Гибкая колесная шина, не являющаяся пневматической

Реферат

 

Изобретение относится к транспортным средствам. Шина состоит из пластинчатых элементов, содержащих пакет гибких пластин, уложенных друг на друга и разделенных слоем резины, сцепляющимся с этими пластинами. В результате повышается надежность шины при ее способности нести значительную нагрузку. 5 н. и 29 з.п. ф-лы, 11 ил.

Изобретение касается колес транспортного средства любого типа, а именно колесных шин, которые могут нести нагрузку без создания внутри них давления накачивания, и называемых шинами, не являющимися пневматическими.

Известно, что резиновая пневматическая шина, накачанная воздухом до эксплуатационного давления, представляет собой наиболее часто используемый тип колесной шины, поскольку ее свойства позволяют обеспечить необходимый уровень комфорта при движении транспортного средства, высокую устойчивость и надежность в эксплуатации.

Такие пневматические шины адаптированы для различных случаев применения, например на легковых автомобилях, на колесных дорожно-строительных машинах, на самолетах, на мотоциклах, на колесных сельскохозяйственных машинах, на тяжелых транспортных средствах большой грузоподъемности и т.п. Используемое в каждом конкретном случае давление накачивания пневматической шины позволяет нести соответствующую нагрузку и распределять ее на грунт.

Хотя надежность пневматических шин в настоящее время является весьма высокой, известно, однако, что опасность прокола при эксплуатации не может быть полностью устранена. Проблема состоит в том, что в случае потери давления накачивания такой шины или даже в случае существенного снижения давления, пневматическая шина оказывается уже не в состоянии удовлетворительно выполнять свою функцию.

Следствием этого является множество технических решений, относящихся к конструкции колесной шины, не являющейся пневматической (см., например, патент US 5050656), цель которого состояла в устранении основной причины повреждения пневматических шин, то есть ее прокола, но который не получил широкого распространения вследствие отсутствия достаточно высокого уровня комфорта и/или стойкости и/или способности нести значительные нагрузки.

Многочисленные предложения направлены на то, чтобы обычные пневматические шины как можно дольше имели способность к качению при отсутствии внутреннего давления накачивания, как об этом сказано, например, в патенте US 5535800.

Однако упомянутое выше решение имеет недостаток, который заключается в сложности и даже невозможности определения размерных параметров пневматической шины, боковины которой остаются гибкими и способны выдерживать без повреждений резкий подъем пневматической шины на бордюрный камень тротуара.

Элементы подкрепления, встроенные в упомянутые боковины в случае очень сильного внешнего механического воздействия, могут быть выгнутыми в точке, которая связывает их наружный в радиальном направлении конец с внутренним в радиальном направлении основанием. В этом случае, если подкрепляющие элементы оказываються сжатыми в локальной области в достаточной степени таким образом, что достигаются весьма малые радиусы кривизны, будет превышен предел прочности на разрыв или предел упругости в зависимости от используемых материалов.

Таким образом, предложенное решение не обеспечивает достаточной безопасности, поскольку велика вероятность того, что шина будет разрушена (или, что еще хуже, локально повреждена в плохо обнаруживаемом месте) в результате предельных, но не являющихся необычными в эксплуатации, внешних воздействий (например, удар о бордюрный камень тротуара). Обычная пневматическая шина, даже сильно спущенная, лучше выдерживает такие воздействия, благодаря своим весьма гибким боковинам, которые не способны самостоятельно нести нагрузку.

Сегодняшнее состояние техники показывает для колесной шины, не являющейся пневматической, что проблема, возникающая при повреждении пневматических шин, оказывается предельно трудной для решения.

Кроме того, даже не затрагивая проблему повреждения, пневматическая шина, конструкция которой разработана в настоящее время, обладает и другими недостатками, которые давно уже стали привычными.

Можно напомнить, что борт пневматической шины спроектирован таким образом, чтобы можно было монтировать эту шину на обод и демонтировать ее с этого обода, обеспечивая при этом возможность передачи эксплуатационных усилий между пневматической шиной и ее ободом при помощи достаточного обжатия пневматической шина на ободе. Это требует достаточно сложной и точной разборки и сборки, что приводит к довольно массивной и жесткой конструкции.

