Способ морской геоэлектроразведки (варианты)

Реферат

 

Изобретение относится к области геофизических исследований, а более конкретно - к способам морской геоэлектроразведки с использованием регулируемых искусственных источников электромагнитного поля. В одном из вариантов способа возбуждают электромагнитное поле в толще исследуемой среды, посылая в нее по два одинаковых прямоугольных импульса тока: один - при прямом прохождении зондирующей установки вдоль профиля исследований, а другой - при обратном. В другом варианте в исследуемую среду один импульс тока посылают при прохождении через точку зондирования первой трехточечной измерительной установки, а другой - при прохождении второй. В третьем варианте в каждой точке зондирования посылают по одному импульсу тока. В конце каждого импульса тока и между импульсами тока в паузах на всем протяжении существования сигналов переходного процесса измеряют мгновенные значения первых и вторых осевых разностей потенциалов. Выделяют на всем протяжении каждой из пауз по два рядом расположенные по времени мгновенные значения первых и вторых разностей потенциалов, определяя разности их величин. Из значений всех перечисленных разностей рассчитывают четыре множества нормированных электрических параметров, с использованием полученных параметров решают обратную задачу на основе дифференциального уравнения математической физики для напряженности дипольного источника в электрохимически поляризующейся проводящей среде. Находят модель среды, наиболее близкую по геометрическому строению и электрическим параметрам к исследуемой. Строят временные разрезы этой модели по входящим в данное уравнение электрофизическим параметрам, таким как электропроводность элементов среды, коэффициент их вызванной поляризации и постоянная времени спада разности потенциалов вызванной поляризации. 6 с. и 3 з.п. ф-лы, 3 ил.

Изобретение относится к области геофизических исследований, а более конкретно - к способам морской геоэлектроразведки с использованием регулируемых искусственных источников электромагнитного поля, и предназначено для поисков и оконтуривания нефтегазовых залежей на основе раздельного определения и картирования свойственных каждому из элементов (горизонтов) толщи осадочных отложений горных пород следующих трех, необходимых для решения поставленной задачи, электрофизических параметров: удельной электропроводности, вызванной поляризации и постоянной времени спада разности потенциалов вызванной поляризации.

Известны способы геоэлектроразведки, в том числе и морской, с искусственным возбуждением исследуемой среды электрическим током (способы сопротивлений на постоянном и переменном токе), которые предназначены для определения только одного электрофизического параметра из перечисленных выше трех, а именно электрического сопротивления, что недостаточно для поисков и оконтуривания нефтегазовых залежей. Среди этих способов наиболее распространенным является импульсный способ на переменном низкочастотном токе - способ становления электрического поля.

По результатам полевых измерений данным способом вычисляется электрическое сопротивление с помощью универсальной формулы

где J - измеряемый скачок силы тока в дипольном электрическом источнике;

U - измеряемое напряжение на концах приемных заземлений MN;

К - геометрический коэффициент зондирующей установки

(см. “Электроразведка”, Справочник геофизика. Ред. А.Г.Тархов М.: Недра, 1980, с.237 и с.422-406, [1]).

При таком подходе, который применяется обычно при всех традиционных способах определения электрического сопротивления в геоэлектроразведке с регулируемым искусственным источником тока, получают лишь суммарные сведения о всех элементах строения исследуемой среды, в которой развивается поле, так как в ней распределение в пространстве измеряемого тока J источника ничем не контролируется, и информации об указанном распределении в реально существующих трехмерно-неоднородных средах нет. Это означает, что нормирование измеряемого электрического параметра U по силе тока питания J источника бессмысленно, так как ток J не несет никакой информации об исследуемой среде, а несет лишь сведения о мощности генератора тока и о сопротивлении заземления токовых электродов токового диполя.

Таким образом, способы сопротивлений не пригодны для поисков и оконтуривания нефтегазовых залежей по двум причинам: первая - регистрируется только один из необходимых для этой цели трех электрофизических параметров исследуемой среды; вторая - регистрируемый параметр для той же цели слишком грубый, так как в нем регистрируется сопротивление объема всех геологических объектов исследуемой среды, в которой развивается электрическое поле источника тока.

В морской геоэлектроразведке, в силу специфики измерений в движении, используются симметричная установка AMNB или дипольно-осевая ABMN.

