Металлоценовые соединения, способ их получения, катализатор для полимеризации олефинов, способ его получения, способ полимеризации олефинов
Реферат
Изобретение относится к мостиковым металлоценовым соединениям формулы (I) состоящим из инденил-циклопентадиенильных групп
где R1 и R2 - Н, линейная, разветвленная, циклоалифатическая или ароматическая углеводородная группа C1-C20, любые пары R3, R4, R5, R6, соседние друг с другом, соединены с образованием насыщенной или ненасыщенной циклической структуры C4-C20, включающей связь циклопентадиенильного кольца; М - цирконий; X1 и Х2 - анион, связанный с металлом М, или они связаны друг с другом с образовыванием C4-C7 цикла. Указанные соединения можно с успехом применять в качестве компонентов катализаторов для полимеризации олефинов. 7 н. и 7 з.п.ф-лы, 3 табл.
Настоящее изобретение относится к мостиковым металлоценовым соединениям, соответствующим лигандам, способу получения и применению указанных соединений в качестве компонентов катализаторов для полимеризации олефинов.
Точнее изобретение относится к металлоценовым соединениям, состоящим из инденил-циклопентадиенильных групп, соединенных несимметричным образом двухвалентным радикалом.
Известно, что металлоценовые соединения можно применять в различных реакциях промышленного значения.
Например, хиральные, пространственно неподвижные металлоценовые соединения, состоящие из двух связанных мостиковой связью инденильных групп и металла, такого как цирконий, известны и находят применение в качестве компонентов катализаторов для полимеризации олефинов и, в частности, для получения стереорегулярных полиолефинов.
Инденильные группы в этих металлоценах связаны посредством двухвалентных радикалов, которые имеют два или более атома углерода, таких как группы -(СН2)2-, или атомов, отличающиеся от углерода.
Эти радикалы обычно присоединены к различным положениям относительно кольца из пяти атомов углерода обеих инденильных групп, как это описано в патентных заявках ЕР-А-485823, ЕР-А-372414, WO 94/11406.
Известны также металлоцены, инденильные группы которых связаны посредством двухвалентных радикалов, присоединенных к положению 4 кольца из шести атомов углерода обеих инденильных групп, как это описано в патентных заявках ЕР 693502, WO 96/38458.
Были обнаружены новые металлоценовые соединения, в которых двухвалентный радикал связан с кольцом из пяти атомов углерода циклопентадиенильной, инденильной, флуоренильной групп и с кольцом из шести атомов углерода инденильной группы, которые можно с успехом применять в качестве компонентов катализаторов для полимеризации олефинов.
Предмет настоящего изобретения, в частности, относится к металлоценовым соединениям, имеющим общую формулу (I):
где
- R1 и R2 могут независимо занимать любое из свободных положений инденовой группы;
- R1, R2, R3, R4, R5, R6, R7 и R8 независимо представляют собой водород, линейную или разветвленную, насыщенную или ненасыщенную, циклоалифатическую или ароматическую углеводородную группу 1-С20; кроме того, любые два или обе пары заместителей R3, R4, R5 и R6, соседние друг с другом, соединены друг с другом с образованием насыщенной или ненасыщенной циклической структуры C4-C20, включающей связь циклопентадиенильного кольца;
- М представляет собой цирконий;
- каждый из X1 и Х2 независимо представляет собой группу анионной природы, связанную с металлом М.
Типичными примерами X1 и X2 являются гидрид, галогенид, предпочтительно хлорид, линейная или разветвленная алкильная группа, такая как метил, этил, бутил, изопропил, изоамил, октил, децил, бензил, аллил, метил-аллил, циклоалкильная группа, такая как циклопентил, циклогексил, 4-метилциклогексил, арильная группа, такая как фенил или толуил, алкоксильная или тиоалкоксильная группа, такая как метоксил, этоксил, изо- или втор-бутоксил, этилсульфид; карбоксильная группа, такая как ацетат, пропионат, бутират, пивалат, версатат, нафтенат, или, с другой стороны, диалкиламидная группа, такая как диэтиламид, дибутиламид или алкилсилиламидная группа, такая как бис(триметилсилил)амид.
X1 и Х2 также могут быть химически связаны друг с другом и образовывать цикл, имеющий от 4 до 7 различных атомов водорода, также включающий металл М.