С точки зрения пользователя, осуществляющего эксплуатацию автомобиля, имеется определенный перерасход материала, поскольку использование некоторой его части объясняется только необходимостью обеспечения возможности монтажа и демонтажа пневматической шины.

Известно, что достижение компромисса между приемлемым уровнем комфорта (который является тем более высоким, чем более гибкими выполнены боковины пневматической шины) и характеристиками ее поведения на дороге (точное управление, которое требует повышения жесткости боковин пневматической шины и/или разработки все более низких профилей для пневматических шин легковых автомобилей) является весьма трудным делом.

Известно также, что существует ярко выраженная склонность пневматических шин легкового автомобиля изгибаться под передним колесом во внешнюю сторону поворота при наличии значительного поперечного ускорения. В этом случае пневматическая шина работает достаточно плохо, т.к. беговая дорожка протектора слишком сильно уходит внутрь поворота, что приводит к опоре на дорогу боковой частью или скулой пневматической шины.

Задачей настоящего изобретения является разработка колесной шины, которую действительно можно использовать без давления накачки и которая будет способна, аналогично пневматической шине, нести значительную нагрузку при обеспечении удовлетворительного уровня комфорта. Речь идет о том, чтобы предложить техническое решение, представляющее собой альтернативу пневматической шине. При этом речь не идет о том, чтобы просто придать обычной пневматической шине временную способность катиться в спущенном состоянии.

В соответствии с данным изобретением предлагается гибкая колесная шина, имеющая ось вращения и содержащая беговую дорожку, которая размещена на гибкой несущей конструкции, располагающейся в радиальном направлении изнутри от беговой дорожки и ограничивающей по меньшей мере частично внутреннюю полость в форме тела вращения, причем несущая конструкция содержит зону фиксации, расположенную в радиальном направлении со стороны оси вращения и предназначенную для закрепления несущей конструкции на средстве связи со ступицей колеса, причем зона фиксации расположена в осевом направлении между боковыми границами несущей конструкции и предназначена для вхождения в контакт со средствами связи со ступицей колеса, причем средства связи со ступицей колеса образуют жесткую конструкцию;

множество опорных элементов, проходящих в поперечном направлении и расположенных между зоной фиксации и беговой дорожкой, причем опорные элементы расположены рядом друг с другом в окружном направлении и все распределены на окружности, закреплены в зоне фиксации и каждый опорный элемент содержит набор уложенных друг на друга гибких базовых деталей, отделенных друг от друга слоем эластомерного материала, сцепляющегося с каждой из базовых деталей, таким образом, чтобы сформировать балку, способную воспринимать изгибающие усилия;

структуру взаимных соединений между опорными элементами, выполненную таким образом, что часть радиального нагружения одного опорного элемента передается на примыкающие к нему в окружном направлении другие опорные элементы, допуская различия в перемещениях между смежными опорными элементами.

В предложенной конструкции колесной шины способность нести нагрузку обеспечивается опорными элементами. Распределенные в окружном направлении опорные элементы включаются в работу последовательно для того, чтобы обеспечить распределение восприятия внешней нагрузки в случае, когда колесная шина катится. В предпочтительном варианте реализации несколько опорных элементов одновременно функционируют на поверхности контакта. Опорные элементы ориентированы в поперечном направлении и испытывают деформацию в основном на изгиб, чтобы внести свой вклад в восприятие нагрузки (так называемых Z-образных усилий). Здесь используется понятие деформации на изгиб, но в последующем изложении станет понятно, что это воздействие не является исключительным среди других видов воздействий.

Что касается конструкции каждого опорного элемента, то ниже будет показано, что опорные элементы содержат набор гибких базовых деталей, имеющих вид ленты, уложенных друг на друга в радиальном направлении и отделенных друг от друга слоем эластомерного материала, сцепляющегося с каждой из базовых деталей.

