Растворимые в воде фосфонооксиметиловые эфиры затрудненных спиртов или фенолов, фармацевтические композиции на их основе, способ анестезии и способ лечения опухолевых заболеваний
Реферат
Изобретение относится к новым растворимым в воде фосфонооксиметиловым эфирам затрудненных спиртов и фенолов. Описываются фосфонооксиметиловые эфиры формулы I:
где R-О- представляет собой остаток фармацевтического соединения, содержащего спирт или фенол, за исключением таксола и производных таксола, R1 является водородом или ионом щелочного металла, или протонированным амином, или протонированной аминокислотой, 2 является водородом или ионом щелочного металла, или протонированным амином, или протонированной аминокислотой, n является целым числом 1 или 2; m является целым числом и имеет значение по крайней мере 1; и их фармацевтически приемлемые соли. Также описываются промежуточные соединения и способы их получения, фармацевтическая композиция, обладающая анастезирующим действием, фармацевтическая композиция, обладающая противоопухолевой активностью, способ анастезии и способ лечения опухолевых заболеваний. Технический результат – настоящее изобретение обеспечивает растворимые в воде формы лекарств, содержащие спирт и фенол. 11 н. и 9 з.п. ф-лы, 4 ил.
Настоящее изобретение относится к новым растворимым в воде пролекарствам из фармацевтических препаратов, содержащим алифатические или ароматические затрудненные гидроксильные группы. В частности, настоящее изобретение касается новых растворимых в воде фосфонооксиметиловых эфиров фармацевтических препаратов, содержащих стерически-затрудненный спирт или фенол, таких как камптотецин, пропофол, этопозид, витамин Е и циклоспорин А. Настоящее изобретение также относится к промежуточным продуктам, используемым для получения конечных пролекарств, а также к фармацевтическим композициям, содержащим новые соединения.
Успешная доставка пациенту фармацевтического препарата является чрезвычайно важным при лечении заболеваний. Однако применение многих испытанных в клинике лекарств с известными свойствами ограничено из-за их очень низкой растворимости в воде. Поскольку указанные лекарства имеют низкую растворимость в воде, они должны быть введены в состав с сорастворимыми фармацевтическими наполнителями, включающими поверхностно-активные вещества. Указанные поверхностно-активные вещества, как было показано, приводят к побочным эффектам у человека, что ограничивает безопасность указанных лекарств в клинических условиях и их применение для лечения ряда заболеваний.
Например, камптотецин представляет собой натуральный продукт, выделенный из коры китайского дерева camptotheca, Camptotheca accuminata. Как было показано, он проявляет высокую противоопухолевую активность в опытах in vivo, проведенных на нескольких моделях животных, в отношении основных видов опухолей, таких как опухоли легкого, молочной железы, яичника, поджелудочной железы, толстой кишки и рака желудка, а также злокачественной меланомы. Камптотецин ингибирует клеточный фермент ДНК топоизомеразу I и вызывает каскад превращений, приводящих к апоптозу и программируемой смерти клетки. Топоизомераза I представляет собой жизненно важный фермент ядра клетки, ответственный за организацию и модулирование топологического строения ДНК, которое определяет способность клетки к воспроизведению, транскрибции и восстанавлению генетической информации.
Серьезным недостатком камптотецина является его крайне низкая растворимость в воде. Для того, чтобы провести биологические испытания, необходимо растворить соединение в сильном органическом растворителе (ДМСО) или изготовить лекарственный препарат в виде суспензии в Tween 80: физиологический раствор, что является нежелательным при терапевтическом лечении человека. Недавно в США были одобрены два аналога камптотецина со средней растворимостью в воде для лечения прогрессирующего рака яичников (Гикамтин, Hycamtin) и колоректального рака (Камптозар, Camptosar).
Другими лекарственными средствами, наподобие камптотецина, которые обладают теми же недостатками, являются циклоспорин A (CsA), пропофол, этопозид и Витамин Е (альфа-токоферол). Аналогично камптотецину, CsA имеет внутри своей структуры стерически затрудненный спирт, в данном случае им является вторичный спирт. CsA вводят в состав смеси Кремофор EL/этанол.
Примером стерически затрудненного, слабо растворимого в воде фенола, является пропофол, представляющий собой анестетик.
