Повышение качества интраваскулярного ультразвукового изображения и обработки сигналов

Реферат

 

Изобретение относится к медицинской технике и может быть использовано при ультразвуковых исследованиях. Катетер, содержащий ультразвуковой прибор, введен в полость и может двигаться через полость трубчатого органа тела. Прибор передает ультразвуковые сигналы и детектирует отраженные ультразвуковые сигналы, которые содержат информацию относительно полости трубчатого органа тела. Процессор, связанный с катетером, запрограммирован на формирование первого изображения из серии изображений и второго изображения из серии изображений из детектируемых ультразвуковых сигналов. Процессор также запрограммирован на сравнение второго изображения из серии изображений с первым изображением или серией изображений соответственно. Процессор может быть запрограммирован на стабилизацию второго изображения относительно первого изображения и на ограничение дрейфа. Для выявления кардиоваскулярной периодичности, временного изменения, сосудодвигательной реакции и для улучшения качества изображения процессор может быть также запрограммирован на текущий контроль первого и второго изображений. Процессор может также согласовывать первую серию изображений и вторую серию изображений. Изобретение позволяет повысить информативность сформированных интраваскулярных ультразвуковых изображений при текущем контроле сосудодвигательной реакции. 14 н. и 76 з.п. ф-лы, 15 ил.

ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ НАСТОЯЩЕЕ ИЗОБРЕТЕНИЕ

Настоящее изобретение относится к устройству и способу улучшения качества интраваскулярного ультразвукового изображения и обработки сигналов, а более конкретно - к устройству и способу обработки интраваскулярной ультразвуковой видео и сигнальной информации, которые улучшают качество и эффективность (полезность) интраваскулярных ультразвуковых изображений.

ПРЕДПОСЫЛКИ СОЗДАНИЯ НАСТОЯЩЕГО ИЗОБРЕТЕНИЯ

Интраваскулярные ультразвуковые изображения формируют из луча ультразвуковой энергии, направляемого прибором, например первичным измерительным преобразователем или матрицей первичных измерительных преобразователей, расположенных вокруг, вдоль или на конце катетера, введенного в кровеносный сосуд. Ультразвуковой луч из прибора непрерывно вращается в кровеносном сосуде, формируя полное изображение внутреннего поперечного сечения, то есть изображение в поперечной (X-Y) плоскости. В зависимости от характерной конфигурации прибора изображение может быть получено либо из той же поперечной плоскости прибора, либо из поперечной плоскости, находящейся немного впереди (то есть удаленной) от поперечной плоскости прибора. Если катетер перемещают внутри и вдоль кровеносного сосуда (то есть вдоль оси Z), то могут быть сформированы и визуально воспроизведены изображения различных сегментов (ряд последовательных поперечных сечений) сосуда.

Интраваскулярное ультразвуковое исследование может быть проведено во всех типах кровеносных сосудов, включая (без ограничения) артерии, вены и другие периферийные сосуды, и во всех частях тела.

Принимаемый (детектируемый) ультразвуковой сигнал сначала является аналоговым сигналом. Этот сигнал обрабатывают, применяя аналоговые и цифровые способы так, чтобы в конечном счете получить набор векторов, содержащих данные, преобразованные в цифровую форму. Каждый вектор представляет реакцию (на воздействие ультразвукового луча) другого углового сектора сосуда, то есть сечение кровеносного сосуда. Число элементов данных в каждом векторе (разрешение выборки в осевом направлении) и число векторов, используемых для сканирования всего поперечного сечения (разрешение выборки в поперечном направлении) сосуда, могут изменяться в зависимости от типа используемой системы.

Векторы, преобразованные в цифровую форму, вначале могут быть размещены в двухмерной матрице, имеющей полярные координаты, то есть А(r, ). Например, в этой матрице полярных координат ось Х соответствует координате r, а ось Y - координате . Каждое значение матрицы является величиной (в диапазоне 0-255, если система является восьмибитовой), представляющей силу реакции на воздействие ультразвукового луча в этом месте.

