Приемник сигналов системы gps и способ обработки сигналов системы gps

Реферат

 

Изобретение относится к приемникам, которые обеспечивают определение информации местоположения спутников и применяются в системе определения местоположения (GPS). Приемник сигналов GPS, в одном из вариантов осуществления, включает в себя антенну, которая принимает сигналы GPS на радиочастоте от находящихся в поле зрения спутников, преобразователь с понижением частоты, цифровой преобразователь, память, связанную с цифровым преобразователем, процессор, связанный с памятью и работающий с запомненными командами, посредством чего выполняются операции быстрого преобразования Фурье (БПФ) дискретизированных сигналов GPS на ПЧ для получения информации о псевдодальности. Указанные операции включают в себя предварительную и последующую обработку сигналов GPS. После получения выборки данных во входном каскаде приемника снижается потребление мощности. Приемник сигналов GPS в одном из вариантов осуществления также включает в себя средства управления потреблением мощности, в другом варианте - средства исправления ошибок в гетеродине, который используется для получения выборок сигналов GPS. Скорость вычисления псевдодальности и чувствительность обработки в приемнике повышается за счет передачи от внешнего источника, такого как базовая станция, доплеровских сдвигов частоты спутников, находящихся в поле зрения. 21 н. и 102 з.п. ф-лы, 11 ил.

Настоящая заявка основана на двух заявках на патенты, поданных тем же изобретателем, что и в настоящей заявке: "Усовершенствованный приемник сигналов системы GPS, использующий канал связи" (№08/612582 от 8 марта 1996) и "Усовершенствованный приемник сигналов системы GPS с управлением мощностью" (№08/613966 от 8 марта 1996).

Настоящая заявка также основана на предварительной заявке на патент того же изобретателя Нормана Ф.Краснера на "Маломощное, чувствительное устройство измерения псевдоинтервалов и способ для систем с глобальной ориентацией спутников" (№60/005318 от 9 октября 1995 г.).

В части описания настоящего документа на патент содержится материал, который защищен авторскими правами. Собственник авторских прав не возражает против факсимильного воспроизведения кем-либо патентного документа или описания патента, которое находится в делопроизводстве Патентного ведомства, но при этом сохраняет за собой все авторские права.

Область техники

Настоящее изобретение относится к приемникам, которые обеспечивают определение информации местоположения спутников, а более конкретно к приемникам, которые находят применение в глобальной спутниковой системе определения местоположения (GPS).

Предшествующий уровень техники

Приемники сигналов системы GPS позволяют достаточно точно определять свое местоположение путем вычисления относительных времен прихода сигналов, переданных одновременно от множества спутников системы GPS (или NAVSTAR). Эти спутники передают в качестве части своего сообщения данные местоположения спутника, а также данные синхронизации тактовых сигналов так называемых "эфемеридных" данных. На процесс поиска и обнаружения сигналов GPS, считывания эфемеридных данных для множества спутников и вычисления местоположения приемника из этих данных тратится время до нескольких минут. В большинстве случаев это достаточно большое время обработки является неприемлемым, и, кроме того, существенным недостатком при работе микроминиатюрных портативных устройств является ограниченный срок службы аккумуляторов.

Другим недостатком современных приемников сигналов системы GPS является то, что их работа ограничена ситуациями, в которых многочисленные спутники находятся непосредственно в зоне видимости, то есть при отсутствии препятствий, и когда антенна хорошего качества надлежащим образом ориентирована для приема таких сигналов. Как таковые, они обычно не используются в портативном, карманном исполнении, в местах, где имеются препятствия в виде листвы или строений, и при применении внутри зданий.

Существуют две основные функции систем приема сигналов GPS: (1) вычисление псевдодальностей до различных спутников системы GPS и (2) вычисление местоположения носителя приемной системы с использованием этих псевдодальностей, данных синхронизации для спутников и данных эфемерид. Псевдодальности представляют собой измеренные временные задержки между принимаемым сигналом от каждого спутника и локальным тактовым сигналом. Спутниковые эфемериды и данные синхронизации получают из сигнала системы GPS, который обнаружен и сопровождается. Как установлено выше, получение этой информации обычно занимает относительно продолжительный промежуток времени (от 30 с до нескольких мин) и должно осуществляться при достаточном уровне принимаемого сигнала для достижения низких значений частоты повторения ошибок.