Типичными примерами такого аспекта являются двухвалентные анионные группы, такие как триметиленовая, или тетраметиленовая группа, или этилендиокси-группа.
Металлоценовые соединения в соответствии с настоящим изобретением могут существовать в изомерной, рацемической или мезо-формах.
Кроме того, объектом настоящего изобретения являются соединения, имеющие общую формулу (Ia), которые используют при получении соединений, имеющих общую формулу (I)
где:
- R1, R2, R2, R4, r5, R6, R7 и R8 имеют значения, обозначенные выше.
Примеры структур соединений, имеющих общую формулу (Ia), даны в табл.А.
Соединения, имеющие общую формулу (Iа), могут быть получены посредством простого и оригинального способа, который показан на схеме 1.
Схема 1
а = LiBu(2eq.)/гексан; b = диэтилкарбонат; с = PTSA/толуол; d = LiAlH4, или LiR, или RMgX; е = РВr; f = Li(C5HR3R4R5R6).
В частности, указанный способ включает следующие стадии:
(a) реакция производных 1-инданола, имеющих формулу (II), где группы R1 и R2 имеют значения, определеные выше, с LiBu с образованием двойной соли формулы (III);
(b) реакция двойной литиевой соли, имеющей формулу (III), полученной на стадии (а), с электрофильными реагентами, такими как диэтилкарбонат, для получения сложного эфира оксикислоты, имеющего формулу (IV);
(c) реакция дегидратации спиртовой функциональной группы сложного эфира оксикислоты, имеющего формулу (IV), полученного на стадии (b), проводимая в кислотной среде с образованием сложного эфира (V);
(d) реакция восстановления сложного эфира, имеющего формулу (V), полученного на стадии (с), с образованием спирта (VI);
(e) реакция бромирования спирта, имеющего формулу (VI), с образованием бромпроизводного (VII);
(f) реакция образования инденильного производного, имеющего формулу (Ia), исходя из бромпроизводного, имеющего формулу (VII), полученного на стадии (е), и из литиевых солей циклопентадиенильных анионов, соответствующие нейтральные производные которых могут быть представлены следующей общей формулой (VIII)
где каждый заместитель R3, R4, R5 и R6 имеет значение, определенное выше.
Стадия (а) способа в соответствии с настоящим изобретением описана в Сhеm. Bеr. (1980) 113, 1304.
В частности, в этой статье указано, что некоторые бензиловые спирты и другие фенилкарбинолы, среди которых 1-инданол (Synthesis (1981) 59), можно депротонировать в присутствии LiBu/тетраметилендиамина в пентане с образованием литий(ортолитий)алкоксидов.
Реакцию, описанную на стадии (а), можно проводить в присутствии основных реагентов, таких как, например, бутиллитий, метиллитий, гидрид натрия, в углеводородных растворителях и/или растворителях типа простых эфиров, или их смесях при температуре в пределах от -30 до 120 С; причем предпочтительные условия включают применение бутиллития в гексане при температуре в пределах от 0 до 70 С.
Типичными 1-иинданолами, имеющими общую формулу (II), являются 1-инданол, 2-метил-1-инданол, 3-метил-1-инданол, 3-этил-1-инданол, 4-метил-1-инданол.
Одним из преимуществ способа в соответствии с настоящим изобретением является тот факт, что многие производные 1-инданола коммерчески доступны или могут быть легко получены посредством хорошо известных реакций ацилирования/алкилирования замещенных подходящим образом ароматических колец.
Стадия (b) способа в соответствии с настоящим изобретением включает реакцию двойной литиевой соли, имеющей общую формулу (III), с электрофильными реагентами, среди которых особо подходящими для этой цели являются диэтилкарбонат, диметилкарбонат, диоксид углерода, этилхлороформиат, в углеводородных и/или растворителях типа простых эфиров или их смесях при температуре в пределах от -100 до 120 С; предпочтительно с диэтилкарбонатом в гексане при температуре в пределах от -70 до 25 С.
Стадия (с) способа в соответствии с настоящим изобретением состоит в дегидратации сложного эфира оксикислоты с формулой (IV) для получения соответствующего инденильного производного, имеющего общую формулу (V).
Эту реакцию можно провести в присутствии сильных кислот, таких как НСl, H2SO4, пара-толуолсульфоновой кислоты или более мягких дегидратирующих агентов, таких как, например, силикагель.