Матрицу полярных координат, как правило, не передают для визуального воспроизведения, поскольку результирующее изображение будет слишком сложным для интерпретации врачами. Информация, хранимая в матрице полярных координат А(r, ), как правило, подвергается нескольким ступеням обработки и интерполируется в прямоугольные (декартовы) координаты, например координаты Х и Y (А(Х, Y)), которые просто интерпретируются врачами. Таким образом, ось Х и Y матрицы А(Х, Y) будет соответствовать представлению поперечного сечения сосуда в прямоугольных координатах. Информация в матрице прямоугольных координат, возможно, подвергается дальнейшей обработке и в конечном счете визуально воспроизводится для анализа врачом. Некоторые системы могут собирать данные и визуально воспроизводить изображения в частоте видеодисплея, например приблизительно 30 изображений в секунду.

Интраваскулярное ультразвуковое исследование сегмента полости трубчатого органа тела, то есть сосуда, как правило, осуществляют путем введения катетера в отдаленную часть сегмента, подлежащего исследованию, и затем катетер медленно вытягивают назад вдоль полости трубчатого органа тела (вдоль оси Z) так, что непрерывно воспроизводятся последовательные изображения, которые образуют сегмент. Во многих случаях катетер соединяют с механическим вытяжным устройством, которое тянет катетер с постоянной скоростью, которая, как правило, составляет приблизительно 0,5-1 мм/сек.

В современных системах формирования интраваскулярных ультразвуковых изображений, как правило, для визуального воспроизведения изображения поперечного сечения полости трубчатого органа тела, например кровеносного сосуда, используют технологию, которая была описана выше. Однако эти системы несовершенны, поскольку они не предусматривают какой-либо стабилизации изображений для компенсации движения катетера и/или полости трубчатого органа тела, например кровеносного сосуда. Хорошо известно, что в процессе формирования интраваскулярного ультразвукового изображения полости трубчатого органа тела всегда имеется движение катетера и/или полости трубчатого органа тела. Такое движение может иметь место в поперечной плоскости (X-Y), вдоль оси (оси Z) сосуда или быть комбинацией таких движений. Катетер, предназначенный для формирования изображения, может также отклоняться относительно сосуда, так что плоскость формирования изображения становится не перпендикулярной оси Z (такое движение будет называться угловым отклонением). Такие движения вызываются биением сердца, пульсацией крови и/или другой жидкости, проходящей через полость трубчатого органа тела, движением сосудов, силами, прикладываемыми врачом, и другими силами, вызванными причинами, относящимися к физиологии.

В современных системах формирования интраваскулярных ультразвуковых изображений, если катетер, предназначенный для формирования изображения, неподвижен или при осуществлении медленного вытягивания вручную или механически, относительное движение катера и полости трубчатого органа тела является главным фактором изменения внешнего вида последовательных изображений, то есть как видно на устройстве для визуального воспроизведения пленки или видеоизображения. Изменение внешнего вида имеет место, поскольку скорость изменения изображения в процессе движений намного больше, чем скорость изменения действительной морфологии из-за вытягивания.

Если формирование изображения предусматривает компенсацию в последовательных изображениях относительного движения катетера и полости трубчатого органа тела, то имеет место стабилизация. Поскольку ни в одной из применяемых в настоящее время систем формирования интраваскулярных ультразвуковых изображений не обеспечивается стабилизации, отсутствует компенсация или коррекция относительных движений катетера и полости трубчатого органа тела. В результате этого элементы морфологии представляются как постоянно движущиеся или вращающиеся, то есть как видно на устройстве для визуального воспроизведения пленки или видеоизображения. Это затрудняет врачу точно интерпретировать морфологию при динамичном отображении интраваскулярного ультразвукового изображения. Кроме того, при отсутствии стабилизации интраваскулярных ультразвуковых изображений, подаваемых на вход алгоритма обработки, например восстанавливающего объем или другого фильтра, который обрабатывает набор последовательных изображений, это может привести к искажениям, неправильному диагнозу или неточным исследованиям.