Фактически во всех известных приемниках сигналов GPS используются корреляционные способы определения псевдодальностей. Эти корреляционные способы реализуются в реальном масштабе времени, часто с применением аппаратных корреляторов. Сигналы GPS включают в себя сигналы с высокой частотой повторения, называемые псевдослучайными (ПС) последовательностями. Коды, используемые для гражданского применения, называются С/А кодами и имеют частоту изменения двоичных значений фазы или частоту повторения элементов кода 1,023 МГц и период повторения 1023 элементов кода за период кода, равный 1 мс. Кодовые последовательности входят в семейство "золотых кодов". Каждый спутник системы GPS осуществляет широковещательную передачу сигнала с уникальным золотым кодом.

Принятый сигнал от спутника системы GPS преобразуется с понижением частоты в основную полосу частот, после чего корреляционный приемник перемножает принятый сигнал на сохраненную копию соответствующего кода, который содержится в его локальной памяти, и затем интегрирует произведение (или выполняет низкочастотную фильтрацию), для индикации наличия сигнала. Эта процедура обработки определяется как корреляционная обработка. Путем последующей регулировки относительной синхронизации этой сохраненной копии по отношению к принимаемому сигналу и анализа результата корреляционной обработки приемник может определить временную задержку между принятым сигналом и локальным тактовым сигналом. Исходное определение наличия такого выходного сигнала называется "обнаружением". Сразу после обнаружения процесс переходит в фазу "слежения", в которой синхронизация локального опорного сигнала подстраивается малыми приращениями для поддержания выходного сигнала с высокой степенью корреляции. Корреляционный выходной сигнал на этапе слежения можно рассматривать как сигнал системы GPS, из которого удален псевдослучайный код, или, согласно общепринятой терминологии, как "сжатый" сигнал. Этот сигнал имеет узкую полосу частот, соизмеримую с сигналом данных с двоичной фазовой манипуляцией со скоростью 50 бит/с, который накладывается на сигнал системы GPS.

Процедура определения корреляции требует значительного времени, особенно если принимаемый сигнал слабый. Для уменьшения времени обнаружения, в большинстве приемников сигнала GPS используется множество корреляторов (обычно до 12), которые позволяют осуществить параллельный поиск корреляционных максимумов.

В некоторых известных приемниках сигналов GPS используется способ быстрого преобразования Фурье (БПФ) для определения доплеровской частоты принимаемого сигнала системы GPS. В этих приемниках используются известные операции корреляционной обработки для сжатия сигнала системы GPS и получения узкополосного сигнала с шириной полосы в диапазоне от 10 до 30 кГц. Полученный в результате узкополосный сигнал затем подвергается Фурье-анализу с использованием алгоритмов БПФ для определения несущей частоты. Определение такой несущей частоты одновременно обеспечивает индикацию того, что локальный ПС опорный сигнал настроен на корректное значение фазы принимаемого сигнала и обеспечивает точное измерение несущей частоты. Эту частоту можно затем использовать в приемниках в режиме слежения.

В патенте США №5420592 описано использование алгоритмов БПФ для вычисления псевдодальности в центральном пункте обработки, а не в мобильном устройстве. Согласно этому способу мгновенная выборка данных выполняется приемником сигнала GPS и затем передается по каналу передачи данных к удаленному приемнику, в котором осуществляется обработка по процедуре БПФ. Однако данный известный способ вычисляет только один раз прямое и обратное быстрое преобразование Фурье (соответствующее четырем периодам ПС последовательности) для выполнения множества операций определения корреляции.

Как будет ясно из описания настоящего изобретения, более высокую чувствительность и более высокую скорость обработки можно достигнуть за счет выполнения большого числа операций БПФ вместе со специальными операциями предварительной (предпроцессорной) и последующей (постпроцессорной) обработки.

В настоящем описании используются термины "корреляция", "свертка" и "согласованная фильтрация". Термин "корреляция", употребляемый для двух последовательностей чисел, означает почленное перемножение соответствующих элементов двух последовательностей с последующим суммированием последовательностей. Такая процедура иногда называется "последовательной корреляцией" и приводит в результате к получению выходного сигнала, который представляет собой единственное число. В некоторых случаях ряд операций корреляции выполняют на последующих группах данных.