Пропофол готовят для внутривенного клинического использования in vivo в виде эмульсии масло/вода. Пропофол является не только слабо растворимым в воде, но он также вызывает боль в месте инъекции. Эту боль можно уменьшить, используя лидокаин. Из-за того, что пропофол используют в виде эмульсии, становится затруднительным и проблематичным введение в его состав других лекарственных средств, при этом изменение физических свойств состава, таких как увеличение размера капелек масла, может привести к эмболии легкого и т.д. Растворимое в воде и химически стабильное пролекарство из пропофола может обеспечить некоторые преимущества. Такой состав мог бы быть простым водным раствором, который можно было бы смешать с другими лекарственными средствами. Если пролекарство само по себе безболезненно, оно может быть более благоприятным для пациента, и наконец, не стало бы токсичности, обусловленной носителем. Другими трудно растворимыми в воде стерически затрудненными фонолами, представляющими собой противоопухолевые лекарства, являются этопозид и Витамин Е (альфа-токоферол).
Настоящее изобретение обеспечивает растворимые в воде формы лекарств, содержащие спирт или фенол, такие как камптотецин или пропофол. Что касается камптотецина, то соединения согласно настоящему изобретению представляют собой его фосфонооксиметиловые эфиры в виде свободной кислоты и их фармацевтически приемлемые соли. Растворимость в воде кислоты и солей облегчает приготовление фармацевтических составов. Все пролекарства согласно настоящему изобретению демонстрируют превосходящую растворимость в воде по сравнению с соответствующими исходными лекарствами. Методики, разработанные для соединений по настоящему изобретению, могут оказаться полезными для превращения и многих других нерастворимых в воде медицинских агентов, имеющих алифатические или ароматические затрудненные гидроксильные группы, в их растворимые в воде производные.
Описанное здесь изобретение включает новые композиции. Изобретение относится к растворимым в воде фосфонооксиметиловым производным фармацевтических препаратов, содержащим спирт и фенол, представленным общей формулой I:
Приведенная выше формула I представляет собой производное ROH, где ROH представляет собой лекарство, содержащее спирт или фенол, такое как камптотецин, пропофол, этопозид, витамин Е и циклоспорин А. В представленной выше формуле I, n представляет собой целое число 1 или 2. Когда n имеет значение 2, ROH представляет собой предпочтительно фенолсодержащий фармацевтический препарат, такой как пропофол. Также сюда могут быть включены некоторые лекарства, для которых невозможно приготовить формы для инъекции из-за свойственной им очень низкой растворимости в воде. К ним относятся даназол, метилтестостерон, иодхинол, атовакон (danazol, methyltestosterone, iodoquinol, atovaquone). R1 представляет собой водород или ион щелочного металла, включая натрий, калий или литий или протонированный амин или протонированную аминокислоту или другой фармацевтически приемлемый катион. R2 представляет собой водород или ион щелочного металла, включая натрий, калий или литий или протонированный амин или протонированную аминокислоту или другой фармацевтически приемлемый катион. После внутривенного или перорального введения производные формулы I вновь превращаются в исходные лекарства с помощью гидролиза и/или с помощью фосфотазы.
Соответственно задачей настоящего изобретения является разработка производных нерастворимых в воде лекарств, которые демонстрируют хорошую активность и растворимость в воде.
Другой задачей настоящего изобретения является разработка фармацевтических композиций на основе указанных растворимых в воде соединений, которые содержат определенное количество соединения формулы I и фармацевтически приемлемый носитель.
Кроме того, задачей настоящего изобретения является разработка производных лекарств, имеющих хорошую стабильность при уровнях рН, пригодных для изготовления фармацевтических составов, но быстро разрушающихся in vivo под действем физиологических условий, т.е. потенциально действующих как пролекарства.
Краткое описание чертежей
Фиг.1 иллюстрирует ферментативное превращение пролекарства из пропофола в пропофол in vitro.
Фиг.2 иллюстрирует изменение концентрации пропофола в крови во времени, начиная с введения пролекарства из пропофола или Diprivan в опытах на собаках.
Фиг.3 иллюстрирует ферментативное превращение пролекарства из камптотецина в камптотецин в опытах in vitro.
Фиг.4 иллюстрирует взаимосвязь между концентрацией камптотецина в плазме из пролекарства камптотецина и из камптотецина в органических сорастворителях в опытах на крысах.
Детальное описание изобретения
В настоящем описании, если не будет оговорено специально или не следует из контекста, использованы следующие определения.
"Фосфоно-" означает группу -Р(О)(ОН)2 и "фосфонооксиметокси" или "фосфонооксиметиловый эфир" означает, как правило, группу -ОСН2ОР(О)(ОН)2. "Метилтиометил" относится к группе –CH2SCH3. Настоящее изобретение также охватывает соединения, в которых n=2, так, что "фосфоно-ди(оксиметил) эфир" в общем означает группу –ОСН2ОСН2ОР(О)(ОН)2.
Определение "остаток камптотецина" означает остаток, содержащий внутренний каркас камптотецина с двадцатью атомами углерода, включающий два атома азота и четыре атома кислорода, как представлено ниже, на приведенной структурной формуле с абсолютной конфигурацией.