Выбор растворителя для этой реакции очень широк, так как можно с успехом применять неполярные растворители, такие как алифатические углеводороды, среднеполярные растворители, такие как ароматические углеводороды, или полярные растворители, такие как простые эфиры или хлорированные углеводороды; температуру, при которой можно проводить реакцию, можно выбирать также в очень широких пределах, обычно от 25 до 150 С, и выбор обычно зависит не только от субстрата, но также и от типа применяемого растворителя; предпочтительно применяют пара-толуолсульфоновой кислоту в толуоле при температуре в пределах от 50 до 110 С.
Стадия (а) способа в соответствии с настоящим изобретением включает восстановление сложноэфирной группы до спиртовой группы с образованием соединения, имеющего общую формулу (VI); это восстановление можно проводить с помощью различных реагентов, среди которых LiAlH4, NaBH4, NaH, MgH2, LiBu, LiMe, MeMgCl, PhMgBr, ButMgCl, обычно в растворителях типа простых эфиров, но можно также применять и альтернативные растворители, имеющие иные характеристики, при температуре в пределах от -70 до 100 С; предпочтительно используют LiAlH4 в простом диэтиловом эфире при температуре в пределах от -30 до 25 С.
Стадия (е) способа в соответствии с настоящим изобретением включает бромирование спиртовой группы с образованием бромпроизводного, имеющего общую формулу (VII); в этом случае также имеются различные альтернативные пути синтеза, хорошо известные специалистам в данной области техники, которые включают применение различных бромирующих агентов в различных растворителях; предпочтительные условия включают применение РВr3 в метиленхлориде при температуре в пределах от -20 до 25 С.
Стадия (f) способа в соответствии с настоящим изобретением включает реакцию циклопентадиенильного аниона с бромпроизводным, имеющим общую формулу (VII), полученным по реакции соответствующего нейтрального производного, имеющего общую формулу (VIII), с подходящим основанием.
Специалистам в данной области техники известно, что имеется большое количество продуктов, которые могут удовлетворять указанным требованиям; в действительности, можно применять алкилы или гидриды электроположительных металлов, такие как, например, метиллитий, бутиллитий, трет-бутиллитий, дибутилмагний, гидрид натрия, гидрид калия, гидрид магния, хорошо известные реагенты Гриньяра: RMgX, или сами щелочные, или щелочно-земельные металлы, или их сплавы.
Все реагенты обычно коммерчески доступны по приемлемым ценам и, следовательно, их выбор часто зависит от типа субстрата, анион которого необходимо получить.
Растворители для проведения этой реакции могут быть выбраны из алифатических или ароматических углеводородов, простых эфиров и/или их смесей, предпочтение одного перед другим часто зависит от специфических требований к растворимости или скорости реакции в каждом конкретном случае.
Температура, при которой проводят реакцию, может варьироваться в очень широких пределах, обычно от -80 до 110 С и, в особенности, зависит от термической стабильности используемых субстратов и растворителя.
Предпочтительные условия для получения анионов соединения, имеющего общую формулу (VIII), включают применение бутиллития в смесях гексан/ТГФ (тетрагидрофуран) при температуре в пределах от 0 до 60 С.
Типичными соединениями, имеющими общую формулу (VIII), являются циклопентадиен, метил-циклопентадиен, тетраметил-циклопентадиен, триметилсилил-циклопентадиен, инден, 3-метил-инден, 4,7-диметил-инден, 5,6-диметил-инден, 4,5,6,7-тетрагидро-инден, 4,5,6,7-тетрагидро-2-метил-инден, 2,4,5,6,7,8-гексагидро-азулен, 2-метил-2,4,5,6,7,8-гексагидро-азулен, 4,5,6,7,8,9-гексагидро-2Н-циклопента-циклооктен, 4,5,6,7,8,9,10,11,12,13-декагидро-2Н-циклопента-циклододецен, флуорен, 1,2,3,4,5,6,7,8-октагидро-флуорен.
В предпочтительном варианте воплощения изобретения соединение, имеющее общую формулу (VIII), - это циклопентадиен, тетраметил-циклопентадиен, инден, 3-метил-инден, 4,7-диметил-инден, 2,4,5,6,7,8-гексагидро-азулен, флуорен.
В более предпочтительном варианте воплощения изобретения соединение, имеющее общую формулу (VIII), - это инден, 4,7-диметил-инден.