Термин "свертка", который употребляется для двух последовательностей чисел, означает широко используемый в технике способ обработки, эквивалентный фильтрации второй последовательности длиной m с помощью фильтра, который соответствует первой последовательности, имеющий импульсный отклик длиной n. Результатом является третья последовательность длиной m+n-1. Термин "согласованная фильтрация" относится к свертке или фильтрации, причем вышеупомянутый фильтр имеет импульсный отклик, соответствующий комплексно-сопряженной обращенной во времени первой последовательности. Термин "быстрая свертка" употребляется для указания последовательности алгоритмов для вычисления операции свертки эффективным способом.

Иногда термины "корреляция" и "свертка" используются взаимозаменяемо. Для ясности, однако, в настоящем описании термин "корреляция" всегда относится к операции последовательной корреляции, которая описана выше.

Сущность изобретения

Один из вариантов настоящего изобретения предусматривает способ определения местоположения удаленного приемника сигналов системы GPS посредством передачи информации спутников GPS, включая доплеровскую частоту, удаленному устройству или мобильному устройству системы GPS от базовой станции по каналу передачи данных. Удаленное устройство использует эту информацию и принимаемые сигналы GPS от находящихся в поле зрения спутников для последующего вычисления псевдодальностей до спутников. Вычисленные псевдодальности затем передаются в базовую станцию, в которой вычисляется местоположение удаленного устройства. Кроме того, описаны различные варианты осуществления устройств, в которых можно использовать этот способ.

Другой вариант осуществления настоящего изобретения предусматривает приемник системы GPS, имеющий антенну для приема сигналов GPS от спутников, находящихся в поле зрения, и преобразователь с понижением частоты для понижения радиочастоты (РЧ) принимаемых сигналов GPS до промежуточной частоты (ПЧ). Сигналы ПЧ преобразуются в цифровую форму и запоминаются в памяти для последующей обработки в приемнике. Эта обработка обычно выполняется в одном из вариантов осуществления изобретения с использованием программируемого цифрового процессора сигналов, который выполняет команды, необходимые для выполнения операций быстрой свертки (например, БПФ) для дискретизированного сигнала ПЧ системы GPS для получения информации псевдодальности. Эти операции также включают в себя обычно предварительную обработку (перед операцией быстрой свертки) и последующую обработку (после операции свертки) сохраненных версий сигналов GPS или обработанных или сохраненных версий сигналов GPS.

Другой вариант осуществления настоящего изобретения предусматривает способ управления мощностью приемника сигналов системы GPS и приемник сигналов системы GPS со средствами управления мощностью. Потери мощности уменьшаются по сравнению с известными системами за счет приема сигналов системы GPS от спутников, находящихся в поле зрения, буферизации этих сигналов и затем выключения приемника сигналов GPS. Кроме того, описаны другие особенности управления мощностью.

Краткое описание чертежей

Сущность изобретения иллюстрируется на примере со ссылками на чертежи, на которых представлено следующее:

фиг.1А - структурная схема основных компонентов удаленной или мобильной приемной системы GPS, имеющей способы согласно настоящему изобретению; показаны каналы передачи данных, которые могут существовать между базовой станцией и удаленным приемником;

фиг.1В - структурная схема альтернативного мобильного устройства GPS;

фиг.1С - структурная схема другого альтернативного мобильного устройства GPS;

фиг.2А и 2В - структурные схемы двух альтернативных вариантов для РЧ и ПЧ частей приемника, выполненного согласно настоящему изобретению;

фиг.3 - блок-схема последовательности операций (например, выполняемых программными средствами) программируемого цифрового процессора сигналов согласно способам, соответствующим настоящему изобретению;

фиг.4 - формы сигналов на различных этапах обработки в соответствии со способами согласно изобретению;

фиг.5А - система базовой станции соответственно одному из вариантов осуществления изобретения;

фиг.5В - система базовой станции, соответствующая другому варианту осуществления изобретения;

фиг.6 - мобильное устройство GPS, содержащее средства коррекции или калибровки гетеродина в соответствии с одним из аспектов изобретения;

фиг.7 - блок-схема последовательности операции в процедуре управления мощностью для мобильного устройства в соответствии с одним из вариантов осуществления изобретения.