Система нумерации, приведенная выше, является системой, используемой для соответствующих производных камптотецина, и она применяется на протяжении всего описания. Например, определение С20 относится к атому углерода под номером "20".
Определение "аналог камптотецина" относится к соединению, имеющему внутренний каркас камптотецина. Должно быть понятно, что аналоги камптотецина охватывают соединения, включая, впрочем не ограничиваясь, следующие: топотекан (Topotecan), поступающий от фирмы SmithKline Beecham, иринотекан (Irinotecan) (CPT-11), поступающий от фирмы Pharmacia & Upjohn, 9-аминокамптотецин (9АС), 9-нитрокамптотецин (9NC), GI 147211 С, поступающий от фирмы Glaxo Wellcome, и DX-8951f (предшествующие шесть аналогов камптотецина в настоящее время проходят клинические испытания и они описаны в обзоре, опубликованном в Pacific West Cancer Fund автором Claire McDonald (December 1997).
Кроме того, несколько других аналогов камптотецина, также не ограничивающих круг аналогов, включены в описание путем приведения ссылок на Sawada et al., Current Pharmaceutical Design, Vol.1, No. 1, pp 113-132, а также на патенты US 5646159, 5559235, 5401747, 5364858, 5342947, 5244903, 5180722, 5122606, 5122526, 5106742, 5053512, 5049668, 4981968 и 4894456.
Несколько фармацевтических соединений, включая соответствующие производные камптотецина, содержат более одной гидроксильной группы, например 10-гидроксикамптотецин, топотекан и некоторые другие, перечисленные в приведенных выше ссылках. Должно быть понятно, что настоящее изобретение может быть применено к более, чем одной гидроксильной группе. В этом случае оно может быть осуществлено путем введения защиты для дополнительной гидроксильной группы перед образованием производного.
Определение "фосфонозащитные группы" означает остатки, которые могут быть использованы для блокирования или защиты функциональных фосфоногрупп. Предпочтительно, к таким защитным группам относятся группы, которые могут быть удалены с помощью методов, которые существенно не затрагивают остальную часть молекулы. Подходящие фосфонооксизащитные группы включают, например, бензильную (обозначаемую "Вn"), трет.-бутильную, аллильную группы.
Определение "фармацевтически приемлемая соль" означает соль металла или соль амина кислой фосфоногруппы, в которой катион не делает значительного вклада в токсичность или в биологическую активность активного вещества. Подходящие соли металлов включают литиевые, калиевые, натриевые, кальциевые, бариевые, магниевые, цинковые и алюминиевые соли. Предпочтительными солями являются соли натрия и калия.
Подходящими солями аминов являются, например, соли аммиака, трометамина, триэтаноламина, этилендиамина, глюкамина, N-метилглюкамина, глицина, лизина, орнитина, аргинина, этаноламина и это только несколько примеров. Предпочтительными солями аминов являются соли лизина, аргинина, N-метилглюкамина и трометамина.
В описании и в формуле изобретения термин -ОСН2OР(O)(ОН)2 как подразумевают, охватывает оба понятия и свободную кислоту и ее фармацевтически приемлемые соли, если из контекста не следует специально, что подразумевается только свободная кислота.
Один из аспектов настоящего изобретения обеспечивает производные фармацевтических препаратов, содержащих спирт и фенол, как показано на формуле I:
Производные формулы I могут быть получены в соответствии с последовательностью реакций, представленных на Схеме 1:
Схема 1
где ROH представляет собой лекарство, содержащее спирт или фенол, такой как камптотецин, пропофол, этопозид, витамин Е, циклоспорин А. Должно быть понятно, что приведенный выше путь является одним из альтернативных путей. Альтернативные пути станут очевидными при их раскрытии в описании и в примерах.
Приведенная выше схема может быть проиллюстрирована при использовании соединения камптотецина. Должно быть понятным, что эти схемы применимы и для других соединений, охватываемых формулой I и перечисленных выше, в соответствии с настоящим изобретением. Соответственно, другим аспектом настоящего изобретения является обеспечение аналогов камптотецина согласно формуле II:
которые включают свободную кислоту, где Z представляет собой водород и их фармацевтически приемлемые соли, где Z представляет собой металл или амин.
Альтернативно формула II включает дикислоты, где Z представляет собой металл или амин в обоих случаях.
Предпочтительньми фармацевтически приемлемыми солями соединения формулы II являются щелочные соли, включая литиевые, натриевые и калиевые соли; и соли аминов, включая триэтиламиновые, триэтаноламиновые, этаноламиновые, аргининовые, лизиновые и N-метилглюкаминовые соли.