Эту реакцию можно проводить в разнообразных растворителях, выбираемых из ароматических и/или алифатических углеводородов и из простых эфиров и/или их смесей, при температуре в пределах от -80 до 120 С. Специальных ограничений по порядку прибавления различных реагентов здесь нет, но предпочтительнее работать, прибавляя чистое бромпроизводное (VII) или его раствор в растворителе типа простого эфира к раствору/суспензии, содержащей циклопентадиенильный анион, полученный, как описано выше, причем при температуре в пределах от -70 до 25 С.
Иначе стадию (f) способа в соответствии с настоящим изобретением можно проводить, вводя бромированный продукт (VII) в реакцию с подходящим енолятом лития, что приводит к образованию инденил-циклопентадиенильных продуктов, имеющих общую формулу (XIII)
где
- R1 и R2 могут независимо занимать любое из свободных положений инденовой группы;
- R1, R2, R7, R8, R9, R10, и R11 независимо представляют собой водород, линейную или разветвленную, насыщенную или ненасыщенную, циклоалифатическую или ароматическую углеводородную группу 1-C20; или где любые два заместителя из R9, R10, и R11, соседние друг с другом, соединены друг с другом с образованием насыщенной или ненасыщенной циклической структуры С4-С20, включающей связь циклопентадиенильного кольца;
- R12 может независимо представлять собой водород, линейную или разветвленную, насыщенную или ненасыщенную, циклоалифатическую или ароматическую углеводородную группу 1-C20.
Вариант стадии (f) способа в соответствии с настоящим изобретением представлен на схеме 2:
Схема 2
g: Li[N(iso-Pr)2]/ТГФ/-78 C, h: (VII)/ТГФ, i: NaBH4 или LiR12 или R12MgX, l: CuSO4/толуол/110 C.
В соответствии с этим следующий аспект настоящего изобретения относится к варианту способа получения соединений, имеющих общую формулу (Iа), который открывает путь синтеза аналогичных продуктов, имеющих общую формулу (XIII), где заместители R1, R2, R7, R8, R9, R10, R11 и R12 имеют значения, определенные выше; причем способ включает следующие стадии:
(g) реакция циклического кетона, имеющего общую формулу (IX), где группы R9, R10 и R11 имеют значения, определенные выше, с амидом лития с образованием смеси анионов, имеющей общую формулу (Ха)/(Хb);
(h) реакция смеси анионов (Ха)/(Хb) с бромированным продуктом, имеющим общую формулу (VII), полученным в соответствии с указаниями, данными выше (схема 1);
(i) восстановление функциональной карбонильной группы до спиртовой группы посредством подходящих реагентов с образованием производного, имеющего общую формулу (XII), где группа R12 имеет значение, определенное выше;
(l) дегидратация производного, имеющего общую формулу (XII), полученного на стадии (i), с образованием целевого инденил-циклопентадиенильного соединения, имеющего общую формулу (XIII), где группы R1, R2, R7, R8, R9, R10, R11 и R12 имеют значения, определенные выше.
На стадии (g) циклический кетон, имеющий общую формулу (IX), вводят в реакцию с сильным неалкилирующим основанием, в растворителях типа простых зфиров, таких как простой диэтиловый эфир, тетрагидрофуран, диоксан, поскольку растворяющая способность последних может улучшать кинетику реакции, но это не означает, что менее полярные растворители, такие как ароматические и/или алифатические углеводороды, не могут быть применены для этой цели, при температуре в пределах от -80 до 110 С; причем выбор температуры зависит от используемых растворителя и субстратов.
Типичными сильными основаниями, подходящими для этой цели, являются алкоголяты щелочных и щелочноземельных металлов, такие как, например, метилат лития, метилат натрия, этилат натрия, изо-пропилат натрия, трет-бутилат калия, диэтилат магния и т.д., или соответствующие амиды, такие как амид лития, амид натрия, диэтиламид лития, диизопропиламид лития, бис-(триметилсилил)амид лития, дибутиламид калия, и т.д.
В предпочтительном варианте воплощения настоящего изобретения сильные основания выбирают из группы, включающей метилат лития, этилат натрия, трет-бутилат калия, амид натрия, диизопропиламид лития.
В более предпочтительном варианте воплощения настоящего изобретения сильное основанее - это диизопропиламид лития.