Сформированная из этих опорных элементов балка способна воспринимать изгибающие усилия в радиальной плоскости. Однако этот аспект конструкции опорных элементов не является ограничительным, в частности, если заметить, что опорные элементы должны также подвергаться другим видам деформаций, чтобы они деформировались все сразу идентичным образом и одновременно.

Средства связи со ступицей колеса должны представлять собой жесткую конструкцию, при этом суммарное отклонение между грунтом и осью вращения колеса является следствием деформации гибкой колесной шины в соответствии с предлагаемым изобретением, но не деформации обода, колеса или любого другого устройства, выполняющего роль средства связи со ступицей колеса, наподобие обычно используемых в настоящее время пневматических шин по отношению к колесам, на которых они установлены.

Предлагаемое изобретение будет пояснено более подробно ниже со ссылками на прилагаемые чертежи, на которых:

фиг.1 изображает радиальный разрез колесной шины в соответствии с первым вариантом реализации предлагаемого изобретения, имеющей беговую дорожку выпуклой формы, подобную беговым дорожкам протекторов пневматических шин, спроектированных для функционирования с возможностью использования значительных углов развала колес;

фиг.2 - вид части колесной шины, которая охвачена окружностью А, показанной на фиг. 1 согласно изобретению;

фиг.3 - вид колесной шины, деформированной до уровня некоторого промежуточного прогиба согласно изобретению;

фиг.4 - разрез по линии IV-IV на фиг.1 согласно изобретению;

фиг.5 - разрез по линии V-V на фиг.1 согласно изобретению;

фиг.6 - радиальный разрез колесной шины в соответствии со вторым вариантом реализации предлагаемого изобретения, имеющей беговую дорожку достаточно плоской формы, обычно используемой в пневматических шинах, спроектированных для функционирования при нулевых или весьма малых углах развала колес;

фиг.7 - колесную шину, показанную на фиг.6, но деформированную до некоторого промежуточного уровня прогиба, согласно изобретению;

фиг.8 - радиальный разрез колесной шины в соответствии с третьим вариантом реализации предлагаемого изобретения, также имеющей беговую дорожку достаточно плоской формы, обычно используемую в пневматических шинах, спроектированных для функционирования при нулевых или весьма малых углах развала колес;

фиг.9 - радиальный разрез колесной шины, показанной на фиг.8, но смонтированной на ободе другого типа, согласно изобретению;

фиг.10 - конструкцию колесной шины в соответствии с вторым или с третьим вариантами реализации предлагаемого изобретения, без нагрузки и при отсутствии внешних воздействий;

фиг.11 - деформацию под нагрузкой конструкции колесной шины в соответствии с вторым или с третьим вариантами реализации предлагаемого изобретения.

На фиг.1 показана колесная шина, содержащая беговую дорожку 11, профиль которой в целом имеет выпуклую форму. Стенка колесной шины содержит две части, называемые первой и второй частями 11I и 11Е конструкции.

Первая и вторая части конструкции установлены друг на друга в радиальном направлении и образуют две рессоры, действующие последовательно и располагающиеся соответственно изнутри в радиальном направлении и снаружи в радиальном направлении.

Отличительной особенностью первого варианта реализации колесной шины является псевдошарнир, разделяющий первую и вторую части 11I и 11Е конструкции и образующий зону наименьшей прочности на изгиб. Эта зона колесной шины вследствие своей конструкции не противодействует или противодействует в достаточно малой степени сгибанию, то есть относительному повороту концевых участков первой, внутренней в радиальном направлении, части конструкции и второй, наружной в радиальном направлении, части этой конструкции.

Концы первой и второй частей несущей конструкции располагаются по существу на боковых концах несущей конструкции. Опорные элементы представляют собой слоистые или пластинчатые элементы 12. Каждый опорный элемент первой части несущей конструкции проходит от одного бокового конца до другого бокового конца. Профиль наружной в радиальном направлении поверхности напоминает профиль мотоциклетных пневматических шин.

Пластинчатые элементы 12 способны воспринимать изгибающие моменты сил по существу в значительно большей мере, чем кордные нити, даже металлические, обычно используемые для подкрепления пневматических шин. Пластинчатые элементы 12 содержат пакет гибких пластин 13, уложенных друг на друга и отделенных одна от другой слоем 15 резины (фиг.2). В качестве эластомерного материала во всех рассмотренных примерах реализации изобретения предлагается использовать резину.

