al., Mol. Cell Biol., 15:1968-1973 (1995)). Однако присутствие такой последовательности не имеет решающего значения.

"Плазмида целевого переноса" включает, по крайней мере, следующие последовательности:

(1) ту же самую уникальную область ДНК, которая присутствует в маркерной плазмиде, или область, имеющую достаточную гомологию или идентичность с этой областью, где указанная ДНК может быть объединена посредством гомологичной рекомбинации с уникальной областью (i) в маркерной плазмиде. Подходящие типы ДНК описаны выше в описании уникальной области ДНК (1) в маркерной плазмиде.

(2) оставшиеся экзоны доминантного селективного маркера, из которых один экзон включен как (ii) в маркерную плазмиду, определенную выше. Основной особенностью этого ДНК-фрагмента является то, что он обеспечивает продуцирование функционального (селективного) маркерного белка только в том случае, если целевая плазмида интегрируется посредством гомологичной рекомбинации (где такая рекомбинация