Типичными кетонами, имеющими общую формулу (IX), подходящими для применения на стадии (g) схемы 2, являются: циклопент-1-ен-3-он, 1-метил-циклопент-1-ен-3-он, 1,2,5-триметил-циклопент-1-ен-3-он, индан-1-он, 3-метил-индан-1-он, 4,7-диметил-индан-1-он, индан-2-он, и т.д.
В предпочтительном варианте воплощения настоящего изобретения соединение цикло-кетона, имеющее общую формулу (IX), выбирают из группы, включающей циклопент-1-ен-3-он, 1,2,5-триметил-циклопент-1-ен-3-он, индан-1-она, 3-метил-индан-1-он; в более предпочтительном варианте воплощения настоящего изобретения соединение (IX) - это индан-1-он.
Стадия (h) способа в соответствии с настоящим изобретением состоит из реакции между смесью анионов (Ха)/(Хb) и бромированным продуктом (VII), полученным в соответствии со схемой 1; реакция может быть проведена в углеводороде, в растворителе типа простого эфира или их смесях; обычно предпочитают проводить реакцию в растворителе, выбранном для стадии (g), при температуре в пределах от -80 до 70 С.
В предпочтительном варианте воплощения настоящего изобретения реакцию проводят в смеси ТГФ/гексан при температуре в пределах от -70 до 25 С.
Стадия (i) способа в соответствии с настоящим изобретением состоит в восстановлении функциональной карбонильной группы, присутствующей в производном, имеющем общую формулу (XI), до спиртовой группы, с образованием соединения, имеющего общую формулу (XII). Специалистам в данной области техники известны различные возможности для выбора восстанавливающих реагентов, подходящих для этой цели; среди этих реагентов имеются: литийалюминийгидрид, боргидрид натрия, гидрид натрия, метиллитий, фениллитий, этилмагнийбромид, изопропилмагнийбромид и т.д., которые можно с успехом применять либо в углеводороде, либо в растворителях типа простых эфиров или их смесях, при температуре в пределах от -40 до 70 С. В предпочтительном варианте воплощения настоящего изобретения применяют боргидрид натрия в смеси тетрагидрофуране при температуре в пределах от -20 до 25 С.
Стадия (I) способа в соответствии с настоящим изобретением состоит в дегидратации производного (XII), полученного на стадии (i), с образованием целевого инденил-циклопентадиенильного продукта, имеющего общую формулу (XIII).
Эта стадия может быть проведена в присутствии дегидратирующих агентов, таких как, например, силикагель, сильных кислот, таких как HCl, H2SO4, паратолуолсульфокислота, или безводных неорганических солей, таких как, например, Cu(SO4), Мg(SO4), Na(SO4)2, CaCl2 и т.д.
Выбор растворителя для этой реакции очень широк, так как можно с успехом применять неполярные растворители, такие как алифатические углеводороды, среднеполярные растворители, такие как ароматические углеводороды, или полярные растворители, такие как простые эфиры или хлорированные углеводороды; температуру, при которой можно проводить реакцию, можно выбирать также в очень широких пределах, обычно от 20 до 130 С, и выбор обычно зависит не только от субстрата, но также и от типа применяемого растворителя. В предпочтительном варианте воплощения изобретения применяют безводный Cu(SO4) в толуоле при температуре 110 С.
Выделять отдельные продукты реакций в конце каждой стадии в способе в соответствии с настоящим изобретением не обязательно.
Кроме преимущества работы с легкодоступными исходными веществами, способ включает достаточно простые синтетические пути и приводит к удовлетворительным общим выходам.
Получение комплексов, имеющих общую формулу (I), можно проводить в соответствии с одним из хорошо известных способов, описанных в литературе для синтеза мостиковых бис-циклопентадиенильных комплексов переходных металлов.
Наиболее часто используемый способ включает реакцию соли металла М (предпочтительно, хлорида) с солью, образованной щелочным металлом и дианионом бис-циклопентадиенильного лиганда, имеющим желаемую структуру.
Синтез комплексов, имеющих общую формулу (I), обычно включает две стадии; на первой стадии лиганд, имеющий общую формулу (Ia), вводят в реакцию с алкиллитием, таким как метиллитий или бутиллитий, в инертном растворителе, предпочтительно состоящим из ароматического углеводорода или простого эфира, в частности, тетрагидрофурана или простого диэтилового эфира.
Температуру в течение реакции поддерживают предпочтительно ниже комнатной температуры во избежание протекания вторичных реакций. По окончании реакции получают соответствующую литиевую соль циклопентадиенильного дианиона.