Восприятие нагрузки колесной шиной заставляет каждую пластину 13 работать на изгиб и заставляет резину каждого слоя 15 работать на сдвиг.

Толщина каждого слоя 15 резины (которая может быть переменной), толщина каждой пластины 13 (которая также может быть переменной), количество используемых пластин, модуль упругости материала, используемого для изготовления пластин, модуль упругости используемого эластомерного материала и расположение пластин позволяют регулировать свойства и характеристики колесной шины, что означает соответствующую корректировку кривой, характеризующей зависимость усилия, обеспечивающего способность данной колесной шины нести нагрузку, от ее сплющивания или деформации и обозначаемой обычно выражением “кривая нагрузка-прогиб”.

Пластины образованы, например, в основном матрицей из термоотверждаемой или термопластической смолы, подкрепленной волокнами, располагающимися в продольном направлении в каждой пластине, то есть параллельно меридиональной плоскости колесной шины (или плоскости, содержащей ось этой колесной шины).

Использование стекловолокна дает хорошие результаты. Однако могут быть использованы и волокна другой природы в соответствии с теми преимуществами, которые могут быть обеспечены их характеристиками. Могут также быть рассмотрены различные варианты реализации пластин. Например, на фиг.2 показано, что каждая пластина может быть образована уложенными друг на друга лентами 14, склеенными между собой.

Ленты могут быть склеены, например, непосредственно по месту, то есть прямо в колесной шине в процессе ее изготовления. В этом состоит одно из многих технических решений, предназначенных для реализации пластин без предварительного нагружения или с минимальным предварительным нагруженном в том случае, когда они вставляются в колесную шину с требуемой кривизной, как это показано на фиг.1.

Преимущество, которое обеспечивается в результате использования тонких лент, состоит в том, что можно придавать лентам любой формы изготовления любую конечную форму, причем эта конечная форма представляет собой требуемую форму пластины. Можно склеить эти ленты между собой при помощи, например, тонкого слоя эластомерного материала. Или сделать это при помощи смолы, в этом случае пластины становятся более монолитными.

Таким образом, предлагаемое изобретение распространяется также и на способ изготовления гибкой колесной шины, имеющей ось вращения и содержащей несущую конструкцию, имеющую среднюю плоскость, перпендикулярную оси вращения и ограничивающую внутреннюю полость в форме тела вращения, причем несущая конструкция содержит множество опорных элементов, которые распределены вдоль окружности, каждый опорный элемент расположен в поперечном направлении и представляет собой пластинчатый элемент, содержащий пакет уложенных друг на друга в радиальном направлении гибких пластин.

В соответствии со способом наносят на разрушаемое основание элементы для формирования колесной шины. Способ содержит следующие этапы: подачу на основание отрезка ленты, изгибание этого отрезка ленты таким образом, чтобы он огибал упомянутое основание, закрепление концов отрезка ленты, повторение упомянутых выше этапов для получения требуемого пакета.

В соответствии с первым способом реализации изобретения в пластинчатом элементе 12 (фиг.1, 3), рассматривая длину пластин на криволинейной абсциссе и перемещаясь вдоль одной пластины в соответствии с направлением, проходящим от одного бокового края к другому боковому краю, длина каждой из пластин 13 уменьшается при перемещении по толщине пластинчатого элемента в направлении наружу от внутренней полости.

Используя такое расположение, можно подбирать гибкость колесной шины по величине изгибающего момента, который необходимо выдержать, и приспособить этот пакет к прогибу, который желательно обеспечить в конкретном случае.

В предпочтительном варианте реализации каждый пластинчатый элемент по меньшей мере в наружной в радиальном направлении части несущей конструкции является симметричным и центрированным в осевом направлении.