Детальное описание изобретения

Настоящее изобретение относится к устройствам и способам для вычисления местоположения мобильного или удаленного объекта, чтобы обеспечить возможность аппаратным средством удаленного устройства иметь малые потери рассеяния мощности и работать при весьма низких уровнях принимаемого сигнала. Это означает, что потребляемая мощность снижается, а чувствительность приемника возрастает. Это обеспечивается реализацией функций приема удаленного устройства, как показано на фиг.1А, а также передачей доплеровской информации от отдельно расположенной базовой станции 10 к удаленному или мобильному устройству 20 GPS.

Следует отметить, что для вычисления местоположения удаленного устройства можно использовать псевдодальности в соответствии с разными способами, примеры которых приведены ниже:

1. Способ 1: Ретранслируя спутниковые информационные сообщения в удаленное устройство 20 из основной станции 10, удаленное устройство 20 может комбинировать эту информацию с измерениями псевдодальностей для вычисления его местоположения (см., например, патент США №5365450). Обычно вычисление местоположения удаленного устройства 20 осуществляется в самом этом устройстве 20.

2. Способ 2: Удаленное устройство 20 может получать спутниковые данные эфемерид путем приема обычным способом сигналов GPS, что широко используется в технике. Эти данные, действительные обычно в течение одного - двух часов, можно комбинировать с измерениями псевдодальностей до завершения вычисления местоположения в удаленном устройстве.

3. Способ 3: Удаленное устройство 20 может передавать по каналу 16 связи псевдодальности в базовую станцию 10, которая может комбинировать эту информацию со спутниковыми данными эфемерид для вычисления местоположения (см., например, патент США №5225842).

В перечисленных способах 1 и 3 предполагается, что базовая станция 10 и удаленное устройство 20 имеют общую зону видимости всех спутников, представляющих интерес, и располагаются достаточно близко друг от друга для разрешения неоднозначности по времени, которая связана с частотой повторения псевдослучайных кодов системы GPS. Это удовлетворяется для расстояния между базовой станцией 10 и удаленным устройством 20, равного половине произведения скорости света на период повторения псевдослучайной последовательности (1 мс) или около 150 км.

Для пояснения настоящего изобретения предполагается, что для завершения вычисления координат местоположения используется способ 3. Однако из данного описания очевидно, что различные аспекты и варианты осуществления настоящего изобретения можно осуществить с использованием любого из вышеупомянутых или иных способов. Например, в модификациях способа 1 информацию спутниковых данных, например, данные эфемерид спутника, можно передавать с помощью базовой станции в удаленное устройство, и эту информацию спутниковых данных можно комбинировать с псевдодальностями, которые вычисляются, согласно настоящему изобретению, с использованием буферизованных сигналов GPS для получения широты и долготы (а иногда и высоты) для удаленного устройства. Следует иметь в виду, что информация о местоположении, которая поступает из удаленного устройства, может быть ограничена широтой и долготой и может быть более полной информацией, которая включает в себя широту, долготу, высоту, скорость и азимут удаленного устройства. Кроме того, коррекция гетеродина и/или аспекты управления мощностью, соответственно настоящему изобретению, можно использовать в этих модификациях способа 1. Более того, доплеровская информация может передаваться в удаленное устройство 20 и использоваться удаленным устройством 20, согласно аспектам настоящего изобретения.