Попытки поисков углеводородов осуществлялись, в частности, ГП “Солитон” и ГНПП “Севморгео” в Черном и Баренцевом морях. Проводилась лишь качественная интерпретация, строились графики сигналов, по которым и выделялись аномальные зоны, связанные, по мнению авторов этих работ, с залежами углеводородов. Иногда наблюдались аномалии в сигналах становления поля, которые в простых геологических условиях отображали наличие неглубоко залегающих газовых залежей, например, в акватории шельфа Черного моря (А.А.Петров. Возможности метода становления электрического поля при поисках углеводородов в шельфовых зонах. Геофизика. № 5. 2000 г. М.: ЕАГО. Стр. 21, [2]).

В более сложных геологических условиях аномалии в сигналах становления поля, полученных с использованием установок AMNB и ABMN, не обязательно связаны с прямым наличием в исследуемой среде залежей углеводородов.

Наиболее близким к предложенному является способ наземной геоэлектроразведки (Н.И.Рыхлинский и др. Способ геоэлектроразведки. Авторское свидетельство СССР № 1436675 от 31.03.87, [3]), в котором возбуждают исследуемую среду периодической последовательностью прямоугольных импульсов тока, пропускаемых через заземленную питающую линию (заземленный дипольный электрический источник), и измеряют в точках наблюдения в паузах между импульсами тока первые и вторые осевые разности потенциалов, из которых формируют картируемый параметр уже на основе нормирования не на неинформативный общий ток питания дипольного источника, а на первую разность потенциалов, пропорциональную плотности тока в Земле под точкой измерения этой разности.

Этот способ не может быть использован для морских исследований в силу их особой специфики, в первую очередь связанной с измерениями в процессе движения плавсредства. В связи с тем, что плавсредство и вместе с ним зондирующая установка находятся в постоянном движении, невозможно поочередно в разное время возбуждать электромагнитное поле при помощи двух, расположенных по обе стороны на одинаковом расстоянии от фиксированной точки наблюдения, дипольных электрических источников. Невозможно также из-за движения зондирующей установки накапливать сигнал в заданной точке наблюдения за счет многократной подачи серии импульсов тока. По указанным причинам предложенный способ не имеет аналогов и прототипа в морской геоэлектроразведке.

В этом способе решается задача обнаружения, оконтуривания нефтегазовых залежей и оценка качества их насыщения. Технический результат, позволяющий решить данную задачу, заключается в обеспечении возможности разделения параметров электропроводности и вызванной поляризации, а также дополнительно дает возможность определения постоянной времени спада разности потенциалов вызванной поляризации - важного третьего наряду с двумя первыми параметра.

Указанный технический результат достигается тем, что в способе морской геоэлектроразведки, при котором по оси профиля зондирования возбуждают электромагнитное поле в толще исследуемой среды, пропуская через нее прямоугольные импульсы тока с паузами после каждого из них при помощи дипольного электрического источника, причем в исследуемую среду посылают по два одинаковых прямоугольных импульса тока: один - при прямом прохождении зондирующей установки вдоль профиля, а другой - при обратном; и в каждой точке зондирования в конце каждого импульса тока измеряют мгновенное значение первой осевой разности электрических потенциалов, а в каждой паузе на всем протяжении времени существования сигналов переходного процесса в дискретных точках с постоянным интервалом времени измеряют последовательность мгновенных значений первых и вторых осевых разностей электрических потенциалов; из значений измеренных разностей электрических потенциалов рассчитывают три множества независимых от силы тока дипольного источника нормированных электрических параметров:

где to - время окончания импульса тока;

ti - точки измерения в паузах тока;

t - интервал времени между двумя ближайшими измеренными мгновенными значениями осевых разностей электрических потенциалов на всем протяжении существования сигналов переходного процесса;

Ux(to)пр, Ux(to)обр - мгновенные значения первой осевой разности электрических потенциалов в конце импульса тока, измеренные при подаче токов в дипольный источник, соответственно, при движении зондирующей установки в прямом и обратном направлениях;

Ux(ti)пр, Ux(ti)обр, 2Ux(ti)пр, 2Ux(ti)обр - мгновенные значения первых и вторых осевых разностей электрических потенциалов, измеренные в паузах тока на всем протяжении существования сигналов переходного процесса через равные интервалы времени t, соответственно, при движении зондирующей установки в прямом и обратном направлениях;