Современные аппараты или катетеры для формирования интраваскулярных ультразвуковых изображений могут иметь нарушения нормальной работы, связанные с работой электронных или механических устройств. Это может приводить к визуальному воспроизведению изображений известных или неизвестных артефактов и скрывать действительную морфологию. В настоящее время нет автоматизированных способов определения, являются ли представленные изображения артефактами, которые затрудняют анализ изображений сосуда или полости трубчатого органа тела.

Поведение кардиоваскулярной функции, как правило, является периодическим. Выявление этой периодичности и способность установить корреляцию между изображением и временной фазой сердечного цикла, к которому оно относится, называют кардиальной селекцией.

В настоящее время кардиальную селекцию осуществляют путем использования внешнего сигнала, обычно электрокардиограммы. Однако селекция с помощью электрокардиограммы требует приема сигнала электрокардиограммы и его чередование (или синхронизацию) с интраваскулярным ультразвуковым изображением. Это требует дополнительного аппаратного/программного обеспечения.

Структурные элементы в интраваскулярных ультразвуковых изображениях кровеносных сосудов могут быть разбиты на три общие категории: полость, то есть область, через которую проходит поток крови или другой жидкости; слои оболочки сосуда; и наружная сторона, то есть ткань или морфология внешней стороны сосуда. Кровь в большинстве интраваскулярных ультразвуковых пленок (изображений) характеризуется быстро изменяющейся отражающей структурой. Внешняя сторона сосуда также изменяется с высокой временной частотой. В настоящее время временное поведение пикселей и их структурных атрибутов также автоматически не контролируется.

Сосудодвигательная реакция в контексте полостей трубчатых органов тела, например кровеносных сосудов, определяется как изменение диаметра полости, например сосуда. Такое изменение может иметь место в естественных условиях или быть вызвано искусственно. Сосудодвигательная реакция может иметь динамический компонент, то есть динамическое изменение размеров полости трубчатого органа тела, например диаметра сосуда (сжатие и расширение), в течение кардиоваскулярного цикла, и статический компонент основной конфигурации, то есть изменение диаметра основной конфигурации полости трубчатого органа тела, например сосуда.

Сосудодвигательная реакция может быть выражена в виде количественных физиологических параметров, показывающих способность полости трубчатого органа тела, например сосуда, изменять свой диаметр в некоторых условиях. Эти параметры имеют в настоящее время и, возможно, в будущем важность с медицинской и диагностической точки зрения, поскольку дают информацию в отношении состояния полости трубчатого органа тела, например сосуда, и эффекта проведенной терапии.

Интраваскулярное ультразвуковое формирование изображения используют для текущего контроля сосудодвигательной реакции, поскольку такое изображение обеспечивает отображение диаметра основной конфигурации и его динамические изменения. Кроме того, интраваскулярное ультразвуковое формирование изображения может быть использовано для текущего контроля того, является ли сосудодвигательная реакция глобальной (равномерной), то есть все поперечное сечение полости полого органа тела сжимается/расширяется с одинаковой величиной и в одном направлении. Интраваскулярное ультразвуковое формирование изображения может быть также использовано для определения того, является ли сосудодвигательная реакция неравномерной, что ведет к локальным изменениям диаметра полости трубчатого органа тела, то есть разные части поперечного сечения полости трубчатого органа тела ведут себя по-разному.

В настоящее время все виды текущего контроля сосудодвигательной реакции, осуществляемые с помощью интраваскулярного ультразвукового формирования изображения, выполняют вручную. Это является трудоемкой, длительной операцией, которая не позволяет осуществлять текущий контроль в реальном масштабе времени.

