Бесконтактный способ определения диэлектрической проницаемости твердых и жидких диэлектриков
Реферат
Изобретение относится к электроизмерительной технике и может быть использовано, например, для проверки качества твердых и жидких электроизоляционных материалов. Техническим результатом является создание способа измерения диэлектрической проницаемости без разрушающего воздействия и достижения более высокой точности и достаточно простого в использовании. В способе определения диэлектрической проницаемости путем воздействия электромагнитного поля испытуемый образец помещают в межэлектродное пространство между измерительным плоским электродом и поверхностью вращающегося металлического диска, на котором закреплен полимерный пленочный электрет - источник электрического поля, определяют амплитудное значение индукционного тока измерительного электрода в случае, когда испытуемый образец находится в межэлектродном пространстве, амплитудное значение индукционного тока без помещения диэлектрика, а диэлектрическую проницаемость по приведенной математической формуле. 1 з.п. ф-лы, 1 ил.
Изобретение относится к электроизмерительной технике и может быть использовано, например, для проверки качества твердых и жидких электроизоляционных материалов. Известны мостовой и резонансный способы измерения диэлектрической проницаемости твердых и жидких диэлектриков [1, 2], которые позволяют проводить измерение диэлектрической проницаемости электроизоляционных материалов в измерительной ячейке с накладными или напыленными в вакууме металлическими измерительными электродами. Недостатком вышеуказанных способов измерения является то, что для их реализации необходимо использование накладных или напыляемых в вакууме металлических электродов. Известен способ контроля толщины и диэлектрической проницаемости диэлектрика [3], который включает одновременное облучение исследуемого диэлектрика на металлическом основании излучением в СВЧ и ВЧ диапазонах. Частоту ВЧ излучения выбирают из условия, что толщина схемы-слоя меньше толщины металлического основания, измерение изменений величин продетектированных сигналов на ВЧ и СВЧ в отсутствие диэлектрика на металлическом основании и в его присутствии и определение толщины. Известен способ определения диэлектрической проницаемости материала [4]. Способ включает возбуждение электромагнитных колебаний в микрополосковой линии с известными параметрами комплексной диэлектрической проницаемости, измерение ее импеданса в режимах холостого хода и короткого замыкания при размещении микрополосковой линии на поверхности исследуемого образца материала и при отсутствии исследуемого образца и вычисление диэлектрической проницаемости исследуемого образца материала. Ближайшим аналогом является способ определения комплексной диэлектрической проницаемости материала [5]. Способ заключается в подаче на исследуемую пробу скачкообразно изменяющегося напряжения чередующейся полярности с периодом циклической частоты измерения, интегрировании поляризационного тока и регистрации величины поляризационного заряда в равноотстоящие моменты времени. При вычислении действительной части комплексной диэлектрической проницаемости выбирают количество отсчетов в течение полупериода не менее четырех, а при вычислении мнимой части - не менее 32. Вычисления компонент комплексной диэлектрической проницаемости производят суммированием величин отсчетов, умноженных на тригонометрические функции фазового угла (синус или косинус для действительной или мнимой части соответственно). Недостатком известных способов и прототипа является то, что они достаточно сложны в применении. Задачей предлагаемого изобретения является создание способа измерения диэлектрической проницаемости без разрушающего воздействия и достижения более высокой точности и достаточно простого в использовании. Поставленная задача достигается тем, что в известном способе определения диэлектрической проницаемости путем воздействия электромагнитного поля испытуемый образец помещают в межэлектродное пространство между плоским измерительным электродом и поверхностью вращающегося металлического диска, на котором закреплен полимерный пленочный электрет - источник электрического поля, определяют амплитудное значение индукционного тока измерительного электрода в случае, когда испытуемый образец находится в межэлектродном пространстве Ix, амплитудное значение индукционного тока без помещения диэлектрика Iвозд, а диэлектрическую проницаемость вычисляют по формуле где x - диэлектрическая проницаемость исследуемого диэлектрического материала; возд - диэлектрическая проницаемость воздуха; hx - толщина исследуемого диэлектрического материала; hвозд - толщина воздушного промежутка; h - расстояние от поверхности измерительного электрода до поверхности вращающегося диска, на которой закреплен тонкопленочный электрет - источник электрического поля; Ix - амплитудное значение индукционного тока измерительного электрода, измеренное с помощью осциллографа, для случая, когда исследуемый диэлектрик находится в межэлектродном измерительном промежутке; Iвозд - амплитудное значение индукционного тока для случая, когда межэлектродный измерительный промежуток заполнен только воздухом. В качестве источника электрического поля используют тонкий пленочный электрет из конденсаторной пленки политетрафторэтилен (ПТФЭ). Способ осуществляется следующим образом. На чертеже представлена схема устройства для определения диэлектрической проницаемости. На поверхности вращающегося диска 1 закрепляют предварительно заполяризованный электрет 2 круглой формы, диаметром - d. Исследуемый твердый диэлектрик 3 в виде цилиндра диаметром - D и высотой - H, где D>>d, помещают в промежутке между измерительным электродом 4 и поверхностью заземленного вращающегося диска 1 с закрепленным пленочным электретом 2. Если необходимо выполнить измерения диэлектрической проницаемости - жидкого диэлектрика (например, трансформаторного