Ux(ti, t)пр, Ux(ti, t)обр, 2Ux(ti, t)пр, 2Ux(ti, t)обр - разности значений между разделенными промежутками времени t двумя ближайшими мгновенными значениями первых и вторых осевых разностей электрических потенциалов переходного процесса;

используя значения этих нормированных параметров и дифференциальное уравнение математической физики для напряженности электрического поля дипольного источника в электрохимически поляризующейся проводящей среде

где - оператор Гамильтона;

- напряженность электрического поля дипольного источника, выраженная в уравнении для случая гармонического изменения величины электрического поля по времени;

- частотно-зависимая электропроводность элементов среды;

0 - электропроводность элементов среды без учета влияния вызванной поляризации;

- коэффициент их вызванной поляризации;

- постоянная времени спада разности потенциалов вызванной поляризации;

решают математическую обратную задачу и определяют присущие каждому элементу среды три электрофизических параметра: удельную электропроводность 0, вызванную поляризацию и постоянную времени спада разности потенциалов вызванной поляризации , и строят три временных разреза по этим параметрам.

Кроме этого, согласно изобретению рассчитывают четвертое множество независимых от силы тока дипольного источника нормированных электрических параметров

и используют его наряду с тремя другими при решении обратной задачи.

Также указанный технический результат достигается тем, что в способе морской геоэлектроразведки, при котором по оси профиля зондирования возбуждают электромагнитное поле в толще исследуемой среды, пропуская через нее прямоугольные импульсы тока с паузами после каждого из них при помощи дипольного электрического источника, причем в исследуемую среду посылают по два одинаковых прямоугольных импульса тока: один - при прямом прохождении зондирующей установки вдоль профиля, а другой - при обратном; и в каждой точке зондирования в конце каждого импульса тока измеряют мгновенное значение первой осевой разности электрических потенциалов, а в каждой паузе на всем протяжении времени существования сигналов переходного процесса в дискретных точках с постоянным интервалом времени измеряют последовательность мгновенных значений первых и вторых осевых разностей электрических потенциалов;

из значений измеренных разностей электрических потенциалов рассчитывают три множества независимых от силы тока дипольного источника нормированных электрических параметров:

где t0 - время окончания импульса тока;

ti - точки измерения в паузах тока;

t - интервал времени между двумя ближайшими измеренными мгновенными значениями осевых разностей электрических потенциалов на всем протяжении существования сигналов переходного процесса;

Ux(to)пр, Ux(to)обр - мгновенные значения первой осевой разности электрических потенциалов в конце импульса тока, измеренные при подаче токов в дипольный источник, соответственно, при движении зондирующей установки в прямом и обратном направлениях;

Ux(ti)пр, Ux(ti)обр, 2Ux(ti)пр, 2Ux(ti)обр - мгновенные значения первых и вторых осевых разностей электрических потенциалов, измеренные в паузах тока на всем протяжении существования сигналов переходного процесса через равные интервалы времени t, соответственно, при движении зондирующей установки в прямом и обратном направлениях;

Ux(ti, t)пр, Ux(ti, t)обр, 2Ux(ti, t)пр, 2Ux(ti, t)обр - разности значений между разделенными промежутками времени t двумя ближайшими мгновенными значениями первых и вторых осевых разностей электрических потенциалов переходного процесса;

при этом проводят групповое зондирование в нескольких соседних точках на отдельных участках профиля на всем его протяжении, и определенные для каждой группы точек нормированные электрические параметры суммируют между собой, получая следующие суммы:

где n - количество точек зондирования в каждой из групп зондирования;

используя значения этих сумм и дифференциальное уравнение математической физики для напряженности электрического поля дипольного источника в электрохимически поляризующейся проводящей среде

где - оператор Гамильтона;

- напряженность электрического поля дипольного источника, выраженная в уравнении для случая гармонического изменения величины электрического поля по времени;

- частотно-зависимая электропроводность элементов среды;

0 - электропроводность элементов среды без учета влияния вызванной поляризации;

- коэффициент их вызванной поляризации;

- постоянная времени спада разности потенциалов вызванной поляризации;

решают математическую обратную задачу и определяют присущие каждому элементу среды три электрофизических параметра: удельную электропроводность 0, вызванную поляризацию и постоянную времени спада разности потенциалов вызванной поляризации , и строят три временных разреза по этим параметрам.

