Жидкая полимеризационноспособная композиция для получения твердых электролитов и способ ее отверждения

Реферат

 

Изобретение относится к электрохимии, а именно к твердым электролитам для различных электрохимических устройств. Предложены жидкая полимеризационноспособная композиция для получения твердых электролитов, включающая реакционноспособное соединение и неводный раствор литиевой соли. Композиция содержит 1,0-1,5 М неводный раствор литиевой соли, в качестве реакционноспособного соединения олигоуретанметакрилат и монометакрилат полипропиленгликоля, при этом суммарное количество олигоуретанметакрилата и монометакрилата полипропиленгликоля в неводном растворе литиевой соли составляет 12-17 мас.%, а их массовое соотношение равно 1:1-1,1. Способ отверждения композиции включает добавление фотоинициатора полимеризации в количестве 1,9-2,1 мас.% на суммарное количество олигоуретанметакрилата и монометакрилата полипропиленгликоля и отверждение проводят под действием УФ-облучения. Техническим результатом изобретения является получение твердых электролитов с повышенной прочностью при упрощении и сокращении продолжительности процесса получения изделия.

Изобретение относится к электрохимии, а именно к твердым электролитам для различных электрохимических устройств.

Известны твердые или полутвердые полимерные электролиты для электрохимических устройств, которые получают смешиванием готовых полимеров, например полиэтиленоксида, полиметилметакрилата, полиакрилонитрила и других полимеров с растворами солей щелочных и щелочно-земельных металлов в простых и(или) сложных эфирах и других традиционных для технологии электролитов растворителях и их комбинациях (J. of Power Sources. 1999. 77. PP.183-197).

Вариант такого решения описан в патенте США 6025096 (МКИ Н 01 М 6/18, 15.02.2000), где предлагаются твердые или полутвердые полимерные электролиты, которые получают смешением полиэтиленоксида и трифлатной (трифторметилсульфат) соли щелочного металла с простыми и сложными эфирами и(или) N-метилпирролидоном и их комбинациями с последующим отверждением путем частичного выпаривания низкокипящих растворителей при 70С.

Недостатками таких известных твердых электролитов и способа их получения являются: а) необходимость удаления эфирных растворителей, что отрицательно сказывается на экологической безопасности производства; б) образование дендритов, препятствующих ионному потоку и, соответственно, снижающих проводимость электролита; в) жесткие требования к регулярности молекулярного строения полиэтиленоксида, поскольку наличие боковых цепей с концевыми полярными группами обусловливает неконтролируемое трехмерное структурирование полимерного электролита и, соответственно, существенную потерю ионной проводимости изделия. Но главным недостатком такого рода твердых и полутвердых электролитов является низкий уровень механических свойств образующихся пленок.

Наиболее близким по технической сущности и достигаемому результату к предлагаемым изобретениям - композиции и способу ее отверждения - являются решения, описанные в патенте США 6482545, МКИ Н 01 М 4/62, 19.11.2002 (прототип).

В прототипе предложен жидкий неводный полимеризационноспособный электролит, в состав которого входят: многофункциональный реакционноспособный мономер, содержащий две или более ненасыщенные алифатические реакционноспособные группы на молекулу и, в ряде случаев, монофункциональный мономер, содержащий ненасыщенную алифатическую реакционноспособную группу, одна или более ионная соль лития, один или более растворителей.

Отверждение данной системы происходит по механизму катионной полимеризации при температурах 100-170С в присутствии инициатора и в ряде случаев ингибитора полимеризации.

Известно, однако, что использование как многофункциональных полимеризационноспособных мономеров, так и их смесей с монофукциональными полимеризационноспособными мономерами, как правило, не обеспечивает достаточную прочность полимерного электролита, особенно при малых концентрациях полимерных компонентов (1-25 мас.%), поэтому на практике, как и в прототипе (US 6482545), часто возникает необходимость введения упрочняющего сепаратора, например изделия из твердого пористого полиэтилена.