В способе 3 понимается, что базовая станция 10 выдает команды удаленному устройству 20 для выполнения измерения посредством сообщения, передаваемого по каналу 16 связи передачи данных (фиг.1А). Основная станция 10 также посылает в этом сообщении доплеровскую информацию для спутников, находящихся в поле зрения, которая является формой информации спутниковых данных. Эта доплеровская информация обычно имеет формат информации о частоте, и сообщение будет также определять параметры идентификации конкретных спутников, находящихся в поле зрения, или иные данные инициализации. Это сообщение принимается с помощью отдельного модема 22, который является частью удаленного устройства 20 и сохраняется в памяти 30, которая связана с маломощным микропроцессором 26. Микропроцессор 26 обрабатывает информацию данных, передаваемую между элементами обработки 32-48 удаленного устройства и модемом 22, и контролирует функции управления мощностью в удаленном устройстве 20, как будет описано ниже. В нормальном режиме микропроцессор 26 устанавливает большую часть или все аппаратные средства удаленного устройства 20 в состояние низкой мощности или полного отключения питания, кроме состояния, в котором выполняются вычисления псевдодальности и/или другие вычисления с использованием сигналов GPS, либо может использоваться альтернативный источник питания. Однако приемная часть модема, по меньшей мере, периодически включается (на полную мощность) для того, чтобы определить, передала ли базовая станция 10 команду определения местоположения удаленного устройства.

Эта вышеупомянутая доплеровская информация весьма коротка по длительности, поскольку требуемая точность такой доплеровской информации не высока. Например, если требуется точность 10 Гц и максимальная доплеровская частота составляет приблизительно ± 7 кГц, то 11-битового слова будет достаточно для каждого спутника, находящегося в поле зрения. Если в поле зрения находится 8 спутников, то 88 битов потребуется для точного определения всех таких доплеровских частот. Использование этой информации исключает необходимость поиска доплеровской частоты для удаленного устройства 20, тем самым уменьшая время обработки более чем в 10 раз. Использование информации о доплеровской частоте также позволяет мобильному удаленному устройству 20 GPS более быстро обрабатывать выборку сигналов GPS, что приводит к уменьшению времени, в течение которого процессор 32 должен получить полную мощность для вычисления информации местоположения. Благодаря этому снижается мощность, потребляемая удаленным устройством 20, и повышается чувствительность приемника. В удаленное устройство 20 можно также послать дополнительную информацию, включая в сообщение GPS периоды (сверхкадры) данных.

Принимаемый сигнал канала передачи данных может использовать прецизионную несущую частоту. Удаленное устройство 20, которое описано ниже, может использовать контур автоматической подстройки частоты (АПЧ) для синхронизации с этой несущей и, таким образом, дополнительно откалибровать свой собственный опорный генератор. Время передачи сообщения, равное 10 мс, при отношении сигнал/шум для принимаемого сигнала 20 дБ, обеспечит измерение частоты с использованием АПЧ с точностью 10 Гц или лучше. Этого вполне достаточно для удовлетворения требований настоящего изобретения. Эта особенность повысит также точность вычислений местоположения, которые выполняются традиционными способами или с использованием способов быстрой свертки согласно настоящему изобретению.

В одном из вариантов осуществления изобретения канал связи 16 образует коммерчески используемую узкополосную радиочастотную среду связи, например, двустороннюю пейджинговую систему. Эту систему можно использовать в вариантах осуществления, в которых количество данных, передаваемых между удаленным устройством 20 и базовой станцией 10, относительно невелико. Количество данных, которые требуются для передачи доплеровской частоты, и других данных (например, данных инициализации, таких как данные идентификации спутников, которые находятся в поле зрения), относительно невелико, и, аналогично, количество данных, требуемых для информации о местоположении (например, псевдодальности), также относительно невелико. Следовательно, узкополосные системы вполне подходят для этого варианта осуществления. Это отличает изобретение от систем, которые требуют передачи большого количества данных за короткий период времени, такие системы могут потребовать более широкополосной радиочастотной среды передачи.