На второй стадии соль циклопентадиенильного дианиона вводят в реакцию с солью, предпочтительно хлоридом, переходного металла М, опять-таки в инертном органическом растворителе при температуре предпочтительно в пределах от -30 до 70 С.
По окончании реакции полученный таким образом комплекс, имеющий формулу (I), отделяют и очищают в соответствии с методами, известными в металлорганической химии.
Как известно специалистам в данной области техники, вышеуказанные операции чувствительны к присутствию воздуха и влажности и, следовательно, их нужно производить в инертной атмосфере, предпочтительно в атмосфере азота или аргона.
Многочисленные общие и частные способы, в основном родственные способу, описанному выше, описаны в литературе, такой как, например, публикация D.J. Cardin “Chemistry of Organo Zr and Hf Compounds” J. Wiley and Sons Ed., New York (1986); R. Haltermann “Chemical Review”, vol.92 (1992), pages 965-994; R.O. Duthaler and A. Hafner “Chemical Review”, vol.92 (1992), pages 807-832.
Металлоценовые соединения в соответствии с настоящим изобретением могут быть с успехом применены в качестве каталитических компонентов в полимеризации олефинов.
Таким образом, дополнительная цель настоящего изобретения относится к катализатору для полимеризации олефинов, включающему продукты реакции взаимодействия между:
(A) металлоценовым соединением, имеющим формулу (I), полученным по способу, как описано выше, и
(B) одним или более соединением, способным активировать металлоцен (I), выбранным из соединений, известных в данной области техники, в частности, органическим производным элемента М’, отличного от углерода и выбираемого из элементов 1, 2, 12, 13 и 14 групп Периодической таблицы.
В частности, в соответствии с настоящим изобретением, указанный элемент М’ выбирают из группы, включающей бор, алюминий, цинк, магний, галлий и олово, в особенности из бора и алюминия.
В предпочтительном варианте воплощения настоящего изобретения компонент (В) - это органическое кислородсодержащее производное алюминия, галлия или олова. Оно может быть определено как органическое соединение М’, в котором последний связан, по меньшей мере, с одним атомом кислорода и, по меньшей мере, с одной органической группой, состоящей из алкильной группы, имеющей от 1 до 12 атомов углерода, предпочтительно с метилом.
В соответствии с этим аспектом изобретения компонент (В) более предпочтительно является алюмоксаном. Как известно, алюмоксаны - соединения, содержащие связи Al-O-Al, с различным соотношением O/Al, которые могут быть получены в контролируемых условиях по реакции алюминий-алкила или алюминий-алкилгалогенида с водой или другими соединениями, содержащими заранее установленное количество доступной воды, в таких реакциях, как, например, реакция триметилалюминия с гексагидратом сульфата алюминия, пентагидратом сульфата меди или пентагидратом сульфата железа.
Алюмоксаны, предпочтительно используемые для получения катализатора полимеризации в соответствии с настоящим изобретением, - это олиго- полимерные, циклические и/или линейные соединения, характеризующиеся присутствием в них повторяющихся звеньев, имеющих следующую формулу:
где R13 - алкильная группа C1-C12, предпочтительно метил. Каждая молекула диалюмоксана, предпочтительно, содержит от 4 до 70 повторяющихся звеньев, которые также могут не все быть одинаковыми, но содержать различные группы R13
При их использовании для получения катализатора полимеризации в соответствии с настоящим изобретением алюмоксаны вводят в контакт с комплексом, имеющим формулу (I), в таких пропорциях, чтобы атомное отношение между Al и переходным металлом М находилось в пределах от 10 до 10000, предпочтительно от 100 до 5000. Последовательность, с которой комплекс (I) и алюмоксан вводят в контакт друг с другом, не является слишком критичной.
В определение компонента (В), кроме вышеуказанных алюмоксанов, также входят металлоорганические соединения галлия (в которых вместо алюминия в предыдущих формулах находится галлий) (galloxanes) и олова (stannoxanes), применение которых в качестве сокатализаторов для полимеризации олефинов в присутствии металлоценовых комплексов известно, например, из патентов США №5128295 и №5258475.