Кроме того, использование отверждения при повышенных температурах сопряжено со значительными технологическими трудностями: необходимостью нагрева всего устройства, что не всегда допустимо, большой длительностью процесса - нагрев, выдержка, охлаждение, и высокими энергозатратами.

Использование механизма катионной полимеризации, чувствительной к изменению характера среды, условиям реакции и наличию примесей и влаги, обусловливает повышенные требования к химической чистоте и влагосодержанию исходных компонентов, что существенно увеличивает трудоемкость процесса получения изделий и повышает стоимость электролитов.

Техническим результатом предлагаемого изобретения является повышение прочности электролитов, получаемых из заявленной композиции, а также снижение их стоимости.

Техническим результатом от использования предлагаемого способа является получение твердых электролитов с повышенной прочностью, упрощение производственного процесса, снижение трудо- и энергозатрат, что приведет к уменьшению стоимости твердых электролитов.

Решение поставленной задачи достигается за счет того, что предлагаемая жидкая полимеризационноспособная композиция для получения твердых электролитов содержит 1,0-1,5 М неводный раствор литиевой соли, в качестве реакционноспособного соединения олигоуретанметакрилат (ОУМ) и дополнительно содержит монометакрилат полипропиленгликоля (МППГ), при этом суммарное количество ОУМ и МППГ в неводном растворе литиевой соли составляет 12-17 мас.%, а их массовое соотношение (ОУМ:МППГ) равно 1:1-1,1.

Предлагаемая композиция может содержать в качестве неводного раствора литиевой соли 1,0-1,5 М раствор LiClO4 (перхлорат лития) в -бутиролактоне или 1,0-1,5 М раствор LiPF6 (гексафторфосфат лития) в смеси этиленкарбоната и диметилкарбоната (ЭК/ДМК).

Предлагаемая композиция может содержать олигоуретанметакрилат с молекулярной массой 1400-1600.

Решение поставленной задачи достигается также за счет того, что в предлагаемом способе отверждения композиции, включающем добавление инициатора полимеризации, фотоинициатор полимеризации добавляют в предлагаемую жидкую композицию в количестве 1,9-2,1 мас.% на суммарное количество ОУМ и МППГ и отверждение проводят под действием УФ-облучения, при этом продолжительность УФ-облучения составляет не менее 2 мин. В предлагаемом способе УФ-облучение можно проводить в течение 2-2,5 мин.

Найденное решение, а именно использование в качестве полимеризационноспособной системы смеси ОУМ и МППГ, было достаточно неожиданным, так как известно, что полиуретаны, благодаря формированию в них плотной физической сетки, образуют эластичные и высокопрочные пленки (Омельченко С.И., Кадурина Т.Н. Модифицированные полиуретаны. Киев: Наукова думка. 1983. С.228). Но плотная физическая сетка одновременно является препятствием транспорту ионов, что, как считалось в мировой практике, исключает применение полиуретанов в электролитах.

Экспериментально было обнаружено, что разработанные нами олигоуретанметакрилаты на основе политетрагидрофуранового макродиизоцианата с ММ=1400-1600 в смеси с монометакрилатом полипропиленгликоля являются вполне приемлемой средой для транспорта литиевых ионов, по-видимому, благодаря наличию значительного количества кислородных мостиков. При этом высокая полярность уретанового олигомера обеспечивает достаточный уровень растворимости литиевых солей до 1-1,5 молей в литре.

CH2=C(CH3)COOCH2CH2OCONH-[(CH2)4O]n-CONHC6H3(CH3)NHCO-ОСН2СН2OOСС(СН3)=СН2,

ОУМ, ММ=1400-1600,

СН2=С(СН3)СООСН2СН2OСО-[С(СН3)СН2O]nН,

МППГ, n=5-6.

Введение МППГ в ОУМ позволяет контролировать плотность образующейся при отверждении полимерной сетки в виде пленки, механические свойства которой позволяют использовать наиболее передовые технологии изготовления литиевых элементов.