Также указанный технический результат достигается тем, что в способе морской геоэлектроразведки, при котором по оси профиля зондирования возбуждают электромагнитное поле в толще исследуемой среды, пропуская через нее прямоугольные импульсы тока с паузами после каждого из них при помощи дипольного электрического источника, а при помощи расположенных на оси профиля на разных расстояниях от дипольного электрического источника двух трехточечных измерительных установок проводят измерение первых и вторых разностей электрических потенциалов, причем в исследуемую среду посылают по два одинаковых прямоугольных импульса тока: один - при прохождении через точку зондирования первой трехточечной измерительной установки, а другой – при прохождении второй, измеряя при этом в конце каждого импульса тока мгновенное значение первой осевой разности электрических потенциалов и также в каждой паузе после выключения импульса тока на всем протяжении времени существования сигналов переходного процесса в дискретных точках с постоянным интервалом времени - мгновенные значения первых и вторых осевых разностей электрических потенциалов;

из значений измеренных разностей электрических потенциалов рассчитывают три множества независимых от силы тока дипольного источника нормированных электрических параметров:

где to - время окончания импульса тока;

ti - точки измерения в паузах тока;

t - интервал времени между двумя ближайшими измеренными мгновенными значениями осевых разностей электрических потенциалов на всем протяжении существования сигналов переходного процесса;

Ux(to)1, Ux(to)2 - мгновенные значения первой осевой разности электрических потенциалов в конце каждого импульса тока, измеренные при подаче тока в дипольный источник, соответственно, при прохождении через точку зондирования первой и второй трехточечных измерительных установок;

Ux(ti)1, Ux(ti)2, 2Ux(ti)1, 2Ux(ti)2 - мгновенные значения первых и вторых осевых разностей электрических потенциалов, измеренные в паузах тока на всем протяжении существования сигналов переходного процесса через равные интервалы времени t, при прохождении через точку зондирования, соответственно, первой и второй трехточечных измерительных установок;

Ux(ti, t)1, Ux(ti, t)2, 2Ux(ti, t)1, 2Ux(ti, t)2 - разности значений между разделенными промежутками времени t двумя ближайшими мгновенными значениями первых и вторых осевых разностей электрических потенциалов переходного процесса;

используя значения этих нормированных параметров и дифференциальное уравнение математической физики для напряженности электрического поля дипольного источника в электрохимически поляризующейся проводящей среде

где - оператор Гамильтона;

- напряженность электрического поля дипольного источника, выраженная в уравнении для случая гармонического изменения величины электрического поля по времени;

- частотно-зависимая электропроводность элементов среды;

0 - электропроводность элементов среды без учета влияния вызванной поляризации;

- коэффициент их вызванной поляризации;

- постоянная времени спада разности потенциалов вызванной поляризации;

решают математическую обратную задачу и определяют присущие каждому элементу среды три электрофизических параметра: удельную электропроводность 0, вызванную поляризацию и постоянную времени спада разности потенциалов вызванной поляризации , и строят три временных разреза по этим параметрам.

Кроме этого, согласно изобретению рассчитывают четвертое множество независимых от силы тока дипольного источника нормированных электрических параметров

и используют его наряду с тремя другими при решении обратной задачи.

Также указанный технический результат достигается тем, что в способе морской геоэлектроразведки, при котором по оси профиля зондирования возбуждают электромагнитное поле в толще исследуемой среды, пропуская через нее прямоугольные импульсы тока с паузами после каждого из них при помощи дипольного электрического источника, а при помощи расположенных на оси профиля на разных расстояниях от дипольного электрического источника двух трехточечных измерительных установок проводят измерение первых и вторых разностей электрических потенциалов, причем в исследуемую среду посылают по два одинаковых прямоугольных импульса тока: один - при прохождении через точку зондирования первой трехточечной измерительной установки, а другой - при прохождении второй, измеряя при этом в конце каждого импульса тока мгновенное значение первой осевой разности электрических потенциалов и также в каждой паузе после выключения импульса тока на всем протяжении времени существования сигналов переходного процесса в дискретных точках с постоянным интервалом времени - мгновенные значения первых и вторых осевых разностей электрических потенциалов;