Интерпретацию интраваскулярных ультразвуковых изображений осуществляют посредством анализа композиции статических изображений и текущего контроля их временного поведения. Большинство интраваскулярных ультразвуковых изображений может быть разделено на три основные части. Наибольшую часть внутреннего сечения представляет собой канал полости трубчатого органа тела, то есть полость, через которую проходит поток вещества, то есть крови. Вокруг канала для прохождения потока находится действительный сосуд, который может включать в себя кровеносные сосуды и какие-либо другие сосуды тела, которые состоят из множества слоев ткани (и бляшек, если имеется заболевание). Вне сосуда может находиться другая ткань, которая может принадлежать к окружающей морфологии, например к сердцу, в изображении коронарного сосуда.

Если интраваскулярную ультразвуковую пленку просматривают в динамическом режиме, то есть в формате кинофильма, то пиксели, соответствующие потоку вещества, проходящего через сосуд, и морфологии внешней стороны сосуда имеют другое временное поведение, чем сам сосуд. Например, в большинстве интраваскулярных ультразвуковых пленок поток крови, проходящий через сосуд, отличается часто чередующимися отражающими конфигурациями. Внешняя сторона морфологии сосуда также имеет частые чередования. В настоящее время временное поведение пикселей в динамических интраваскулярных ультразвуковых изображениях автоматически не контролируют.

В современных устройствах для визуального воспроизведения ультразвуковых интраваскулярных изображений, если они предусмотрены в системе, высокочастотные временные изменения подавляют посредством, например, усреднения некоторого числа изображений. Однако это в некоторых случаях ведет к подавлению внешнего вида элементов с высокой амплитудой, то есть показателей светло-серого цвета, а также приводит к нерезкости контура изображения.

Размер канала (прохождения потока) полости трубчатого органа тела является очень важным диагностическим параметром. Если это требуется для диагностики, то этот параметр, например, определяется врачом вручную. Это осуществляют вычерчиванием контура границ прохождения потока, наложенных на статическое изображение, например, зафиксированного на экране или дисплее. Такой неавтоматизированный способ получения размера канала является трудоемким, неточным и связанным с систематическими ошибками оценки, обусловленными субъективными факторами или неточностями прибора.

В настоящее время можно купить программное обеспечение обработки изображения для автоматического получения размера канала прохождения потока. Однако такие методики основаны на оценке показателя серого цвета статических изображений и не принимают во внимание другое временное поведение материала, например крови, проходящей через канал вдоль стенок сосуда.

В процессе лечения сосудов обычной является практика повторения интраваскулярного ультразвукового исследования вытягиванием в некоторых сегментах сосуда. Например, обычной ситуацией является первоначальное исследование соответствующего сегмента сосуда, диагноз заболевания (если оно имеется), удаление интраваскулярного ультразвукового катетера, назначение терапии, осуществление терапии, например с помощью надувного, вводимого в полость, баллона или стента, и затем сразу после этого повторное исследование прошедшего терапию сегмента при использовании интраваскулярного ультразвукового катетера для оценки результатов терапии. Для правильной оценки результатов и полной оценки эффекта проведенной терапии желательно, чтобы изображения сегментов перед терапией и после терапии, на которых представлены поперечные сечения сосуда, лежали в тех же самых сравниваемых местах вдоль оси Z сосуда (то есть соответствующие сегменты). Для осуществления такого сравнения необходимо определить, какие места в пленках интраваскулярных ультразвуковых изображений, полученных перед терапией, и интраваскулярных ультразвуковых изображений, полученных после терапии, соответствуют друг другу. Эта процедура, называемая согласованием, позволяет точно сравнивать интраваскулярные ультразвуковые изображения, полученные перед и после терапии.