Так как удаленное устройство 20 принимает команду (например, от базовой станции 10) для обработки сигналов GPS вместе с информацией о доплеровской частоте, микропроцессор 26 запускает преобразователь 42 РЧ в ПЧ, аналого-цифровой преобразователь 44 и цифровую динамическую память 46 через аккумулятор и регулятор мощности питания и схему 36 переключения мощности питания (и управляемые по питанию цепи 21а, 21b, 21с и 21d), обеспечивая таким образом подачу полной мощности в эти элементы. Это обеспечивает преобразование сигнала, поступающего от спутника системы GPS и принимаемого с помощью антенны 40, на ПЧ с последующим преобразованием в цифровую форму. Непрерывный набор таких данных, обычно соответствующий длительности от 100 мс до 1 с (или даже с большей длительностью), затем сохраняется в динамической памяти 46. Количеством запоминаемых данных можно управлять с помощью микропроцессора 26 так, чтобы большее количество данных могло сохраняться в памяти 46 (для получения более высокой чувствительности) в тех ситуациях, когда экономия ресурсов питания не так важна по сравнению с обеспечением более высокой чувствительности, и меньшее количество данных можно запоминать в тех ситуациях, когда экономия ресурсов мощности является более важной, чем чувствительность. Обычно чувствительность более важна, когда прохождению сигналов GPS частично мешают различного рода препятствия, а экономия ресурсов мощности менее важна, когда используется мощный источник питания (например, автомобильный аккумулятор). Адресацией памяти 46 для сохранения данных управляет интегральная схема 48 программируемой логической матрицы. Преобразование с понижением частоты сигнала GPS выполняется с использованием синтезатора частоты 38, который обеспечивает подачу сигнала 39 гетеродина в преобразователь 42, как изложено ниже.

Следует отметить, что все это время (когда динамическая память 46 заполняется цифровыми сигналами GPS, которые поступают со спутников, находящихся в поле зрения) микропроцессор 32 цифровой обработки сигналов может находиться в состоянии низкого потребления мощности. Преобразователь 42 РЧ в ПЧ и аналого-цифровой преобразователь 44 обычно включаются только на короткий период времени, достаточный для сбора и сохранения данных, которые требуются для вычисления псевдодальности. После завершения сбора данных этими схемами преобразователей выключается мощность, подаваемая по цепям 21b и 21с управления подачей мощностью, которая снижается иным образом (хотя в память 46 продолжает поступать полная мощность), таким образом не внося дополнительных потерь мощности во время действительного вычисления псевдоинтервалов. Затем вычисление псевдодальности выполняется в одном варианте осуществления с использованием программируемой ИС 32 для цифровой обработки сигналов (ЦОС) общего назначения, примером которой может служить интегральная схема TMS320C30, выпускаемая фирмой Texas Instruments. Эта ИС ЦОС 32 до выполнения таких вычислений находится в состоянии активного потребления мощности с помощью микропроцессора 26 и схемы 36 через цепь 21е управления подачей мощностью.

Эта ИС ЦОС 32 отличается от других, которые используются в некоторых удаленных устройствах GPS тем, что она является интегральной схемой общего назначения и программируемой по сравнению со специализированными интегральными схемами, предназначенными для обработки цифровых сигналов. Кроме того, ИС ЦОС 32 делает возможным использование алгоритма быстрого преобразования Фурье (БПФ), который позволяет с высоким быстродействием производить вычисления псевдодальности путем выполнения большого числа операций корреляции между местным опорным сигналом и принимаемыми сигналами. Обычно для завершения поиска для периодов каждого принимаемого сигнала GPS требуется 2046 таких операций корреляции. Алгоритм быстрого преобразования Фурье позволяет выполнить одновременно и параллельно поиск всех таких местоположений, таким образом, ускоряя требуемый процесс вычисления от 10 до 100 раз по сравнению с традиционными подходами.

После того как блок ЦОС 32 завершает свое вычисление псевдодальности для каждого спутника, находящегося в поле видимости, она передает, в одном варианте осуществления изобретения, эту информацию микропроцессору 26 посредством внутренней шины 33. В это время микропроцессор 26 может обусловить переход блока ЦОС 32 и памяти 46 в состояние с низким потреблением мощности путем посылки соответствующего сигнала управления в схему 36 регулятора мощности питания и аккумулятора. Затем микропроцессор 26 использует модем 22 для передачи данных о псевдодальности по каналу 16 передачи данных в базовую станцию 10 для окончательного вычисления местоположения. В дополнение к данным псевдодальности временную метку можно одновременно передать в базовую станцию 10, которая показывает время, которое проходит с момента первоначального сбора данных в буфере 46 до времени передачи данных по каналу 16 передачи данных. Эта временная метка улучшает возможности базовой станции по вычислению расчетного местоположения, поскольку она обеспечивает вычисление местоположения спутников GPS во время сбора данных. В качестве альтернативы, согласно вышеуказанному способу 1, блок ЦОС 32 может вычислять местоположение (например, широту, долготу или широту, долготу и высоту) удаленного устройства и послать эти данные в микропроцессор 26, который подобным образом ретранслирует эти данные в базовую станцию 10 через модем 22. В этом случае вычисление местоположения облегчается с помощью ЦОС, поддерживающей время, которое проходит с момента приема сообщений спутниковых данных до момента начала сбора данных буфера. Это улучшает возможности удаленного устройства по вычислению расчетного местоположения, поскольку обеспечивается вычисление местоположения спутника GPS во время сбора данных.