из значений измеренных разностей электрических потенциалов рассчитывают три множества независимых от силы тока дипольного источника нормированных электрических параметров:

где to - время окончания импульса тока;

ti - точки измерения в паузах тока;

t - интервал времени между двумя ближайшими измеренными мгновенными значениями осевых разностей электрических потенциалов на всем протяжении существования сигналов переходного процесса;

Ux(to)1, Ux(to)2 - мгновенные значения первой осевой разности электрических потенциалов в конце каждого импульса тока, измеренные при подаче тока в дипольный источник, соответственно, при прохождении через точку зондирования первой и второй трехточечных измерительных установок;

Ux(ti)1, Ux(ti)2, 2Ux(ti)1, 2Ux(ti)2 - мгновенные значения первых и вторых осевых разностей электрических потенциалов, измеренные в паузах тока на всем протяжении существования сигналов переходного процесса через равные интервалы времени t, при прохождении через точку зондирования, соответственно, первой и второй трехточечных измерительных установок;

Ux(ti, t)1, Ux(ti, t)2, 2Ux(ti, t)1, 2Ux(ti, t)2 - разности значений между разделенными промежутками времени t двумя ближайшими мгновенными значениями первых и вторых осевых разностей электрических потенциалов переходного процесса;

при этом проводят групповое зондирование в нескольких соседних точках на отдельных участках профиля на всем его протяжении, и определенные для каждой группы точек нормированные электрические параметры суммируют между собой, получая следующие суммы:

где n - количество точек зондирования в каждой из групп зондирования;

используя значения этих сумм и дифференциальное уравнение математической физики для напряженности электрического поля дипольного источника в электрохимически поляризующейся проводящей среде

где - оператор Гамильтона;

- напряженность электрического поля дипольного источника, выраженная в уравнении для случая гармонического изменения величины электрического поля по времени;

- частотно-зависимая электропроводность элементов среды;

0 - электропроводность элементов среды без учета влияния вызванной поляризации;

- коэффициент их вызванной поляризации;

- постоянная времени спада разности потенциалов вызванной поляризации;

решают математическую обратную задачу и определяют присущие каждому элементу среды три электрофизических параметра: удельную электропроводность 0, вызванную поляризацию и постоянную времени спада разности потенциалов вызванной поляризации , и строят три временных разреза по этим параметрам.

Также указанный технический результат достигается тем, что в способе морской геоэлектроразведки, при котором по оси профиля зондирования возбуждают электромагнитное поле в толще исследуемой среды, пропуская через нее прямоугольные импульсы тока с паузами после каждого из них при помощи дипольного электрического источника, причем в исследуемую среду посылают по одному прямоугольному импульсу тока; и в каждой точке зондирования в конце каждого импульса тока измеряют мгновенное значение первой осевой разности электрических потенциалов, а в каждой паузе на всем протяжении времени существования сигналов переходного процесса в дискретных точках с постоянным интервалом времени измеряют последовательность мгновенных значений первых и вторых осевых разностей электрических потенциалов;

из значений измеренных разностей электрических потенциалов рассчитывают три множества независимых от силы тока дипольного источника нормированных электрических параметров:

где to - время окончания импульса тока;

ti - точки измерения в паузах тока;

t - интервал времени между двумя ближайшими измеренными мгновенными значениями осевых разностей электрических потенциалов на всем протяжении существования сигналов переходного процесса;

Ux(to) - мгновенное значение первой осевой разности электрических потенциалов в конце импульса тока, измеренные при подаче тока в дипольный источник;

Ux(ti), 2Ux(ti) - мгновенные значения первых и вторых осевых разностей электрических потенциалов, измеренные в паузах тока на всем протяжении существования сигналов переходного процесса через равные интервалы времени t;

Ux(ti, t), 2Ux(ti, t) - разности значений между разделенными промежутками времени t двумя ближайшими мгновенными значениями первых и вторых осевых разностей электрических потенциалов переходного процесса;

используя значения этих нормированных параметров и дифференциальное уравнение математической физики для напряженности электрического поля дипольного источника в электрохимически поляризующейся проводящей среде

где - оператор Гамильтона;

- напряженность электрического поля дипольного источника, выраженная в уравнении для случая гармонического изменения величины электрического поля по времени;

- частотно-зависимая электропроводность элементов среды;

0 - электропроводность элементов среды без учета влияния вызванной поляризации;

- коэффициент их вызванной поляризации;

- постоянная времени спада разности потенциалов вызванной поляризации;

решают математическую обратную задачу и определяют присущие каждому элементу среды три электрофизических параметра: удельную электропроводность 0, вызванную поляризацию и постоянную времени спада разности потенциалов вызванной поляризации , и строят три временных разреза по этим параметрам.

