Способ снижения вибрации электродвигателя
Реферат
Изобретение относится к силовой полупроводниковой технике и может быть использовано для регулирования скорости асинхронных и синхронных двигателей с помощью инверторов напряжения или тока. Техническим результатом является снижение вибрационного ускорения электродвигателя. В способе снижения вибрации электродвигателя, управляемого выходным напряжением 3n-фазного напряжения инвертора, на входы инвертора подают управляющие сигналы трапецеидальной формы с положительными и отрицательными полуволнами. На восходящий линейный участок трапеции приходится 30 полуволны, на участок постоянного напряжения - 120 и на нисходящий линейный участок - 30. Широтно-импульсную модуляцию осуществляют на восходящих и нисходящих линейных участках. В результате среднее значение разности потенциалов между фазами на выходе инвертора изменяется по закону трапеции с 60-ными восходящей частью линейного напряжения, частью постоянного напряжения и нисходящей частью линейного напряжения, что обеспечивает снижение высших гармонических составляющих в напряжении питания электродвигателя, подключение на выходе инвертора фильтра низкой частоты без опасных резонансных увеличений силового тока и уменьшение трудозатрат при предварительных расчетах вибрационных характеристик электродвигателя. 5 ил., 2 табл.
Область техники Предлагаемое изобретение относится к силовой полупроводниковой технике, в частности инверторам тока или напряжения, предназначенным для регулирования скорости асинхронных и синхронных двигателей. Уровень техники Управление двигателями осуществляется двухполупериодным напряжением питания. Наиболее просто реализовать напряжение питания в виде прямоугольных двуполярных импульсов. Наиболее сложно - в виде синусоиды. Правильную синусоидальную форму обеспечить фактически невозможно, поэтому практически используют форму напряжения питания, приближенную к синусоиде. Устройство, формирующее напряжение питания двигателей, называется инвертором. Инверторы обычно реализуются на полупроводниковых приборах, например транзисторах. Транзисторы используются в режиме скачкообразного изменения их сопротивления, поэтому выходное напряжение инвертора имеет крутые фронты. При разложении в ряд Фурье выходного напряжения с вертикальными фронтами будет иметь место полный натуральный ряд нечетных высших гармонических составляющих, кроме основной, или тот же ряд, за исключением гармоник, кратных трем [1]. Амплитуды составляющих ряда Фурье обратно пропорциональны порядку (номеру) гармонических составляющих. Его сумма обратно пропорциональна количеству гармонических составляющих. Если фронты выходного напряжения будут реализованы в виде линейной функции, то количество гармонических составляющих, входящих в разложение Фурье линейной функции и оказывающих существенное влияние на выходное напряжение, будет значительно меньше, т.к. величина этой суммы ряда будет обратно пропорциональна квадрату порядка (номера) гармонических составляющих. Если выходное напряжение инвертора содержит n гармоник, то в питаемом двигателе создается n2 крутящих и вибрационных моментов, в том числе: один -основной полезный, (n-1) - двигательных моментов и (n2-n)-вибрационных моментов [2]. Вибрационные моменты не зависят от момента нагрузки и могут быть значительными по величине: (15-20)% от основного момента. Среди (n2-n) вибрационных моментов наибольшими являются моменты, образованные током высших гармонических составляющих и ЭДС основной гармоники. Виброускорение, создаваемое вибрационными моментами, зависит от моментов инерции статора и ротора двигателя и наряду с повышенным износом подшипников обмотки создает структурный шум, легко распространяемый по металлу и воде. Поэтому в отдельных случаях возникает проблема убрать этот шум. Известен метод устранения высших гармонических составляющих напряжения прямоугольной формы, основанный на введении “просечек” через углы коммутации 1, 1, 2,… m на интервале m< /2 прямоугольной полуволны [3]. Количество вводимых углов m равно количеству исключаемых гармоник. Нахождение углов производится путем решения уравнения Для исключения m гармоник необходимо составить m трансцедентных уравнений с m+1 неизвестными и решить эту систему (как правило, машинным способом и методом итераций), задав предварительно погрешность при минимизации функции. Например, если система управления должна выдать 8 пар просечек в силовом напряжении с большой точностью - до 4-го знака после запятой (а для частоты 50 Гц 1 - это 55,5 мкс, то есть четвертый знак требует интервала 55,5 10-4 мкс), то в систему управления надо ввести тактовый генератор с очень высокой частотой, около 180 МГц. Практически это неосуществимо, так как сигнал с такой частотой “течет” мимо провода по емкостным связям, что порождает межканальную помеху и сбой в работе системы управления, а значит отказ инвертора. Этот недостаток предлагают устранить японские ученые [4]. Они предлагают ввести комбинированный способ подавления гармонических составляющих, взятый авторами за прототип: a) произвести исключение методом введения “просечек” нескольких