Следует отметить, что в предпочтительном варианте реализации зона 110 фиксации является моноблочной. Под этим следует понимать, что часть, предназначенная для фиксации на ободе (или на используемых средствах связи со ступицей колеса), не имеет пластинчатой структуры. Эта часть содержит только одну матрицу из смолы и подкрепляющие волокна, которые в предпочтительном варианте реализации изготовлены из тех же составляющих материалов, что и пластины, и не содержит резины. Зона фиксации обеспечивает закрепление опорных элементов.

После описания основных аспектов конструкции предлагаемой колесной шины, проиллюстрированных на видах в меридиональном сечении, ниже будут рассмотрены основные аспекты строения шины в окружном разрезе со ссылками на фиг.4 и 5.

Также в соответствии с предпочтительным вариантом реализации, в пластинчатом элементе что ширина “1” представляет собой размер пластин. При перемещении вдоль одной пластины в окружном направлении ширина 1 пластин является постоянной. В последующем изложении будет показано, что этот аспект, как и многие другие описанные здесь аспекты, справедлив также и для других способов реализации предлагаемого изобретения.

Более простым является изготовление пластин только одинаковой ширины. Поскольку ширина 1 пластин 13 является постоянной, пространство между пластинчатыми элементами 12 меньше во внутренней в радиальном направлении части 11I несущей конструкции, чем в наружной в радиальном направлении части этой несущей конструкции 11Е.

В предпочтительном варианте реализации, ширина 1s опорных элементов (рассматриваемых в окружном направлении) такова, что количество опорных элементов в любой окружности составляет по меньшей мере 80 (фиг.10 и 11). Это делает данную колесную шину достаточно однородной, хотя реализованная несущая конструкция не может рассматриваться как вполне однородная в окружном направлении, например, при ее моделировании. Такая несущая конструкция в соответствии с обычно используемой терминологией обладает так называемой циклической симметрией.

Чтобы в еще большей степени повысить однородность, можно увеличить количество опорных элементов и уменьшить соответствующим образом их ширину 1s в окружном направлении. Колесная шина в соответствии с предлагаемым изобретением в этом случае предпочтительно становится такой, что в предположении, что ширина 1s представляет собой размер опорных элементов при перемещении в окружном направлении, эта ширина 1s такова, что количество опорных элементов, расположенных по всей окружности, составляет по меньшей мере примерно 200 штук.

В наружной в радиальном направлении части несущей конструкции окружные подкрепляющие элементы размещены по меньшей мере под беговой дорожкой. Подкрепляющие элементы представляют собой, например, окружные нити 16, которые показаны на фиг.1 и 4. Эти нити обеспечивают стабильность размеров колесной шины при воздействиях центробежных сил. Кроме того, окружные нити 16 способствуют распределению нагрузки от одного опорного элемента (пластинчатый элемент 12) на один или несколько располагающихся рядом с ним опорных элементов.

В случае, когда один опорный элемент поднимается на узко локализованное препятствие, этот опорный элемент будет иметь тенденцию отклониться или изогнуться, поскольку нагрузка оказывается приложенной только к одному этому пластинчатому элементу вместо того, чтобы быть распределенной на несколько таких пластинчатых элементов. Как только один пластинчатый элемент, испытывающий избыточную нагрузку, прогибается больше, чем соседние с ним элементы, упомянутые окружные нити 16 подтягивают эти соседние опорные элементы, передавая им часть нагрузки. Этот процесс сопровождается определенным изгибом опорных элементов.

Конструкция опорных элементов такова, что она обеспечивает им возможность изгибаться в определенной степени. Предложенная реализация из пластинчатых элементов 12, содержащих базовые детали (здесь пластины 13), уложенные друг на друга в радиальном направлении и отделенные один от другого слоем резины 15, позволяет обеспечить желаемую степень изгиба. Однако возможны и другие варианты реализации.

Предлагаемая колесная шина способна преодолеть или “поглотить” узко локализованное препятствие типа камня на дороге. Кроме того, окружные нити 16 способствуют переходу момента сил, распределяя возникающее внешнее воздействие на совокупность пластинчатых элементов 12 по всей окружности колесной шины.