При наиболее предпочтительном воплощении изобретения производные камптотецина формулы II включают следующие соединения:
(20)-O-фосфонооксиметилкамптотецин, (20)-O-фосфонооксиметилкамптотецин моно- или динатриевая соль, (20)-O-фосфонооксиметилкамптотецин моно- или дикалиевая соль, (20)-O-фосфонооксиметилкамптотецин моно- или диаргининовая соль, (20)-O-фосфонооксиметилкамптотецин моно- или дилизиновая соль, (20)-O-фосфонооксиметилкамптотецин моно- или ди-N-метилглюкаминовая соль и (20)-O-фосфонооксиметилкамптотецин моно- или дитриэтаноламиновая соль.
Соединения формулы II могут быть получены непосредственно из камптотецина (показано как ©-ОН) в соответствии с последовательностью реакций, приведенной на схеме 2:
Схема 2
Соединение формулы III (метилтиометиловый эфир, МТМ эфир) может быть получен путем обработки камптотецина диметилсульфоксидом /уксусным ангидридом/уксусной кислотой.
На второй стадии процесса, представленного на схеме 2, метилтиометиловый эфир превращают в соответствующий защищенный фосфонооксиметиловый эфир (соединение формулы IV). Эту стадию осуществляют путем обработки МТМ эфира N-иодсукцинамидом и защищенным фосфатом НОР(О)(OR)2. На третьей стадии фосфоно защитные группы удаляют, что приводит к получению соединения формулы II. Например, подходящими защитной (ыми) фосфоно группой (ами) является бензил, которые может быть удален каталитическим гидрогенолизом.
Общий процесс получения соединения формулы (1) по схеме 2 более детально представлен на схеме 3.
Схема 3
На первой стадии свободную гидроксильную группу камптотецина превращают в соответствующую метилтиоэфирную группу (-ОСН2SCН3). Такое превращение может быть осуществлено реакцией с диметилсульфоксидом в присутствии уксусного ангидрида и уксусной кислоты. Указанный способ, известный как реакция Пуммера (Pummer reaction), был успешно применен Bristol-Myers Squibb для метилтиометилирования таксола (ЕР 0604910 А1, Bioorg. Med. Chem. Lett., 6, 1837, 1996). Обычно, для получения метилтиометилового эфира реакцию проводят при комнатной температуре в течение 24-72 часов.
На второй стадии реакционной цепочки метилтиометиловый эфир превращают в соответствующий защищенный фосфонооксиметиловый эфир. Это хорошо известное превращение было успешно применено Bristol-Myers Squibb для фосфонооксиметилирования таксола (ЕР 0604910 А1, Bioorg. Med. Chem. Lett., 6, 1837, 1996). Taк, соединение формулы III обрабатывают N-иодсукцинамидом и защищенной фосфорной кислотой, такой как дибензилфосфат. Реакцию проводят в инертном органическом растворителе, таком как тетрагидрофуран и галогенированный углеводород, такой как хлористый метилен и в присутствии молекулярных сит. N-Иодсукцинимид и защищенную фосфорную кислоту используют в избытке (3-5 эквивалента) по отношению к метилтиометиловому эфиру.
На третьей стадии реакционной цепочки защитные фосфоновые группы удаляют. Снятие защиты осуществляют с помощью известных из уровня техники способов, таких как катализируемый щелочью или кислотой гидролиз, гидрогенолиз, восстановление и тому подобное. Например, каталитический гидрогенолиз может быть использован для удаления бензильных фосфонозащитных групп. Описание методик снятия защиты может быть найдено в различных справочниках, таких как T.W.Green и P.G.M.Wutz, Protective groups in organic synthesis, J.Wiley publishers. New York, NY, 1991, pp.47-67.
Основные соли соединения формулы II могут быть образованы с помощью доступных способов, включая взаимодействие соединения формулы II в виде свободной кислоты с металлическим основанием или амином. Подходящие основания металлов включают гидроксиды, карбонаты и бикарбонаты натрия, калия, лития, кальция, бария, магния, цинка и алюминия; и подходящие амины, включают триэтиламин, аммиак, лизин, аргинин, N-метилглюкамин, этаноламин, прокаин, бензатин, дибензиламин, трометамин (TRIS), хлорпрокаин, холин, диэтаноламин, триэтаноламин и тому подобное. Основные соли могут быть дополнительно очищены хроматографически с последующей лиофилизацией или кристаллизацией.