Оказалось, что критическим параметром для создания твердого электролита на основе предлагаемой олигомерной композиции является концентрация полимера - необходимое сочетание прочности и проводимости пленки достигается только в очень узком диапазоне концентраций. Из приведенных ниже примеров и данных чертежа следует, что только при концентрациях полимерной основы 12-17 мас.% обеспечивается оптимальное соотношение проводимости и прочностных характеристик твердого полимерного электролита.

На чертеже показано влияние содержания полимерной основы (ОУМ и МППГ 1:1) на проводимость и механическую прочность пленок.

Предлагаемый электролит содержит также обычные компоненты 1-1,5 М раствор LiClO4 (перхлората лития) в -бутиролактоне или 1 М раствор LiPF6 (гексафторфосфат лития) в этиленкарбонате/диметилкарбонате (ЭК/ДМК) (1:1 по объему). Использование более высоких концентраций литиевых солей ограничено их растворимостью в композиции, а использование меньших концентраций не обеспечивает проводимость изделия.

Предлагаемую композицию готовили механическим перемешиванием олигоуретанметакрилата, монометакрилата полипропиленгликоля и раствора литиевой соли до получения однородной массы.

Для получения твердого электролита в композицию вводили фотоинициатор в количестве 1,9-2,1 мас.% на сумму полимеризационноспособных компонентов. Образцы готовили поливом полученной смеси на пуансон электрохимической ячейки с последующим УФ-облучением в течение 2-2,5 минут.

Без добавления фотоинициатора композиция может храниться при комнатной температуре в течение не менее месяца, а при пониженных температурах (в холодильнике) - до полугода, после введения фотоинициатора композиция должна храниться в темноте.

Значения проводимости образцов () определяли графоаналитическим методом из годографа импеданса, полученного с помощью “Измерителя импеданса ВМ 507” фирмы TESLA.

Деформацию образцов полимерных электролитов оценивали методом пенетрации.

Пример 1 (контрольный). Образец жидкого электролита (1 М раствор LiPF6 в ЭК/ДМК=1:1) наносили на пуансон из нержавеющей стали в электрохимической ячейке. Значение проводимости () составило 8,210-3 Сим/см.

Пример 2. Навески 0,25 г ОУМ и 0,25 г МППГ (1:1), предварительно осушенные над Р2O5 до содержания влаги 0,062 маc.%, вносили в колбу и перемешивали в атмосфере осушенного аргона до полного выравнивания концентраций компонентов по всему объему, после чего также в атмосфере осушенного аргона вводили 4,05 г жидкого электролита (как в примере 1). Композиция содержит 11 мас.% полимерной основы: ОУМ+МППГ, ОУМ:МППГ=1:1. К полученной композиции добавляли 0,01 г фотоинициатора (ДИПАФ), что составляет 2 мас.% от суммарного количества ОУМ+МППГ, тщательно перемешивали, наносили на пуансон из нержавеющей стали и облучали лампой ДРШ-1000 в течение 2 мин. Полученный образец твердого электролита помещали в электрохимическую ячейку и измеряли электрохимический импеданс образца, по значению которого определяли проводимость твердого полимерного электролита, которая составила 8,210-3 Сим/см. Значение деформации образца при нагрузке Р=25 г составило 0,34 мм.

Пример 3. Как пример 2, но концентрация полимерной основы составляла 12 мас.%. Проводимость твердого полимерного электролита составила 8,210-3 Сим/см, а значение деформации образца при нагрузке Р=25 г составило 0,32 мм.

Пример 4. Как пример 2, но концентрация полимерной основы составляла 15 мас.%. Проводимость твердого полимерного электролита составила 8,210-3 Сим/см, а значение деформации образца при нагрузке Р=25 г составило 0,30 мм.

Пример 5. Как пример 2, но концентрация полимерной основы составляла 17 мас.%. Проводимость твердого полимерного электролита составила 7,910-3 Сим/см, а значение деформации образца при нагрузке Р=25 г составило 0,26 мм.