В дополнение к указанному выше предложенная конструкция содержит также резиновую матрицу 165 (фиг.4), разделяющую пластины в окружном направлении. Следует отметить, что конструкция может содержать только резину, обеспечивающую связь между опорными элементами, например для применения предлагаемого изобретения к колесным шинам, подвергающимся умеренным внешним воздействиям.

В описанном здесь примере реализации резина полностью заполняет пространство между двумя смежными пластинчатыми элементами. В то же время, слой резины полностью покрывает конструктивные подкрепляющие элементы колесной шины, создавая таким образом сплошной наружный слой по аналогии с обычно используемыми пневматическими шинами.

Разумеется, могут быть разработаны и другие варианты, например без резины или с меньшим количеством резины с внутренней в радиальном направлении стороны окружных нитей 16. Это полезно для достижения возможно меньшего уровня сопротивления поступательному движению колесной шины.

Термин “нить” используется в общем в достаточно обезличенном смысле, подразумевая при этом, что упомянутая нить имеет характеристики, достаточные для того, чтобы перенести часть радиального внешнего воздействия на смежные опорные элементы и обеспечить передачу нагрузки за пределы собственно поверхности контакта.

При этом можно использовать моноволоконные нити, многоволоконные нити, сборки типа кордных нитей или нити любой другой эквивалентной структуры, независимо от природы материалов, из которых изготовлены эти нити, их модулей упругости и любой обработки этих нитей, например обработки их поверхности, нанесения того или иного покрытия или предварительного проклеивания для повышения прочности сцепления этих нитей с резиной.

Под выражение “окружная ориентация” следует понимать ориентацию под углом в 0 по отношению к плоскости, перпендикулярной оси вращения основания колесной шины. На практике подкрепляющая конструкция шины может быть реализована путем наматывания нити с определенным шагом укладки, вследствие чего угол по существу не равен точно нулю градусов, но практически, по меньшей мере локально, слегка превышает ноль градусов, чтобы обеспечить возможность охвата всей желаемой ширины.

Пластинчатые элементы могут быть соединены между собой при помощи пластин, подобных пластинам 13 каждого пакета. Могут быть реализованы также и другие формы взаимных связей.

Таким образом, пластинчатые элементы несут нагрузку, эти пластинчатые элементы не работают полностью изолированным образом по отношению друг к другу, но связаны между собой, чтобы обеспечить удовлетворительное функционирование всей конструкции, исключая слишком интенсивные сдвиги между двумя смежными пластинчатыми элементами, и таким образом, чтобы обеспечить однородность, то есть относительное постоянство свойств в любом окружном положении колесной шины по отношению к грунту.

Теперь можно вернуться к соединению между наружной в радиальном направлении частью 11Е несущей конструкции и внутренней в радиальном направлении частью 11I этой несущей конструкции, которое представляет собой своеобразный шарнир 17.

Радиальные и по существу нерастяжимые нити 170, залитые в матрицу из резины, перекрывают это соединение с его наружной стороны, чтобы надлежащим образом соединить внутреннюю в радиальном направлении часть несущей конструкции и наружную в радиальном направлении часть этой несущей конструкции (см. левую часть колесной шины на фиг.1). Радиальные нити 170 располагаются в зонах наименьшей прочности на изгиб и залиты в матрицу из резины.

В качестве варианта реализации (см. правую часть колесной шины на фиг.1) каждая радиальная нить располагается по отношению к опорным элементам со стороны внутренней полости на одной из частей несущей конструкции - нити 170а и 170с, и с наружной стороны на другой из частей несущей конструкции - нити 170б и 170д, причем одни из последовательно расположенных нитей на первой, внутренней в радиальном направлении, части несущей конструкции размещены на ее наружной части, а другие из упомянутых нитей размещены с внутренней стороны во внутренней полости, и предпочтительно чередуясь.

В соответствии с первым способом реализации пластинчатые элементы 12 имеют вид обычных пластинчатых рессор, но в отличие от этих рессор пластины приклеены одна к другой при помощи слоя резины. Внутренняя в радиальном направлении часть 11I и наружная в радиальном направлении часть 11Е несущей конструкции обладают в любой меридиональной плоскости квазисимметрией по одну и по другую стороны от виртуального или воображаемого цилиндра, проходящего через шарнирные соединения 17.