пар больших гармоник (например, 5, 7, 11, 13); b) оставшиеся высшие гармоники подавить методом широтно-импульсной модуляции (ШИМ): на имеющуюся кривую сигнала наложить модулирующие импульсы треугольной формы, которые в сочетании с регулирующим постоянным напряжением позволят сузить или расширить длительность импульсов ШИМ. Таким образом, можно обеспечить форму выходного напряжения, значительно приближенную к синусоиде. В статье [4] приводится рисунок спектра выходного напряжения и трактуются достоинства предложенного способа: достаточно глубокое подавление гармонических составляющих (вплоть до 39) и возможность регулирования выходного напряжения. Недостатками этого метода, по мнению авторов настоящего изобретения, являются: 1) недостаточное подавление высших гармоник, так как уровень 39 составляет около 20% основного сигнала, а на этой частоте сталь двигателя “шумит”, поэтому возникает необходимость в фильтре низкой частоты (ФНЧ); 2) изменение гармонического состава в процессе регулирования на выходе инвертора: появляются гармоники, кратные 3-м, например 21-я - до 20%; 3) ФНЧ принципиально не применим, так как при резонансе, например, на 23-й гармонике при средней добротности 8 26% превратятся в 200%, а резонансные токи могут вызвать срабатывание максимальной токовой защиты. Сущность изобретения Целью настоящего изобретения является снижение вибрационного ускорения электродвигателя, управляемого 3n-фазным инвертором, допускающим подключение фильтра низкой частоты (ФНЧ) без опасных резонансных увеличений силового тока, а также уменьшение трудозатрат при предварительных расчетах вибрационных характеристик. В основу предлагаемого способа положена форма напряжения питания электродвигателей в виде двухполупериодной волны, близкой к синусоиде -трапеция, и использование метода двуполярной широтно-импульсной модуляции (ДШИМ) для управления быстродействующими полупроводниками инвертора. Снижение вибрационного ускорения электродвигателя, управляемого выходным напряжением с 3n-фазного инвертора, заключается в формировании напряжения питания трапецеидальной формы с наложением широтно-импульсной модуляции для снижения уровня высших гармонических составляющих. Это достигается тем, что на входы инвертора (а именно на базы быстродействующих транзисторов инвертора) подают управляющие сигналы трапецеидальной формы с положительными и отрицательными полуволнами, причем на восходящий линейный участок приходится 30 полуволны, на постоянный участок - 120 и на нисходящий линейный участок - 30 . Кроме того, широтно-импульсная модуляция применяется только на 30 -ных восходящих и нисходящих линейных участках. Эти меры приводят к тому, что среднее значение разности потенциалов между фазами на выходе инвертора изменяется по закону трапеции с 60 -ной восходящей частью линейного напряжения, 60 -ной частью постоянного напряжения и 60 -ной нисходящей частью линейного напряжения. Таким образом достигается желаемая цель: 1) Высшие гармонические составляющие убывают обратно пропорционально квадрату номера (порядка), т.е. V51/25; V71/49... Vi 1/(i)2. 2) Низкие уровни гармонических составляющих позволяют применить фильтр низкой частоты (ФНЧ) без увеличения токов до недопустимых значений по шуму уровней или аварийных значений. 3) Расчет гармонических составляющих упрощается: нет необходимости в решении большой системы трансцендентных уравнений на ЭВМ и в применении метода итераций. Для расчетов достаточно использовать калькулятор, имеющий в арсенале операции сложения, вычитания, нахождения значений тригонометрических функций (cos ). Перечень фигур графического изображения Фиг.1 - структурная схема управления электродвигателя 3-х фазным инвертором. Фиг.2 - эпюры напряжений в средних точках инвертора и линейных напряжений на выходе инвертора. Фиг.3 - график напряжения питания электродвигателя с выхода инвертора. Фиг.4 - график напряжения питания электродвигателя после ФНЧ. Фиг.5 - функциональная схема управления электродвигателя. Сведения, подтверждающие возможность осуществления изобретения На фиг.1 показана упрощенная структурная схема трехфазного инвертора, где 1-6 - ключи, а точки А, В, С являются точками среднего потенциала по каждой фазе, с которых снимается линейное напряжение для питания двигателя D. На фиг.2 показана гладкая составляющая фазного и линейного напряжения. Смещение фазы в точках А, В, С составляет 120 . Как видно из эпюры на фиг.2, разность гладких составляющих трапеций фазных напряжений 30 -120 -30 дает трапецию линейных напряжений 60 -60 -60 . Таким образом, линейное напряжение имеет форму, максимально приближенную к синусоиде, но имеющую линейные восходящий и нисходящий участки. Двухполярная широтно-импульсная модуляция применяется только на 30-градусных восходящих и нисходящих участках напряжения управления ключами инвертора. Эти участки разбиваются на m интервалов в зависимости от диапазона регулирования частоты (скорости двигателя). Так, для диапазона (21-3) Гц достаточно интервалов i по 3 . На фиг.3 показано наложение широтно-импульсной модуляции на линейные участки напряжения управления ключами