Как показано на фиг.1А, модем 22 в одном из вариантов осуществления использует отдельную антенну 24 для передачи и приема сообщений по каналу 16 передачи данных. Ясно, что модем 22 включает в себя связной приемник и связной передатчик, которые поочередно подсоединяются к антенне 24. Аналогично, в базовой станции 10 можно использовать отдельную антенну 14 для передачи и приема сообщений по каналу передачи данных, таким образом позволяя проводить непрерывный прием сигналов GPS посредством антенны 12 для приема сигналов системы GPS в базовую станцию 10.

В типичном примере предполагается, что вычисления местоположений в блоке ЦОС 32 потребуют менее нескольких секунд, в зависимости от количества данных, которые хранятся в цифровой динамической памяти 46 и скорости ЦОС или нескольких ЦОС.

Из вышеприведенного обсуждения будет ясно, что в удаленном устройстве 20 необходимо включить схемы потребления высокой мощности только на короткий промежуток времени в случае, если команды вычисления местоположения, поступающие из базовой станции 10, не являются частыми. Следует отметить, что в большинстве случаев такие команды будут приводить к запуску аппаратуры удаленного устройства, для которой свойственны высокие потери мощности, только в течение примерно 1% времени или менее.

Это позволит увеличить срок службы аккумулятора в 100 раз, по сравнению с другими возможными случаями. Команды программ, необходимые для выполнения операции управления подачей мощностью, хранятся в ЭСППЗУ 28 или в другой подходящей среде хранения. Эту стратегию управления мощностью можно адаптировать для различных ситуаций используемой мощности. Например, в случае, когда используется основная мощность, то определение местоположения может происходить на постоянной основе.

Как показано выше, цифровая динамическая память 46 запоминает запись, соответствующую относительно продолжительному периоду времени. Эффективная обработка этого большого блока данных с использованием способов быстрой свертки обеспечивает в данном изобретении обработку сигналов на низких уровнях принимаемых сигналов (например, когда прием является плохим из-за частичного затенения, обусловленного зданиями, деревьями и т.д.). Все псевдодальности для наблюдаемых спутников системы GPS вычисляются с использованием тех же самых буферизованных данных. Это улучшает характеристики, относительно приемников сигнала GPS непрерывного сопровождения в ситуациях (например, в условиях затенения, свойственных городской среде), при которых амплитуда сигнала быстро изменяется.

Несколько отличающийся вариант осуществления, представленный на фиг.1В, не использует микропроцессор 26 и его периферийные устройства (ЗУПВ 30 и ЭСППЗУ 28) и заменяет их функциональные возможности с помощью дополнительной схемы, которая входит в состав более сложной ППВМ (программируемая пользователем вентильная матрица) 49. В этом случае ППВМ 49, как устройство с низким потреблением мощности, служит для возбуждения ИС ЦОС 32а после регистрации сигнала активизации, поступающего из модема 22 через внутреннее соединение 19. Внутреннее соединение 19 соединяет модем с ЦОС 32а и с ППВМ 19. ИС ЦОС 32а при активизации непосредственно передает и принимает данные из модема. ИС ЦОС 32а также выполняет операции управления потреблением мощности через внутреннее соединение 18, которое подсоединяется к аккумулятору и регулятору мощности и переключателю 36 мощности для выполнения команд включения/выключения мощности в схеме 36. ИС ЦОС 32а выборочно подает мощность или уменьшает мощность, подводимую к различным компонентам, согласно способу управления мощностью (фиг.7) с помощью команд включения/выключения мощности, выполненной при помощи внутреннего соединения 18 в схеме 36. Схема 36 получает эти команды и выборочно обеспечивает подачу мощности (или уменьшает подачу мощности) к различным компонентам. Схема 36 возбуждает ИС ЦОС 32а посредством внутреннего соединения 17. Схема 36 выборочно обеспечивает подачу мощности к различным компонентам при помощи выборочного переключения мощности через выбранные элементы цепей 21а, 21b, 21с, 21d и 21f управляемой подачи мощности. Таким образом, например, для подачи мощности к преобразователю 42 и преобразователю 44, мощность подается через цепи 21b и 21с к этим преобразователям. Аналогично, мощность к модему подается через цепь 21f управления мощностью.