Соединения в соответствии с настоящим изобретением представляют собой фосфонооксиметиловые эфиры фармацевтических препаратов, таких как камптотецин, пропофол, этопозид, токоферол и т.д. В форме фармацевтически приемлемых солей, они демонстрируют улучшенную растворимость в воде по сравнению с исходными соединениями, таким образом позволяя получать более пригодные фармацевтические составы. Хотя это не подтверждено теоретически, однако представляется, что фосфонооксиметиловые эфиры в соответствии с настоящим изобретением представляют собой пролекарства исходных фармацевтических препаратов; фосфоно-оксоэтильный остаток, расщепляется при контакте с фосфотазой in vivo, с последующим генерированием первоначального (родительского) соединения. Как показано выше, соединения по настоящему изобретению являются эффективными фармацевтическими и терапевтическими агентами.
Например, соединения формулы II в соответствии с настоящим изобретением могут быть использованы аналогично камптотецину. Структура пролекарства камптотецина представлена выше. Таким образом онколог, являющийся специалистом в области лечения рака, будет способен определить, без дополнительных экспериментов, подходящий лечебный курс применения соединения в соответствии с настоящим изобретением. Дозировка, способ, а также график введения соединений по изобретению, не являются строго определенными и будут изменяться в зависимости от применяемого соединения. Так, соединение формулы II может быть введено любым путем, предпочтительно парентерально; доза может, например, находиться в интервале от около 0,1 до около 100 мг/кг на вес тела или от около 5 до 500 мг/м2. Соединения формулы II могут быть введены также перорально; пероральная доза может находиться в интервале от около 5 до около 500 мг/кг на вес тела. Доза, используемая на практике, может изменяться в зависимости от конкретного состава композиции, пути введения, а также конкретного места поражения, хозяина-носителя и вида опухоли, которую подвергают лечению. При определении дозировки учитываются многие факторы, которые влияют на активность лекарства, которые включают возраст, пол, диету и физические состояния пациентов.
Другим примером является пролекарство профола, имеющее формулу I по настоящему изобретению. Структура пролекарства профола представлена ниже:
В приведенной выше формуле пролекарства из профола Z имеет те значения, что представлены в приведенной выше формуле II. Таким образом, анастезиолог, являющийся специалистом в области анастезии, способен определить, без дополнительных экспериментов, соответствующий график введения соединения по настоящему изобретению. Дозировка, способ, а также график введения соединений по изобретению не являются строго определенными и будут изменяться в зависимости от применяемого соединения. Так, соединение формулы I, такое как пролекарство из профола, может быть введено любым пригодным путем, предпочтительно парентерально; доза может, например, находиться в интервале от около 0,5 до около 10 мг/кг, вводимая в соответствии со способами ввода общего наркоза или поддержания периода общего наркоза. С другой стороны соединение формулы I может быть введено путем парентерального вливания, в этом случае дозировка может, например, находиться в интервале от 2 мкг/кг/мин до 800 мкг/кг/мин при введении согласно способам, существующим для поддержания периода общего наркоза, инициирования и поддержание MAC или ICU седативного эффекта.
Настоящее изобретение также обеспечивает фармацевтическую композицию, содержащую фармацевтически эффективное количество соединения формулы I в комбинации с одним или несколькими фармацевтически приемлемыми носителями, эксипиентами, разбавителями или адъювантами. Например, соединения в соответствии с настоящим изобретением могут быть введены в составы, изготовленные в виде таблеток, пилюль, порошков, капсул, инъекций, растворов, свечей, эмульсий, дисперсий, пищевых добавок и других пригодных форм. Они могут быть изготовлены в форме стерильных твердых составов, например, лиофилизованных, и, при желании, объединенных с другими фармацевтическими эксципиентами. Указанные твердые составы могут быть разведены стерилизованной водой, физиологическим солевым раствором или смесью воды и органического растворителя, такого как пропиленгликоль, этанол, и тому подобное или другой стерильной средой для инъекций непосредственно перед парентеральным введением.
Обычными фармацевтически приемлемыми носителями являются, например, манитол, мочевина, декстраны, лактоза, не восстановленные сахара, картофельный и маисовый крахмалы, стеарат магния, тальк, растительные масла, полиалкиленгликоли, этилцеллюлоза, поли(винилпирролидон), карбонат кальция, этилолеат, изопропилмиристат, бензилбензоат, карбонат натрия, желатин, карбонат калия, салициловая кислота. Фармацевтические композиции могут также содержать не токсичные вспомогательные вещества, такие как эмульгаторы, консерванты, смачивающие агенты и тому подобное, как например, монолаурат сорбитола, триэтаноламинолеата, полиоксиэтилен, моностеарат, глицерилтрипалмитат, диоктилнатрийсульфосукцинат, растительные масла, полиалкиленгликоли, этилцеллюлозу, поли(винилпирролидон), карбонат кальция, этилолеат, изопропилмиристат, бензилбензоат, карбонат натрия, желатин, карбонат калия, кремневую кислоту. Фармацевтические составы могут также включать нетоксичные добавки, такие как, например, эмульгирующие агенты, консерванты, смеачивающие агенты и тому подобное, например, монолаурат сорбитола, олеат триэтаноламина, моностеарат полиоксиэтилена, трипальмитат глицерина, натрий диоктилсульфосукцинат и тому подобное.