В соответствии с другим предпочтительным аспектом настоящего изобретения указанный катализатор может быть получен при введении компонента (А), состоящего, по меньшей мере, из комплекса, имеющего формулу (I), в контакт с компонентом (В), состоящим, по меньшей мере, из одного соединения или из смеси металлорганических соединений элемента М’, способных реагировать с комплексом, имеющим формулу (I), извлекая из него -связанную группу R’ с образованием, с одной стороны, по меньшей мере, одного нейтрального соединения, а с другой стороны, - ионного соединения, состоящего из металлоценового катиона, содержащего металл М, и органического некоординационного аниона, содержащего металл М’, отрицательный заряд которого делокализован по многоцентровой структуре.
Компоненты (В), пригодные в качестве ионизирующих систем вышеуказанного типа, выбирают, предпочтительно, из объемных органических соединений бора и алюминия, таких как, например, соединения, представленные следующими общими формулами:
[(Rc)xNH4-x]+[B(RD)4]-; B(RD)3; [Ph3C]+[B(RD)4]-;
[(Rc)3Ph]+[B(RD)4]-; [Li]+[B(RD)4]-; {Li]+[Al(RD)4]-;
где показатель х - целое число в интервале от 0 до 3; каждая группа rc независимо представляет собой алкильный или арильный радикал, имеющий от 1 до 12 атомов углерода, а каждая группа RD независимо представляет собой арильный радикал, в частности или предпочтительно полностью фторированный, имеющий от 6 до 20 атомов углерода.
Указанные соединения обычно используют в таких количествах, чтобы соотношение между атомом М’ компонента (В) и атомом М компонента (А) находилось в интервале от 0,1 до 15, предпочтительно от 0,5 до 10, и более предпочтительно от 1 до 6.
Компонент (В) может состоять из единственного соединения, обычно ионного соединения, или комбинации этого соединения с МАО (метилалюмоксаном), или, предпочтительно, с триалкилалюминием, имеющим от 1 до 16 атомов углерода в каждом алкильном остатке, как, например, АlМе3, АlЕt3, Аl(i-Вu)3.
В общем, образование ионного металлоценового катализатора в соответствии с настоящим изобретением проводят, предпочтительно, в инертной жидкостной среде, более предпочтительно - в углеводородной. Выбор компонентов (А) и (В), которые предпочтительно соединять друг с другом, а также конкретного используемого способа может изменяться в зависимости от желаемых молекулярных структур и результата в соответствии с подробными описаниями, имеющимися в специальной литературе, которые доступны специалистам в данной области техники.
Примеры таких способов приведены в схематичном виде в предлагаемом ниже списке, который, однако, не ограничивает объема настоящего изобретения
(i) при контакте металлоцена, имеющего общую формулу (I), где, по меньшей мере, один, а предпочтительно оба заместителя X1 и Х2 - это водород или алкильный радикал с ионным соединением, катион которого способен реагировать с одним из заместителей X1 и Х2 с образованием нейтрального соединения, и объемный, некоординационный анион которого способен делокализовывать отрицательный заряд;
(ii) по реакции металлоцена, имеющего предыдущую формулу (I), с алкилирующим агентом, предпочтительно - триалкилалюминием, используемым в молярном избытке от 10/1 до 500/1, с последующей реакцией с сильной кислотой Льюиса, такой как, например, трис(пентафторфенил)бор в более или менее стехиометрическом соотношении или в небольшом избытке по отношению к металлу М;
(iii) при контакте и по реакции металлоцена, имеющего предыдущую формулу (I), с молярным избытком от 10/1 до 1000/1, предпочтительно от 30/1 до 500/1, триалкилалюминия или алкилалюминийгалогенида или одной из их смесей, которые могут быть представлены общей формулой AlRmX3-m, где R – линейная или разветвленная алкильная группа C1-C12, X - галоген, предпочтительно хлор или бром, a m - десятичное число в интервале от 1 до 3; с последующим добавлением к полученной таким образом композиции, по меньшей мере, одного ионного соединения вышеописанного типа в таких количествах, чтобы соотношение между В или Al и атомом М в металлоценовом комплексе находилось в пределах от 0,1 до 20, предпочтительно - от 1 до 6.