В настоящее время такое согласование, как правило, осуществляют посредством просмотра интраваскулярных ультразвуковых пленок (полученных при вытягивании соответствующего катетера) сегментов перед терапией и после терапии, одной после другой или одной за другой, используя поддающиеся идентификации анатомические ориентиры для определения последовательностей, которые визуально соответствуют друг другу. Этот способ крайне неточен и труден для применения, принимая во внимание то, что изображения не стабильны и часто поворачиваются и/или движутся на дисплее вследствие отсутствия стабилизации и поскольку многие из анатомических ориентиров, обнаруженных в интраваскулярном ультразвуковом изображении пленки сегмента перед терапией, могут быть разрушены или изменены в результате терапии, проведенной на сосуде. Кроме того, ориентация и внешний вид сосуда, вероятно, изменятся в результате различных ориентаций и относительных положений интраваскулярного ультразвукового катетера относительно сосуда вследствие его удаления и повторного введения после завершения терапии. Согласование, которое делают вручную при неавтоматизированной визуальной идентификации, может быть крайне трудоемким и неточным.

КРАТКОЕ ИЗЛОЖЕНИЕ СУЩНОСТИ НАСТОЯЩЕГО ИЗОБРЕТЕНИЯ

Настоящее изобретение решает проблемы, связанные с системами формирования интраваскулярных ультразвуковых изображений, имеющимися в настоящее время на рынке, и с предшествующим уровнем техники посредством обеспечения врачей точными интраваскулярными ультразвуковыми изображениями и последовательностями изображений исследуемой морфологии, обеспечивая в соответствии с этим постановку более точного диагноза и проведение более точного исследования.

Настоящее изобретение обеспечивает способ обработки интраваскулярной ультразвуковой видео и сигнальной информации для удаления искажений и неточностей, вызванных различными видами движения катетера и полости трубчатого органа тела. Такая обработка в результате обеспечивает увеличение качества и эффективности (полезности) интраваскулярных ультразвуковых изображений. Преимущество, обеспечиваемое настоящим изобретением, заключается в том, что отдельные интраваскулярные ультразвуковые изображения стабилизируются относительно предшествующего изображения (изображений), устраняя благодаря этому отрицательные эффекты, возникающие при какой-либо последующей обработке множества изображений. Если движения в каждом изображении являются движениями в поперечном направлении, то такие движения могут быть полностью скомпенсированы для каждого полученного изображения.

Поскольку движение в полости трубчатого органа тела стабилизируется, настоящее изобретение обеспечивает алгоритмы объемной реконструкции для точного воспроизведения морфологии. Настоящее изобретение применимо и эффективно в системе любого типа, в которой имеется необходимость стабилизации изображений (интраваскулярных ультразвуковых или других), поскольку зонд (например, ультразвуковой или другой), движущийся через полость, имеет относительное движение (например, относительно полости трубчатого органа тела).

Настоящее изобретение предусматривает детектирование ультразвукового сигнала, генерируемого ультразвуковым устройством в полости трубчатого органа тела, перевод принимаемого аналогового сигнала в полярные координаты (А(r, )), стабилизацию поля в полярных координатах, преобразование стабилизированных полярных координат в прямоугольные координаты (А(Х, Y)), стабилизацию поля в прямоугольных координатах и затем передачу стабилизированного изображения как прямоугольных координат к устройству для визуального воспроизведения. Стабилизированные изображения (в полярных или прямоугольных координатах) могут быть дополнительно обработаны перед визуальным воспроизведением или могут визуально не воспроизводиться. Преобразование в прямоугольные координаты и/или стабилизация поля в прямоугольных координатах может быть сделана в любой момент перед или после стабилизации поля в полярных координатах. Кроме того, стабилизация поля в полярных или прямоугольных координатах может не проводиться в зависимости от обнаруженного смещения в изображении или в зависимости от других факторов. Помимо этого, в зависимости от обнаруженного смещения или от других факторов, могут быть включены или исключены дополнительные формы стабилизации.

Например, стабилизация устойчивого движения может быть введена для компенсации поворотного (углового) движения или глобальной сосудодвигательной реакции (расширения или сжатия в направлении r) в поле, представленном в полярных координатах, и/или сдвига в прямоугольных координатах (в направлении Х и/или Y) в поле в прямоугольных координатах.