масла), то в межэлектродный промежуток устанавливают тонкостенный полиэтиленовый сосуд цилиндрической формы с толщиной стенки - h, где h<<Н. Толщина стенки полиэтиленового сосуда h значительно меньше толщины слоя жидкости Н. На клеммы электродвигателя подают постоянное напряжение питания от 0 до 30 В. В зависимости от подаваемого напряжения скорость вращения электродвигателя и соответственно скорость вращения диска 1 может меняться в пределах от 0 до 3000 об/мин. Амплитуду сигнала от электрета 2 измеряют с помощью электронно-лучевого осциллографа. Для определения диэлектрической проницаемости твердых и жидких диэлектриков необходимо выполнить два измерения величины Ii. Первое Iвозд - измеряют при удалении испытуемого диэлектрика из измерительного межэлектродного промежутка (в межэлектродном промежутке находится только воздух). Второе Ix - измеряют, когда в измерительный межэлектродный промежуток помещают исследуемый диэлектрик. Расчет величины диэлектрической проницаемости исследуемого диэлектрика производят по формуле где h - расстояние от поверхности измерительного электрода до поверхности вращающегося диска; hx - толщина исследуемого диэлектрика - толщина воздушного промежутка. Н=hвозд+hx При полном заполнении межэлектродного промежутка исследуемым диэлектриком (например, проведение измерений в трансформаторном масле) величина диэлектрической проницаемости диэлектрического материала измеряется по формуле где hвозд=0 и hx=h. Пример 1 Измерение диэлектрической проницаемости трансформаторного масла. В тонкостенный стакан из полиэтилена с толщиной стенки 0,05 мм заливают трансформаторное масло (толщина слоя 10 мм). Устанавливают межэлектродное расстояние в измерительном конденсаторе 15 мм. Проверяют, что в этой области межэлектродных промежутков зависимость амплитуды измеряемого сигнала от величины обратного расстояния 1/h I=f(1/h) практически линейна и вклад краевой емкости минимален. В измерениях используют электрет пленки ПТЭФ - h=10 мкм, заполяризованный до величины электретной разности потенциалов V=1000 В. Производят два измерения амплитуды сигнала осциллографа Iвозд - для пустого (заполненного воздухом) измерительного конденсатора и Ix - для измерительного конденсатора с исследуемым образцом - трансформаторным маслом. По шкале электронно-лучевого осциллографа измерены два значения амплитуды сигнала Iвозд=10,0 мм и Ix=16,6 мм. Считаем, что диэлектрическая проницаемость воздуха возд=1. По формуле производим расчет диэлектрической проницаемости трансформаторного масла Расчетное значение диэлектрической проницаемости для трансформаторного масла равно 2,5, что находится в соответствии со справочными данными. Пример 2 В измерениях используют пластинку из слюды мусковит, толщиной 10 мм. Устанавливают межэлектродное расстояние в измерительном конденсаторе 15 мм. Проверяют, что в этой области межэлектродных промежутков зависимость амплитуды измеряемого сигнала от величины обратного расстояния 1/h Ix=t(1/h) практически линейна и вклад краевой емкости минимален. В измерениях используют электрет пленки ПТЭФ - h=10 мкм, заполяризованный до величины электретной разности потенциалов V=1000 В. Производят два измерения амплитуды сигнала осциллографа Iвозд - для пустого (заполненного воздухом) измерительного конденсатора и Ix - для измерительного конденсатора с исследуемым электроизоляционным материалом (слюда мусковит). По шкале электронно-лучевого осциллографа измерены два значения амплитуды сигнала Iвозд=10,0 мм и Ix=23,1 мм. Считаем, что диэлектрическая проницаемость воздуха возд=1. По формуле производим расчет диэлектрической проницаемости слюды мусковит Расчетное значение диэлектрической проницаемости для слюды мусковит равно 6,7, что находится в соответствии со справочными данными. Предлагаемый способ позволяет значительно упростить измерения диэлектрической проницаемости без разрушающего воздействия. Источники информации 1. Казарновкий Д.М., Тареев Б.М. Испытания электроизоляционных материалов. - М.-Л.: Госэнергоиздат, 1963. 2. Эме Ф. Диэлектрические измерения. Для количественного анализа и для определения химической структуры. Пер. с немец. Штиллера Б.Н. Под ред. Заславского И.И. - М.: Химия, 1967. 3. Патент РФ №2012871, G 01 N 22/00, 1994. 4. Патент РФ №2103673, G 01 N 22/00, G 01 R 27/26, 1998. 5. Заявка РФ №94012374, G 01 R 27/26, 1996 (прототип).Формула изобретения
1. Бесконтактный способ определения диэлектрической проницаемости твердых и жидких диэлектриков путем воздействия электромагнитного поля, отличающийся тем, что испытуемый образец помещают в межэлектродное пространство между измерительным плоским электродом и поверхностью вращающегося металлического диска, на котором закреплен полимерный пленочный электрет - источник электрического поля, определяют амплитудное значение индукционного тока измерительного электрода в случае, когда испытуемый образец находится в межэлектродном пространстве, амплитудное значение индукционного тока без помещения диэлектрика, а диэлектрическую проницаемость вычисляют по формуле где х - диэлектрическая проницаемость исследуемого диэлектрического материала; возд. - диэлектрическая проницаемость воздуха; hх - толщина исследуемого диэлектрического материала; hвозд. -толщина воздушного промежутка; h - расстояние от поверхности измерительного электрода до поверхности вращающегося диска, на которой закреплен тонкопленочный электрет - источник электрического поля; Ix - амплитудное значение индукционного тока измерительного электрода, измеренное с помощью осциллографа, для случая, когда исследуемый диэлектрик находится в межэлектродном измерительном промежутке; 1возд. - амплитудное значение индукционного тока для случая, когда межэлектродный измерительный промежуток заполнен только воздухом. 2. Способ по п.1, отличающийся тем, что в качестве источника электрического поля используют тонкий пленочный электрет из конденсаторной пленки политетрафторэтилен.РИСУНКИ
Рисунок 1