Пример 6. Как пример 2, но концентрация полимерной основы составляла 18 маc.%. Проводимость твердого полимерного электролита составила 4,010-3 Сим/см, а значение деформации образца при нагрузке Р=25 г составило 0,25 мм.

Пример 7. Как пример 4, но концентрация раствора литиевой соли LiPF6 составляла 1,5 М. Проводимость твердого полимерного электролита составила 8,210-3 Сим/см, а значение деформации образца при нагрузке Р=25 г составило 0,30 мм.

Пример 8. Как пример 4, но в качестве жидкого электролита использовали 1 М раствор перхлората лития в -бутиролактоне. Проводимость твердого полимерного электролита составила 8,210-3 Сим/см, а значение деформации образца при нагрузке Р=25 г составило 0,31 мм.

Пример 9. Как пример 8, но в качестве жидкого электролита использовали 1,5 М раствор LiClO4 в -бутиролактоне. Проводимость твердого полимерного электролита составила 8,210-3 Сим/см, а значение деформации образца при нагрузке Р=25 г составило 0,30 мм.

Пример 10. Как пример 9, но исходная смесь была отлита на полипропиленовый сепаратор и облучалась в течение 5 мин с обеих сторон сепаратора. Полученная проводимость составила 4,110-4 Сим/см.

Из приведенных примеров и чертежа следует, что в интервале концентраций 12-17 мас.% полимерной основы проводимость полученных твердых электролитов практически постоянна и остается близкой к проводимости жидкого электролита (пример 1), а прочность пленок меняется незначительно, сохраняя уровень, достаточный для эксплуатации в электрохимических устройствах. Дальнейшее увеличение концентрации полимерной основы сопровождается увеличением прочности пленок, однако, при этом резко падает проводимость изделий. При использовании концентраций полимерной основы ниже 12 мас.% (пример 2) проводимость пленок остается близкой к проводимости жидкого электролита, но резко снижаются эксплуатационные характеристики изделий.

Предложенная композиция позволяет получать твердые электролиты с достаточно высокой прочностью. Предложенный способ отверждения жидкой полимеризационноспособной композиции обеспечивает получение твердых электролитов с повышенной прочностью и при этом позволяет существенно упростить производственный процесс, сократить продолжительность процесса получения изделия, снизить трудо- и энергозатраты, что уменьшит стоимость твердых электролитов.

Формула изобретения

1. Жидкая полимеризационноспособная композиция для получения твердых электролитов, включающая реакционноспособное соединение и неводный раствор литиевой соли, отличающаяся тем, что она содержит 1,0-1,5 М неводный раствор литиевой соли, в качестве реакционноспособного соединения содержит олигоуретанметакрилат и дополнительно содержит монометакрилат полипропиленгликоля, при этом суммарное количество олигоуретанметакрилата и монометакрилата полипропиленгликоля в неводном растворе литиевой соли составляет 12-17 мас.%, а их массовое соотношение равно 1:1-1,1.

2. Композиция по п.1, отличающаяся тем, что она содержит 1,0-1,5 М раствор перхлората лития в -бутиролактоне.

3. Композиция по п.1, отличающаяся тем, что она содержит 1,0-1,5 М раствор шестифтористого фосфата лития в смеси этиленкарбоната и диметилкарбоната.

4. Композиция по любому из пп.1-3, отличающаяся тем, что она содержит олигоуретанметакрилат с молекулярной массой 1400-1600.

5. Способ отверждения композиции, включающий добавление в композицию инициатора полимеризации, отличающийся тем, что в композицию по любому из пп.1-4 добавляют фотоинициатор полимиризации в количестве 1,9-2,1 мас.% на суммарное количество олигоуретанметакрилата и монометакрилата полипропиленгликоля и отверждение проводят под действием УФ-облучения в течение времени не менее 2 мин.

6. Способ по п.5, отличающийся тем, что УФ-облучение проводят в течение 2-2,5 мин.

РИСУНКИ

Рисунок 1