инвертора. Для осуществления предложенного метода вводятся промежуточные углы пр, которые рассчитываются по формуле: пр=1,5 (1+аср/А) - для интервала в 3 , пр=1 (1+аср/А) - для интервала в 2 , пр=0,5 (1+аср/А) - для интервала в 1 , где ср - текущее среднее значение высоты трапеции в заданном интервале на возрастающем или снижающемся участках; А - амплитуда трапеции. На фиг.4 показан синусоидальный вид напряжения питания электродвигателя после сглаживания фильтром низкой частоты выходного напряжения с инвертора. На фиг.5 представлена функциональная схема устройства, реализующего заявляемый метод. Здесь цифровые обозначения соответствуют следующим функциональным узлам: 1 - регулятор постоянного напряжения; 2 - входной фильтр автономного инвертора; 3 - инвертор; 4 - фильтр низкой частоты; 5 - двигатель нагрузки; 6 - тактовый генератор; 7 - постоянное запоминающее устройство; 8 - усилитель импульсов управления. Интервалы по i градусов делятся системой управления на такты шириной, разрешаемой периодом (частотой) тактового генератора 6, управляющего счетчиками постоянного запоминающего устройства 7, которое циклически опрашивается тактовым генератором основной частоты и выдает на вход усилителя импульсов управления 8 транзисторами инвертора 3 импульсы в требуемом порядке и форме. Фильтр низкой частоты 4 служит для сглаживания импульсов широтно-импульсной модуляции до синусоидальной формы. Как правило, в качестве ФНЧ применяется индуктивно-емкостной Г-образный фильтр. Практическая реализация функциональной схемы фиг.5 осуществляется на реальных покупных изделиях: силовых модулях транзисторов фирмы Semikron и микропроцессорных и обычных микросхемах серии 564 отечественного производства. Потенциал в точках А, В, С (фиг.1) - зеркальное отображение импульсов, посылаемых на ключи каналов инвертора 3 (фиг.5). Очередность включения ключей в ходе ШИМ следует через 180 , при этом, чтобы не было сквозной проводимости, в системе управления должна быть предусмотрена задержка начал или окончаний импульсов, которая на графике фиг.3 не показана из-за малости. Кроме того, в реальных схемах предусмотрена защита посредством специального устройства - драйвера, блокирующего одновременность проводимости каналов, сдвинутых на 180 . Для подтверждения технического результата были проведены испытания электродвигателя мощностью 12,5 кВт, управляемого известным инвертором напряжения типа И-ПТКТ-63-220-20. В таблице 1 приведена зависимость превышения виброускорений над нормативными значениями в децибелах в зависимости от уровня гармонических составляющих без подавления предложенным способом. В таблице 2 приведены результаты измерения виброускорений того же двигателя мощностью 12,5 кВт, в котором реализован предлагаемый закон формирования выходного напряжения, а на выходе силовой схемы установлен ФНЧ для подавления гармоник более высокого порядка, в том числе и ШИМ. Вывод: Использование предложенного способа снижения вибрационного ускорения позволяет снизить его значение на большинстве гармоник до нормативных, а на отдельных гармониках (в данном примере это 11-я и 17-я) позволяет опустить ниже нормативных. Таким образом, предлагаемый способ снижения вибрации электродвигателя, управляемого 3n-фазным инвертором, позволяет снизить вибрационное ускорение устранением высших гармонических составляющих в напряжении питания электродвигателя. При этом обеспечивается возможность подключения на выходе инвертора фильтра низкой частоты без опасных резонансных увеличений силового тока, а также уменьшаются трудозатраты при предварительных расчетах вибрационных характеристик. ЛИТЕРАТУРА 1. Бедфорд, Р Хофт. Теория автономных инверторов. М.: Энергия, 1969. 2. Largiader Hans. Gesichtspunkte fur die Bemessung umrichtergespeister Asynchronmotoren fur die Traktion. “Brown Bower Mitt." 1970, 57,4, 152-167 (нем). 3. Hasmukh S Patel und Richard G Hoft/ Generalited Techniques of Harmonic Elimination and Voltage Control in Thyristor - Inverters. Part I - Harmonic Elimination IEEE Trans. on Appl. 1973, №3, 310-317. (РЖЭ 1973, 8И583 и 4И491, ред. А.И.Толкачев). 4. Mohamad Kuduer, Isobe Ehoji, Shinohara Uochiduki, Mazusujima Toshiharu. A composing pulse with modulation method to reduce the harmonics in voltage inverters. Япония (англ.). Реферат “силовая преобразовательная техника” Вып. С-В Том А, 1983. База данных ВИНИТИ РГ 45.37.31 0084375.Формула изобретения
Способ снижения вибрации электродвигателя, управляемого выходным напряжением с 3n-фазного инвертора, заключающийся в исключении высших гармонических составляющих в выходном напряжении 3n-фазного инвертора методом широтно-импульсной модуляции, отличающийся тем, что на входы 3n-фазного инвертора подают управляющие сигналы трапецеидальной формы с положительными и отрицательными полуволнами, причем на восходящий линейный участок трапеции приходится 30 полуволны, на участок постоянного напряжения - 120 и на нисходящий линейный участок - 30, кроме того, широтно-импульсная модуляция применяется только на восходящих и нисходящих линейных участках.РИСУНКИ
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5