Примеры ионизующих ионных соединений или многокомпонентных реакционноспособных систем, способных давать ионные каталитические системы по реакции с металлоценовым комплексом в соответствии с настоящим изобретением, описаны в следующих патентных публикациях, содержание которых включено здесь в качестве цитируемой литературы:
- европейские патентные заявки, опубликованные под номерами: ЕР-А 277003, ЕР-А 277004, ЕР-А 522581, ЕР-А 495375, ЕР-А520732, ЕР-А478913, ЕР-А 468651, ЕР-А 427697, ЕР-А 421659, ЕР-А 418044;
- международные патентные заявки, опубликованные под номерами: WO 92/00333, WO 92/05208, WO 91/09882;
- патенты США: U.S. 5064802, U.S. 2827446, U.S. 5066739.
Также в объем настоящего изобретения включены те катализаторы, которые включают два или более смешанных друг с другом комплекса, имеющих формулу (I). Катализаторы в соответствии с настоящим изобретением, основанные на смесях комплексов, имеющих различные каталитические активности, могут с успехом быть использованы при полимеризации, если требуется более широкое распределение получаемых таким образом полиолефинов по массам.
В соответствии с аспектом настоящего изобретения, чтобы получить твердые компоненты для изготовления катализатора для полимеризации олефинов, вышеуказанные комплексы можно также помещать на носители из инертного твердого материала, предпочтительно состоящего из оксидов Si и/или Аl, таких как, например, оксид кремния, оксид алюминия или алюмосиликаты.
Для изготовления указанных катализаторов на носителях можно применять известные методики, обычно включающие контакт между носителем, возможно, активированным путем нагревания до температур, превышающих 200 С, и одним или обоими компонентами (А) и (В) катализатора в соответствии с настоящим изобретением в среде, подходящей инертной жидкости. Для целей настоящего изобретения не обязательно, чтобы оба компонента находились на носителях, возможно также, чтобы только один комплекс, имеющий формулу (I), или органическое соединение элементов В, Аl, Ga или Sn, как описано выше, присутствовало на поверхности носителя. В последнем случае компонент, который не присутствует на поверхности, последовательно приводят в контакт с компонентом на носителе в момент образования катализатора, активного при полимеризации.
В объем настоящего изобретения также включены комплексы и каталитические системы, основанные на них, которые были изготовлены на твердом носителе посредством функционализации последнего и образования ковалентной связи между твердым материалом носителя и металлоценовым комплексом, включенным в формулу (I) выше.
Специальный способ получения катализатора на носителе в соответствии с настоящим изобретением включает предварительную полимеризацию относительно небольшой части мономера или смеси мономеров в присутствии катализатора так, чтобы она вошла в состав твердых микрочастиц, которые затем поступают в сам действующий реактор для завершения способа в присутствии дополнительного олефина (олефинов). Это обеспечивает лучший контроль морфологии и размеров полимерных частиц, полученных в конце способа.
К катализатору в соответствии с настоящим изобретением возможно может быть добавлена одна или более добавка или компонент, а также два компонента (А) и (В) для получения каталитической системы, пригодной для выполнения специальных требований. Полученную таким образом каталитическую систему следует рассматривать как включенную в объем настоящего изобретения. Добавки или компоненты, которые могут быть включены в синтез и/или состав катализатора в соответствии с настоящим изобретением, являются инертными растворителями, такими как, например, алифатические и/или ароматические углеводороды, алифатические или ароматические простые эфиры, слабо координирующими добавками (основания Льюиса), выбираемыми, например, из неполимеризующихся олефинов, простых эфиров, третичных аминов и спиртов, галогенирующими агентами, такими как галогениды кремния, галогенированные углеводороды, предпочтительно, хлорированные, и тому подобными веществами, а также всеми другими возможными компонентами, обычно применяемыми в данной области техники, для изготовления традиционных гомогенных катализаторов металлоценового типа для (со)полимеризации олефинов.
Компоненты (А) и (В) образуют катализатор в соответствии с настоящим изобретением при контакте друг с другом, предпочтительно при температуре в пределах от 20 до 60 С, и в течение времени в пределах от 10 секунд до 1 часа, более предпочтительно от 30 секунд до 15 минут.
Катализатор в соответствии с настоящим изобретением может быть применен с прекрасными результатами практически во всех известных способах (со)полимеризации олефинов как непрерывных, так и периодических, одностадийных или многостадийных, таких как, например, способы низкого (0,1-1,0 МПа), среднего (1,0-10 МПа) или высокого (10-150 МПа) давления, при температурах в пределах от 10 до 240 С, возможно, в присутствии инертного разбавителя. В качестве регулятора молекулярной массы можно с успехом применять водород.
Эти способы моно проводит