В представленной далее экспериментальной части все температуры указаны по шкале Цельсия (С), если особо не оговорено. Спектральные характеристики в соответствии с ядерным магнитньм резонансом (ЯМР) относятся к химсдвигам (), выраженным в частях на миллион (ррm) по отношению к тетраметилсилану (TMS), как к стандарту. Относительная площадь, определенная для различных сдвигов в спектральных данных протонного ЯМР, соответствует числу атомов водорода, содержащихся в каждой функциональной группе, входящей в молекулу. Природа химсдвигов, относящихся к мультиплетности, обозначается как уширенный синглет (бс), уширенный дуплет (бд), уширенный триплет (бт), уширенный квартет (бкв), синглет (с), мультиплет (м), дуплет (д), квартет (кв), триплет (т), дуплет дуплета (дд), дуплет триплета (дт) и дуплет квартета (дкв). Для снятия ЯМР спектров применяют такие растворители, как ацетон-d6 (дейтерированный ацетон) DMSO-d6 (пердейтериродиметилсульфоксид), D2O (дейтерированную воду), СВСl3 (дейтерохлороформ) и другие пригодные дейтерированные растворители.
В описании применяют аббревиатуры, которые широко применяют в уровне техники. Некоторые из них следующие:
MS (масс спектрометрия); HRMS (масс спектрометрия высокого разрешения); Ас (ацетил); Ph (фенил); FAB (прочная атомная бомбардировка); min (минута); h или hrs (час(сы)); NIS (N-иодосукцинимид); DMSO (диметилсульфоксид); ТГФ (тетрагидрофуран).
Приведенные далее примеры призваны проиллюстрировать синтез наиболее характерных соединений в соответствии с настоящим изобретением, однако, они не должны быть расценены как ограничивающие область изобретения никоим образом. Специалист в данной области способен перенести приведенную методику без дополнительного экспериметирования на синтез соединений, входящих в область настоящего изобретения, но не раскрытых в данном описании. Например, в приведенных примерах приведены определенные соли, однако эти соли не должны быть рассмотрены как ограничение. Иллюстрацией этому служит то, что везде повторено применение серебрянкой соли дибензилфосфата. В то же время могут быть использованы вместо серебряной соли другие соли, как соли тетераметиламмония или другие соли щелочных металлов.
ПРИМЕРЫ
1. Синтез O-Фосфонооксиметилпропофола
Ia. Синтез O-метилтиометилпропофола:
К перемешиваемой суспензии гидрида натрия (150 мг, 6,2 ммоль) в сухом НМРА (10 мл), которую выдерживают в атмосфере аргона, добавляют по каплям в течение более 15 минут пропофол (1,1 мл 97%-ный, 5,7 ммоль). Затем реакционную смесь перемешивают при комнатной температуре дополнительно 30 минут. После этого к указанной смеси добавляют по каплям хлорметилметилсульфид (550 мкл 95%-ный, 6,2 ммоль) и затем перемешивают при комнатной температуре. Через 20 часов реакционную смесь распределяют при перемешивании между водой (10 мл) и бензолом (20 мл). Водный слой отделяют и экстрагируют бензолом (10 мл). Бензольные фракции объединяют, промывают водой (23 мл), сушат над сульфатом натрия и упаривают при пониженном давлении. Полученный маслянистый остаток очищают с помощью колоночной хроматографии (силикагель, гексан, затем 4:1 гексан/хлороформ), что дает 1,15 г (85% выход) названного соединения в виде бесцветного масла.
EIMS: [M+] м/з 238.
1Н ЯМР (300 МГц, CDCl3, ): 1.24 (д, J=6.9 Гц, 12Н), 2.37 (с, 3Н). 3.37 (гепт, J=6.9 Гц, 2Н), 4.86 (с, 2Н), 7.12 (с, 3Н). 13С ЯМР (75 МГц, CDCl3, ): 15.40, 23.98, 26.68, 78.12, 124.04, 125.05, 141.74, 152.20.