Кроме этого, согласно изобретению рассчитывают четвертое множество независимых от силы тока дипольного источника нормированных электрических параметров

и используют его наряду с тремя другими при решении обратной задачи.

Также указанный технический результат достигается тем, что в способе морской геоэлектроразведки, при котором по оси профиля зондирования возбуждают электромагнитное поле в толще исследуемой среды, пропуская через нее прямоугольные импульсы тока с паузами после каждого из них при помощи дипольного электрического источника, причем в исследуемую среду посылают по одному прямоугольному импульсу тока; и в каждой точке зондирования в конце каждого импульса тока измеряют мгновенное значение первой осевой разности электрических потенциалов, а в каждой паузе на всем протяжении времени существования сигналов переходного процесса в дискретных точках с постоянным интервалом времени измеряют последовательность мгновенных значений первых и вторых осевых разностей электрических потенциалов;

из значений измеренных разностей электрических потенциалов рассчитывают три множества независимых от силы тока дипольного источника нормированных электрических параметров:

где to - время окончания импульса тока;

ti - точки измерения в паузах тока;

t - интервал времени между двумя ближайшими измеренными мгновенными значениями осевых разностей электрических потенциалов на всем протяжении существования сигналов переходного процесса;

Ux(to) - мгновенное значение первой осевой разности электрических потенциалов в конце импульса тока, измеренные при подаче тока в дипольный источник;

Ux(ti), 2Ux(ti) - мгновенные значения первых и вторых осевых разностей электрических потенциалов, измеренные в паузах тока на всем протяжении существования сигналов переходного процесса через равные интервалы времени At;

Ux(ti, t), 2Ux(ti, t) - разности значений между разделенными промежутками времени t двумя ближайшими мгновенными значениями первых и вторых осевых разностей электрических потенциалов переходного процесса;

при этом проводят групповое зондирование в нескольких соседних точках на отдельных участках профиля на всем его протяжении и определенные для каждой группы точек нормированные электрические параметры суммируют между собой, получая следующие суммы:

где n - количество точек зондирования в каждой из групп зондирования;

используя значения этих сумм и дифференциальное уравнение математической физики для напряженности электрического поля дипольного источника в электрохимически поляризующейся проводящей среде

где - оператор Гамильтона;

- напряженность электрического поля дипольного источника, выраженная в уравнении для случая гармонического изменения величины электрического поля по времени;

- частотно-зависимая электропроводность элементов среды;

0 - электропроводность элементов среды без учета влияния вызванной поляризации;

- коэффициент их вызванной поляризации;

- постоянная времени спада разности потенциалов вызванной поляризации;

решают математическую обратную задачу и определяют присущие каждому элементу среды три электрофизических параметра: удельную электропроводность 0, вызванную поляризацию и постоянную времени спада разности потенциалов вызванной поляризации , и строят три временных разреза по этим параметрам.

Сущность изобретения поясняется чертежами.

На фиг.1 дана блок-схема устройства для реализации варианта предложенного способа с использованием трехэлектродного датчика первой и второй разностей электрических потенциалов.

На фиг.2 дана блок-схема устройства для реализации варианта предложенного способа с использованием двух измерительных трехэлектродных датчиков первой и второй разностей электрических потенциалов, размещенных на разных расстояниях от дипольного электрического источника.

На фиг.3 показаны формы одиночных импульсов в функции времени t: а) - форма одиночного прямоугольного импульса тока J в сети дипольного источника АВ; б) - форма импульсов первой и второй разностей электрических потенциалов.

Устройство (фиг.1) содержит погруженные в воду 1 питающие электроды 2 и 3 дипольного электрического источника (токового диполя АВ), подключаемые к генератору 4 прямоугольных токовых импульсов. Для обеспечения синхронизации моментов включения и выключения импульсов т