Устойчивое поперечное движение между представлениями последовательных изображений называют "смещением", то есть равномерным движением в плоскости изображения всех относящихся к морфологии элементов. Для стабилизации интраваскулярных ультразвуковых изображений на первом этапе осуществляют "оценку и выявление смещения". То есть между каждой парой последовательных изображений оценивают и выявляют смещение (если оно имеется). Для выполнения операции на паре интраваскулярных ультразвуковых изображений с целью определения, имеется ли смещение между такими изображениями, в системе может быть использован процессор. Процессор может использовать единственный алгоритм или может выбирать из нескольких алгоритмов для выполнения такой операции.

Система использует алгоритм (алгоритмы) для моделирования смещения в изображении и затем сравнивает это смещенное изображение с предшествующим ему изображением. Сравнения между изображениями известны как операции сравнения, которые могут быть также известны на предшествующем уровне техники как согласование. Для каждого смещения система выполняет одну операцию сравнения. Результаты серии операций сравнения оцениваются для определения местоположения (направления и величины) смещенного изображения, которое имеет наибольшее сходство с предшествующим несмещенным изображением. Конечно, изображение может быть аналогичным образом сравнено с последующим изображением. После определения действительного смещения текущее изображение становится предшествующим изображением, следующее изображение становится текущим изображением и описанная выше операция повторяется.

Используя оценку и выявление смещения, система определяет вид поперечного смещения, например поворот, расширение, сжатие, сдвиг (в прямоугольных координатах) и так далее, вместе с направлением и величиной смещения. На следующем этапе осуществляют "выполнение смещения". То есть для стабилизации каждого из изображений относительно смежного ему предшествующего изображения, система выполняет операцию или серию операций на интраваскулярных ультразвуковых изображениях. При такой стабилизации используют одно или множество "обратных смещений", цель которых - аннулировать выявленное смещение. Для выполнения такого "обратного смещения" система может иметь алгоритм или может выбирать из некоторого числа алгоритмов. Логику, которая решает, какое обратное смещение будет действительно выполнено в изображении прежде, чем оно поступит для дальнейшей обработки или для визуального воспроизведения, называют "логикой смещения". Как только интраваскулярные ультразвуковые изображения стабилизированы для требуемых видов выявленного движения, система может передать видеоинформацию (в прямоугольных или полярных координатах) для дополнительной обработки и в конечном счете для визуального воспроизведения, где результаты стабилизации могут стать видимыми, например, врачом. В альтернативном варианте осуществления стабилизация может быть невидимой для пользователя в том смысле, что стабилизация может быть использована до некоторых других этапов обработки, после которых результирующие изображения проецируют на дисплее в их исходном нестабилизированном состоянии или ориентации.

Возможно, что поперечное движение между изображениями не является устойчивым, а имеет локальный характер, то есть разные части изображения будут перемещаться в разных направлениях и на разную величину. В этом случае для компенсации такого движения описанные выше способы стабилизации или другие способы могут быть реализованы локально.

Настоящее изобретение обеспечивает выявление сердечной периодичности благодаря использованию информации, получаемой только из интраваскулярных ультразвуковых изображений без необходимости внешнего сигнала, например, электрокардиограммы. Этот способ предусматривает использование операций сравнения, которые также частично используются в процессе стабилизации. Одной важной функцией выявления периодичности (то есть кардиальной селекции), когда катетер неподвижен или когда выполняют регулируемое вытягивание интраваскулярного ультразвукового зонда, является то, что способ позволяет выбор изображений фазы в последовательных сердечных циклах. Выбор изображений на основе кардиальной селекции позволит стабилизировать все виды периодического движения (включая поперечные, по оси Z и угловые отклонения), принимая во внимание то, что изображения выбирают из одной фазы последовательных биений сердца. Например, эти интраваскулярные ультразвуковые изображения могут быть воспроизведены визуально и любые промежутки, создаваемые между ними, могут быть скомпенсированы для заполнения и визуального воспроизведения интерполированных изображений. Интраваскулярные ультразвуковые изображения, выбранные с помощью этой операции, могут быть также переданы дальше для дополнительной обработки.