Ib. Синтез O-хлорметилпропофола:
К перемешиваемому раствору O-метилтиометилпропофола (3.00 г, 12.5 ммоль) в сухом хлористом метилене (30 мл), который выдерживают в атмосфере аргона, добавляют 1М раствор SO2Cl2 в сухом хлористом метилене (12.2 мл, 12.2 ммоль) при 5С в течение более пяти минут. Реакционную смесь перемешивают 10 минут при той же температуре и затем три часа при комнатной температуре. Растворитель упаривают при пониженном давлении и коричневый остаток в виде масла очищают с помощью флэш хроматографии на колонке (силикагель, 1:20 гексан/этилацетат), что дает 2.36 г (83% выход) названного соединения в виде желтого масла.
CIMS (NН3):[М]+ м/з 226, [MH+NH3]+, м/з 244.
1ЯМР (300 МГц, CDCl3, ): 1.22 (d, J=6.9 Гц, 12Н), 3.35 (гепт, J=6.9 Гц, 2Н), 5.76 (с, 2Н), 7.15 (м, 3Н). 13С ЯМР (75 МГц, CDCl3, ) 23.93, 26.84, 83.34, 124.34, 125.95, 141.34, 150.93.
Iс. Синтез дибензилового эфира O-фосфонооксиметилпропофола (путь-1):
Смесь O-хлорметилпропофола (2.20 г, 9.7 ммоль), дибензилфосфата серебра (3.85 г, 10.0 ммоль) и сухого толуола (50 мл) нагревают с обратным холодильником в атмосфере аргона 45 минут. Затем смесь охлаждают до комнатной температуры и фильтруют.
После того, как растворитель упаривают в вакууме, маслянистый остаток очищают с помощью флэш хроматографии на колонке с силикагелем (9:1 гексан/этил ацетат и затем 1:1 гексан/этилацетат), что дает 4.43 г (98% выход) названного соединения в виде желтого масла.
CIMS (NН3): [МН]+, м/з 469, [МН+ NН3]+, м/з 486.
1Н ЯМР (300 МГц, CDCl3, ): 1.17 (d, J=6.8 Гц, 12Н), 3.33 (гепт, J=6.9 Гц, 2Н), 5.00 (д, J=7.8 Гц, 2Н), 5.01 (д, J=7.8 Гц, 2Н), 5.42 (д, J=9.9 Гц, 2Н), 7.12 (м, 3Н), 7.32 (м, 10Н). 13С ЯМР (75 МГц, CDCl3, ): 23.79, 26.57, 69.15, 69.23, 94.14, 94.20, 124.07, 125.62, 127.70, 128.44, 135.42, 135.51, 141.50,151.07.
Iс. Синтез дибензилового эфира O-фосфонооксиметилпропофола (альтернативный путь 1)
К перемешиваемому раствору О-метилтиометилпропофола (1.45 г, 6.08 ммоль) в сухом хлористом метилене (15 мл) в атмосфере аргона при 0-5С добавляют 1М раствор SO2Cl2. в сухом хлористом метилене (6.5 мл, 6.5 ммоль) в течение более пяти минут. Реакционную смесь перемешивают 10 минут при 5С и три часа при комнатной температуре. Затем растворитель упаривают при пониженном давлении. Оставшееся масло растворяют в толуоле (ACS-сорта, 20 мл), добавляют дибензилфосфат серебра (3.50 г, 9.1 ммоль), и полученную смесь нагревают с обратным холодильником 45 минут. Коричневую реакционную смесь охлаждают до комнатной температуры и фильтруют. Затем растворитель упаривают в вакууме, маслянистый остаток очищают с помощью колоночной хроматографии (9:1 гексан/этилацетат, затем 1:1 гексан/этилацетат), что дает 2.41 г (85% выход) названного соединения в виде желтого масла. Полученное соединение имеет тот же Rf (TCX) и 1HЯMP спектр (300 МГц, СОСl3), что и достоверный образец.
Ic. Синтез дибензилового эфира О-фосфонооксиметилпропофола (альтернативный путь-2)
К перемешиваемой суспензии гидрида натрия (41 мг 60%-ной дисперсии в минеральном масле, 1.02 ммоль) в сухом диметоксиэтане (1.5 мл) в атмосфере аргона добавляют по каплям пропофол (200 мкл, 97%-ный, 1.04 ммоль) в течение более 5 минут и полученную смесь перемешивают дополнительно 15 минут. Полученный гомогенный раствор добавляют по каплям к перемешиваемому раствору хлориодометана (4.0 мл, 53 ммоль) в сухом диметоксиэтане (4 мл) в течение более 15 минут. Реакционную смесь перемешивают два часа, фильтруют и затем растворитель и избыток хлориодометана упаривают. Оставшееся масло растворяют в толуоле (HPLC-сорт, 10 мл). К указанному раствору добавляют дибензилфосфат серебра (400 мг, 1.04 ммоль), и полученную смесь нагревают с обратным холодильником 10 минут. Затем реакционную смесь охлаждают до комнатной температуры и фильтруют, растворитель упаривают в вакууме. Маслянистый остаток очищают с помощью флэш хроматографии на колонке с силикагелем (9:1 гексан/этилацетат и затем 1:1 гексан/этилацетат), что дает 205 мг (42% выход) названного соединения в виде желтого масла. Полученный продукт имеет тот же Rf(TCX) и 1НЯМР спектр (300 МГц, СDСl3), что и достоверный образец.