Наружная в радиальном направлении часть 11Е и внутренняя в радиальном направлении часть 11I несущей конструкции спроектированы таким образом, чтобы каждая из них воспринимала примерно половину изгиба, являющегося следствием воздействующей на колесную шину нагрузки, что является благоприятным фактором для стойкости и срока службы зоны, образующей шарнирное соединение, поскольку данный прогиб возможен без относительного движения осевых концов частей несущей конструкции.

В случае воздействия на колесную шину существенной избыточной нагрузки, что может произойти, например, при ударе колеса о бордюрный камень тротуара, наружная в радиальном направлении часть несущей конструкции шины естественным образом входит в упорный контакт с внутренней в радиальном направлении частью ее несущей конструкции. Это происходит гораздо раньше, чем пластинчатые элементы могли бы изогнуться так, чтобы была достигнута точка их разрушения. Именно поэтому колесная шина в соответствии с предлагаемым изобретением представляет собой весьма надежное техническое решение, обеспечивая удовлетворительную стойкость при наиболее суровых внешних воздействиях, которые могут возникнуть в процессе нормальной эксплуатации колесной шины на транспортном средстве типа автомобиля.

Колесная шина содержит пластинчатые элементы, располагающиеся по существу в радиальном направлении. Как и в обычной пневматической шине радиальной конструкции, упомянутые пластинчатые элементы немного отклоняются от радиального направления в процессе их прохождения через поверхность контакта шины с грунтом, что, в дополнение к прогибу, создает также воздействия, вызывающие их кручение.

Отклонением от радиального направления называют положение, когда подкрепляющие элементы, которые в нормальном состоянии ориентированы в радиальном направлении в боковинах шины (речь идет о кордных нитях каркаса для обычной радиальной пневматической шины и об опорных элементах для колесной шины в соответствии с предлагаемым изобретением) немного отклоняются от этой радиальной ориентации, причем максимум отклонения наблюдается для подкрепляющих элементов в положении против входа и выхода из поверхности контакта шины с грунтом.

Отклонение от радиального направления возможно в результате способности опорных элементов приспосабливаться к другим деформациям, отличным от простого изгиба в радиальной плоскости.

Что касается фиксации на средствах связи со ступицей колеса, предлагаемая колесная шина может закрепляться на диске колеса или на любом другом органе, обеспечивающем жесткую функциональную связь со ступицей. Система, образованная колесной шиной и собственно колесом, характеризуется поперечной жесткостью, достаточной для того, чтобы обеспечить возможность надежного управления автомобилем на поворотах.

Один или несколько окружных нерастяжимых подкрепляющих элементов, например жесткие обручи 18 для первого способа реализации предлагаемого изобретения, располагаются в зоне фиксации и способствуют надежному удержанию колесной шины на ободе в случае наличия поперечных усилий.

Во втором способе реализации колесной шины в соответствии с предлагаемым изобретением ее профиль в меридиональном сечении напоминает профиль пневматической шины, разработанной для функционирования при нулевой или очень малой величине угла развала колес, например пневматической шины, предназначенной для использования на легковых автомобилях.

Боковины 29 имеют закругленную форму и занимают большую часть радиальной высоты колесной шины. Несущая конструкция содержит пластинчатые элементы 22, представляющие собой пакеты гибких пластин 23, уложенных одна на другую и разделенных между собой слоями 25 резины, образующие опорные элементы.

Зона 210 фиксации расположена в центральной части внутренней в радиальном направлении стенки колесной шины. Опорные элементы, которые преодолевают зону 210 фиксации и образуют свесы по одну и по другую стороны от нее, жестко закреплены, как и в первом способе реализации в зоне фиксации.

Параметры определения размеров и параметры регулирования свойств колесной шины в соответствии со вторым способом реализации являются теми же, что и параметры, упомянутые выше, т.е. толщина каждого слоя 25, толщина каждой пластины 23, количество пластин, модуль упругости материала, используемого для изготовления этих пластин, модуль упругости используемого в данном случае эластомерного материала и расположение пластин.