Кварцевый генератор 47 низкой частоты подсоединяется к памяти и ППВМ 49 управления мощностью. В одном варианте осуществления, память и ППВМ 49 управления мощностью содержит таймер с малой мощностью потребления, который включает в себя генератор 47 низкой частоты. Когда таймер ППВМ 49 отсчитывает заданный интервал, ППВМ 49 посылает сигнал возбуждения на ИС ЦОС 32а через внутреннее соединение 17, и ИС ЦОС 32а в дальнейшем может активизировать другие схемы с помощью команд включения/выключения подачи мощности на схему 36 переключателей мощности, регулятора мощности и аккумулятора. Другие схемы запитываются по цепям управления мощностью 21а, 21b, 21с, 21d и 21f при управлении от схемы 36 для выполнения операции позиционирования, например, определения информации местоположения, такой как псевдодальность или широта и долгота. Вслед за операцией позиционирование, ЦОС 32а устанавливает в исходное состояние таймер ППВМ и уменьшает мощность собственного питания, а схема 36 также уменьшает подачу мощности на другие компоненты, в соответствии со способом, иллюстрируемым фиг.7.

Следует иметь в виду, что аккумулятор и множество батарей будут обеспечивать подачу мощности для всех схем с управляемой подачей мощности по цепи управления мощностью, которые управляются с помощью памяти и ППВМ управления мощностью и ИС ЦОС 32а. Также следует иметь в виду, что вместо непосредственного уменьшения подачи мощности к компоненту посредством цепей управления мощностью (например, 21b), мощность, потребляемая компонентом, может быть снижена путем передачи ему сигнала (как в случае ЦОС 32а через внутреннее соединение 17, изображенное на фиг.1В) для уменьшения мощности или возбуждения полной мощности; это возможно, когда компонент, например, интегральная схема, имеет вход управления состоянием мощности, и внутреннюю логическую схему для управления мощностью (например, логическая схема для уменьшения мощности в различных логических блоках компонента). ППВМ 49 управления мощностью производит управление памятью и управление, которое включает в себя операции адресации в случае, когда данные, поступающие от преобразователя 44, сохраняются в памяти 46, или когда элемент ЦОС 32а считывает данные из памяти 46. При необходимости ППВМ 49 может управлять другими функциями памяти, такими как очищение памяти.

На фиг.1С показан другой вариант осуществления, согласно настоящему изобретению, мобильного устройства GPS, который содержит те же самые элементы, что и мобильные устройства GPS, показанные на фиг.1А и 1В. Кроме того, мобильное устройство GPS (фиг.1С) содержит регуляторы 77 мощности, которые подсоединены для приема мощности, подаваемой от множества аккумуляторов 81, а также от дополнительного входа 83 для подключения внешнего источника питания и солнечных элементов 79. Регулятор 77 мощности обеспечивает подачу мощности для всех схем при управлении с помощью цепей управления мощностью, которые управляются с помощью ИС ЦОС 32а и памяти и ППВМ управления подачей мощностью (фиг.1С). Солнечный элемент 79 может перезаряжаться с использованием традиционной технологии подзаряда этих аккумуляторов. Солнечные элементы 79 могут также обеспечить подачу мощности к мобильному устройству GPS в дополнение к перезаряжаемым аккумуляторам. В варианте осуществления по фиг.1С, ППВМ 49 подает сигнал возбуждения по внутреннему соединению 75 на ИС ЦОС 32а, причем этот сигнал заставляет ИС ЦОС возвращаться в состояние полного потребления мощности для выполнения различных функций, описанных для ИС ЦОС 32а. ИС ЦОС может возбуждаться до состояния полного потребления мощности посредством внешней команды с мод