В отношении приведенной выше реакции Iс (альтернативный путь - 2) возможно отметить, что должно быть понятно, что в зависимости от желаемого соединения, могут быть использованы другие реагенты. Например, когда нужно соединение формулы I n=2, хлориодометан может быть заменен на такое соединение, как Х-СН2-O-СН2-Сl, где Х является легко отщепляемой группой.
Iс. Синтез дибензилового эфира О-фосфонооксиметилпропофола (альтернативный путь - 3):
К перемешиваемому раствору о-метилтиометилпропофола (91 мг, 0.38 ммоль) в сухом хлористом метилене (2 мл) в атмосфере аргона добавляют измельченные активированные молекулярные сита 4 А(100 мг) и затем раствор дибензилфосфата (127 мг, 0.45 ммоль) и N-иодсукцинимида (102 мг, 95%-ный, 0.43 ммоль) в тетрагидрофуране (2 мл). Реакционную смесь перемешивают при комнатной температуре один час, фильтруют и разбавляют хлористым метиленом (30 мл). Полученный раствор промывают раствором тиосульфата натрия (2 мл 1М раствора), насыщенным раствором гидрокарбоната натрия (3 мл), рассолом (5 мл), сушат над смесью сульфата натрия и сульфата магния, фильтруют и концентрируют в вакууме. Маслянистый остаток очищают с помощью колоночной хроматографии на силикагеле (1:1 гексан/этилацетат), что дает 120 мг (67% выход) названного соединения в виде желтого масла. Полученный продукт имеет тот же Rf (TCX) и 1НЯМР спектр (300 МГц, СDСl3), что и достоверный образец.
Iс. Синтез дибензилового эфира 0-фосфонооксиметилпропофола
К раствору пропофола (38 мг, 97%-ный, 0.21 ммоль) в хлористом метилене (1 мл) добавляют тетрабутиламмоний бромид (10 мг, 0.03 ммоль) и раствор гидроксида натрия (40 мг, 1 ммоль) в воде (0.2 мл). Гетерогенную смесь перемешивают 15 минут. Затем добавляют раствор хлорметил дибензилфосфата (104 мг, 0.32 ммоль) в хлористом метилене (1 мл) и реакционную смесь энергично перемешивают восемь часов. Смесь затем разбавляют с помощью хлористого метилена (10 мл), промывают водой (2 мл), сушат над сульфатом натрия, фильтруют и упаривают в вакууме. Маслянистый остаток очищают с помощью флэш хроматографии на колонке с силикагелем (гексан, 20:1 гексан/этил ацетат и 10:1 гексан/этилацетат), что дает 44 мг (45% выход) названного соединения в виде желтого масла. Этот продукт имеет тот же f (TCX) и 1НЯМР спектр (300 МГц, СDСl3), что и достоверный образец.
Дополнительно к приведенной выше реакции Iс (альтернативный путь - 4) должно быть отмечено, что реагент:
может быть вообщем представлен следующей формулой:
где Х представляет собой удаляемую группу, R3 и R4 каждый представляет собой атом водорода, органическую или неорганическую группу и Y является защитной группой фосфата. Примеры удаляемых групп включают хлор, бром, иод, тозилат или любую другую удаляемую группу. Примеры защитных групп для фосфатных групп включают защитные группы, которые временно блокируют реакционную способность фосфатной группы и позволяют провести селективное замещение с помощью нуклеофильной реакции замещения. Примеры таких блокирующих групп включают, но не ограничиваются, бензилом, аллилом, третичным бутилом и изопропилом, этилом и -цианоэтилом.
Iс. Синтез дибензилового эфира O-фосфонооксиметилпропофола (альтернативный путь - 5):
К перемешиваемой суспензии гидрида натрия (36 мг 60%-ная дисперсия в минеральном масле, 0.91 ммоль) в сухом диметоксиэтане (2 мл) в атмосфере аргона добавляют по каплям пропофол (172 мкл, 97%, 0.90 ммоль) в течение более пяти минут. Полученную смесь перемешивают при комнатной температуре дополнительно 20 минут. Затем к смеси добавляют раствор бис-(дибензилфосфоно) ацеталя формальдегида