Операции сравнения, используемые для выявления периодичности, также могут быть использованы для текущего контроля качества изображения и индикации артефактов, связанных с нарушениями в процессе формирования изображения и устройства для обработки (изображений).

Операции, используемые для оценки смещения, могут автоматически выявлять сосудодвигательную реакцию. Это может быть полезным для процесса стабилизации, так как сосудодвигательная реакция вызывает изменение последовательных изображений вследствие изменения диаметра сосуда. Если изображения стабилизируют в отношении сосудодвигательной реакции, то такое изменение должно быть скомпенсировано. В альтернативном варианте осуществления, информация, относящаяся к изменению диаметра, может быть визуально отображена, поскольку она может иметь значение для понимания физиологии исследуемого явления. Текущий контроль сосудодвигательной реакции осуществляют путем выполнения операций сравнения с последовательными изображениями, используя представления изображений в полярных координатах, то есть А(r, ). Такие операции могут быть проделаны со всеми изображениями или с соответствующими отдельными полярными векторами (из последовательных изображений), в зависимости от вида требуемой информации. Поскольку глобальная сосудодвигательная реакция выражается как равномерное изменение диаметра полости трубчатого органа тела, это может быть оценено с помощью операции сравнения, в которой принимается во внимание все изображение, представленное в полярных координатах. Как правило, для оценки сосудодвигательной реакции может быть использована любая операция, пригодная для глобальной стабилизации представления изображения в полярных координатах.

В некоторых условиях в процессе формирования интраваскулярного ультразвукового изображения сосудодвигательная реакция не может быть однородной, то есть движение имеется только в некоторых сечениях интраваскулярного ультразвукового изображения, соответствующего определенным областям в полости трубчатого органа тела. Это может иметь место, например, там, где артерия имеет в некотором месте нарост из бляшки, позволяя в соответствии с этим расширение или сжатие артерии только в областях нароста бляшки. Когда такое движение выявляется, система способна разделять ультразвуковые сигналы, представляющие поперечные сечения полости трубчатого органа тела, на множество сегментов, каждый из которых затем обрабатывается отдельно относительно соответствующего сегмента в смежном изображении, используя определенный алгоритм (алгоритмы). Затем могут быть визуально воспроизведены результирующие интраваскулярные ультразвуковые изображения. Такая форма стабилизации может использоваться отдельно или вместе с описанными выше способами стабилизации. В альтернативном варианте осуществления может быть визуально отображена информация, относящаяся к локальному изменению диаметра сосуда, поскольку она может иметь важность с точки зрения физиологии.

Временное поведение пикселей и их структурных атрибутов может быть использовано для увеличения качества визуального воспроизведения и для автоматического разбиения на сегменты (извлечение полости трубчатого органа тела). Если текущий контроль поведения осуществляют в условиях стабилизированного изображения, то могут быть улучшены эффективность увеличения качества визуального воспроизведения и процессов разбиения на сегменты.

В соответствии с настоящим изобретением временное поведение интраваскулярных ультразвуковых изображений может контролироваться автоматически. Информация, получаемая в процессе такого текущего контроля, может быть использована для улучшения точности интерпретации интраваскулярного ультразвукового изображения. Благодаря фильтрации и подавлению быстро изменяющихся элементов (изображения) вещества, например крови, поток которого проходит через сосуд, и внешней стороны морфологии сосуда как результата их временного поведения, может быть улучшено человеческое восприятие (понимание) сосуда, представляемого статически и динамически, например в виде кинофильма.

Автоматическое разбиение на сегменты, то есть идентификация сосуда и вещества, например крови, поток которой проходит через сосуд, может быть осуществлено благодаря использованию алгоритма, который автоматически идентифицирует вещество, например кровь, на основе временного поведения структурных атрибутов, образованных посредством соответствующих им пикселей. Временное поведение, которое извлекается из изображений, может быть использовано для нескольких целей. Например, временная фильтрация может быть выполнена для улучшения качества изображения, а выявление изменений в пиксельной структуре может быть использовано для автоматической идентификации полости трубчатого органа тела и его периферии.