Кроме того, строение пластин 23 аналогично приведенному выше для пластин 13. Колесная шина содержит также подкрепляющие элементы, ориентированные в окружном направлении (не показаны) и располагающиеся под беговой дорожкой.

Колесная шина содержит беговую дорожку 21, которая может быть слегка выпуклой в случае, когда она не подвергается воздействию нагрузки. Наружная в радиальном направлении часть несущей конструкции, то есть зона, содержащая беговую дорожку 21 и ближайшую к этой беговой дорожке 21 часть боковин 29, в очень малой степени способствует восприятию прогиба (в радиальном направлении) под действием нагрузки. Боковины 29 или внутренняя в радиальном направлении часть этих боковин, а также внутренняя в радиальном направлении стенка несущей конструкции представляют собой область, в основном отвечающую за прогиб под нагрузкой.

Внутренняя в радиальном направлении часть несущей конструкции, которая при отсутствии внешней нагрузки является по существу прямолинейной (фиг.6) и параллельной оси вращения, принимает в деформированном состоянии вид дуги, вогнутость которой ориентирована в направлении внутрь (фиг.7), что сопровождается небольшим относительным сближением ее боковых границ.

При таком способе деформации к каждой из боковых зон несущей конструкции под беговой дорожкой прикладывается момент сил, стремящийся перенести нагрузку в центральную зону беговой дорожки и, соответственно, разгрузить боковые части колесной шины, что позволяет обеспечить относительное постоянство давлений на грунт со стороны шины в зоне ее контакта с грунтом.

Как и в первом способе реализации, колесная шина фиксируется на диске колеса или на любом другом органе, обеспечивающем жесткую функциональную связь со ступицей колеса. Эта система обладает в средней зоне внутренней в радиальном направлении стенки несущей конструкции поперечной жесткостью, достаточной для того, чтобы обеспечить возможность управления автомобилем, в частности, на поворотах.

Имеется возможность регулировать свойства колесной шины, воздействуя на конструкцию средств связи со ступицей колеса, на которые установлена шина и которые называют ободом для удобства изложения.

Расширяя в большей или меньшей степени, предпочтительно симметричным образом, поверхность 291 опоры колесной шины на обод, можно отрегулировать радиальную гибкость колесной шины, отчасти наподобие давления накачивания пневматической шины, которое настраивают для пневматической шины одной и той же модели в зависимости от типа автомобиля, на который она устанавливается, в зависимости от конкретной колесной оси автомобиля и в зависимости от того, используется автомобиль пустым или с нагрузкой. В зависимости от конструкции используемого обода радиальная гибкость колесной шины, смонтированной на этом ободе, может быть различной.

Предлагаемое изобретение распространяется также на обод, предназначенный для использования с деформируемой колесной шиной, причем обод содержит средства монтажа, предназначенные для приема и закрепления зоны фиксации колесной шины, и содержит, по меньшей мере с одной стороны в осевом направлении (в предпочтительном варианте - с обеих сторон) посадочное место, проходящее по существу параллельно зоне фиксации колесной шины, в котором осевое положение наиболее наружной в осевом направлении точки 284, находящейся в контакте с колесной шиной, является регулируемым (фиг.7), отмечая при этом, что опорная поверхность находится в осевом направлении между границами, обозначенными точками 284, или точками 384 (фиг.9).

Таким образом, можно изменять величину поверхности 291 опорной колесной шины на обод. Вдоль всей опорной поверхности стенка шины не может перемещаться в радиальном направлении в сторону оси вращения, что изменяет функционирование колесной шины.

На фиг.8 и 9 схематически представлен третий способ реализации предлагаемого изобретения. Здесь также можно видеть беговую дорожку 31 и опорные элементы 32. Конструкция содержит окружные подкрепляющие элементы 36 в форме пластин. Зона фиксации расщепляется в окружном направлении (не показана) таким образом, что колесная шина содержит два утолщения в клиновидных участках 320 связи, которые могут быть смещены в осевом направлении друг относительно друга.

Каждый из клиновидных участков 320 связи предназначен для вхождения в контакт со средствами связи со ступицей колеса по опорной контактной поверх