Во всех интраваскулярных ультразвуковых изображениях сам катетер (и устройство для формирования изображения) лучше всего удалить из изображения до выполнения стабилизации или текущего контроля. Неудаление катетера из изображения может ухудшить стабилизацию и текущий контроль. Удаление катетера может быть выполнено автоматически, поскольку его размеры известны.

Настоящее изобретение обеспечивает также автоматическую идентификацию (то есть согласование или регистрацию) соответствующих блоков данных из двух пленок одного сегмента сосуда, например, перед и после терапии. Для сравнения первой интраваскулярной ультразвуковой пленки, то есть первой последовательности интраваскулярных ультразвуковых изображений, со второй интраваскулярной ультразвуковой пленкой, то есть со второй последовательностью интраваскулярных ультразвуковых изображений, одного сегмента полости трубчатого органа тела, например, полученной в виде видеофильма, кинофильма или в цифровой форме, последовательности изображений должны быть синхронизированы. Согласование, которое обеспечит такую синхронизацию, предусматривает выполнение операций сравнения групп последующих изображений, принадлежащих к двум наборам последовательных интраваскулярных ультразвуковых изображений.

Из одной последовательности изображений выбирают группу последующих изображений, называемую опорной группой. Такая группа должна быть выбрана из части визуально воспроизводимого сосуда в обеих последовательностях изображений и это должна быть та часть, на которой не собираются проводить терапию, поскольку вероятно, что терапия изменит морфологию сосуда. Другим условием для осуществления такого процесса согласования является то, что эти две последовательности изображений должны быть получены при известной, постоянной и предпочтительно одинаковой скорости вытягивания катетера.

Операции сравнения выполняют с изображениями опорной группы и изображениями из второй группы, которая имеет одинаковое число последовательных изображений, извлеченных из второй последовательности изображений. Затем вторую группу изображений смещают на один блок данных относительно опорной группы и повторяют операции сравнения. Это может быть повторено предварительно определенное число раз и для определения максимального сходства сравнивают результаты сравнения каждого смещения блока данных. Максимальное сходство определит рассогласование блока данных между изображениями двух последовательностей изображений. Это рассогласование может быть реверсировано в первой или второй пленке так, чтобы соответствующие изображения могли автоматически идентифицироваться и/или одновременно попадать в поле зрения.

Таким образом, соответствующие изображения могут попадать в поле зрения, например, для определения эффективности любой проведенной терапии или изменения в морфологии в течение (определенного) периода времени.

Кроме того, описанные выше различные виды стабилизации могут быть выполнены в изображениях или между изображениями в этих двух последовательностях перед, в процессе или после такой операции согласования. Таким образом, две пленки могут быть визуально воспроизведены не только синхронно, но также в одинаковых ориентации и положении относительно друг друга.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

Фиг.1a и фиг.1b - двухмерная матрица изображения в векторах, переведенных в цифровую форму, в полярных и прямоугольных координатах соответственно.

Фиг.2 - результаты оценки смещения между двумя последовательными изображениями в прямоугольных координатах.

Фиг.3 - иллюстрация изображений, имеющих дрейф в полярных и прямоугольных координатах.

Фиг.4 - иллюстрация эффекта выполнения операций (поворотного смещения и смещения в прямоугольных координатах) стабилизации.

Фиг.5 - иллюстрация глобальных сжатия или расширения полости трубчатого органа тела, выраженных в представлениях изображения в полярных и прямоугольных координатах.

Фиг.6 - изображение, разделенное на четыре секции для обработки, соответствующей настоящему изобретению.

Фиг.7 - сосуд, представленный в полярных и прямоугольных координатах, в котором была выявлена сосудодвигательная реакция.

Фиг.8 - графические иллюстрации результатов текущ