Протеин, обладающий способностью к образованию с3- конвертазы, днк, вектор, конъюгат и их использование
Реферат
Изобретение относится к области биотехнологии и может быть использовано в медицине. В изобретении описаны нативные протеины пути активации комплемента, модифицированные таким образом, что протеин способен образовывать С3-конвертазу, устойчивую к понижающей регуляции. Предпочтительно модифицированный протеин представляет собой модифицированный человеческий протеин С3. Также описаны последовательности ДНК, кодирующие такие протеины, наряду с конструкциями ДНК. Описаны также конъюгаты, включающие такие протеины и специфично связывающий фрагмент, например, антитело, а также применение таких протеинов и/или конъюгатов в терапии. Изобретение можно применять для людей in vivo для активации комплемента, и получать препарат, который неиммуногенен для людей при его использовании. 7 н. и 28 з.п.ф-лы, 15 ил., 3 табл.
Настоящее изобретение относится к новым модифицированным протеинам, способным образовывать устойчивые к понижающей регуляции С3-конвертазы, к последовательностям ДНК, кодирующим такие протеины, и к применению этих протеинов в качестве терапевтических агентов, в частности к их применению для уменьшения концентраций протеинов пути активации комплемента или для направления атаки комплемента (накопление С3b) в специфические сайты.
Система комплемента принимает участие в иммунном ответе у людей и других позвоночных и играет основную роль в эффекторных функциях, таких, как фагоцитоз, цитолиз и рекрутинг клеток, которые индуцируют местные воспалительные реакции [15]. Эти свойства являются желательными для элиминации внедряющихся в организм патогенов, таких, как бактерии, но нежелательными для запуска механизма воздействия на ткани хозяина (например, при пост-ишемическом реперфузионном повреждении [3]) или на чужеродный терапевтический материал (например, сверхострое отторжение ксенотрансплантатов [7]). Были предприняты попытки устранить эти нежелательные свойства путем применения производных регуляторных протеинов комплемента, нормальной функцией которых является подавление активации комплемента [10, 18].
Система комплемента включает протеины, которые находятся как на поверхности клеток (рецепторы и регуляторы), так и в жидкой фазе (плазма крови и другое внеклеточное окружение). Стадией, имеющей решающее значение для генерации ответов, является протеолитическое превращение С3 в фрагменты С3b и С3а. С3а представляет собой анафилатоксин, который, подобно С5а, привлекает тучные клетки к месту заражения, что приводит к местному выделению гистамина, расширению кровеносных сосудов и другим воспалительным реакциям. Образовавшийся С3b обладает способностью связываться с поверхностями, окружающими место его образования. Затем этот С3b фокусирует "атаку" цитолитических компонентов комплемента (С5-С9).
Связанный с поверхностью С3b и продукты его разложения функционируют в качестве лигандов для С3-рецепторов, опосредующих, например, фагоцитоз [15]. Существует два различных пути активации комплемента, оба из которых приводят к превращению С3 в С3b и к последующим реакциям. Классический путь обычно запускается комплексами антитела с антигеном, активирующих каскад, включающий протеины Clq, Clr, Cls, С2 и С4. Альтернативный путь зависит от петли активации, включающей сам С3, и он требует наличия факторов В и D.
Превращение С3 в С3b (или C3i) приводит к образованию продукта, который может соединяться с В-фактором с получением С3bВ (или C3iB). Для получения С3bВb эти комплексы действуют при участии D-фактора, который представляет собой С3-конвертазу, способную расщеплять большее количество С3 с образованием С3b, что приводит к увеличению образования С3bВb и к еще большему превращению С3. При определенных условиях комплекс С3bВb стабилизируется при связывании с пропердином (П), представляющим собой повышающий регулятор. Однако этот контур с положительной обратной связью обычно ограничен медленным "выключением процесса", вызванным регуляторными протеинами, в частности Н-фактором и I-фактором.
Фактор Н (и структурно близкие связанные с клеткой молекулы) (I) вытесняют В и Вb из С3b и (II) действуют в качестве кофактора I-фактора, который расщепляет С3b с образованем iC3b, тем самым предотвращая любую рекомбинацию с В-фактором, что позволяет получить большее количество С3-конвертаз. Этот путь запускается для усиленного продуцирования С3b в присутствии таких поверхностей, как стенки многих бактериальных клеток, которые связывают образующийся С3b и препятствуют его взаимодействию с факторами Н и I. Образовавшийся С3b также обладает способностью связываться с эндогенными клетками. Поверхности эндогенных клеток, обычно доступные для комплемента, дополнительно защищены связанными с мембраной регуляторами, такими, как МСР, DAF и CR1, которые действуют аналогично Н-фактору.
Известно несколько случаев, редко встречающихся в естественных условиях, когда нормальная регуляция в жидкой фазе не может происходить, а спонтанное превращение С3 в конечном итоге приводит к общей элиминации С3 из кровотока, а именно, (I) генетический дефицит фактора Н или I [13], (II) присутствие антител (нефритные факторы), которые связываются с С3bВb и препятствуют диссоциации [4], и (III) контакт с протеином яда кобры, называемым фактором яда кобры (CVF), который объединяется с В-фактором и образует фермент С3-конвертазу, который не содержит С3b и не подвержен воздействию факторов Н и I [14]. Эти данные иллюстрируют важность для нормальных физиологических реакций понижающей регуляции комплемента в отсутствие специфической активации.
Также известны случаи, когда специфическая активация происходит, но является нежелательной, в частности, когда она направлена против тканей хозяина (например, повреждение ткани при ишемии или хирургическом вмешательстве) или против чужеродного материала, специально введенного с терапевтическими целями (такого, как ксенотрансплантат, искусственный орган или диализная мембрана). Активация комплемента приводит к нежелательной атаке и дополнительному повреждению, поэтому в этих случаях представляется целесообразным блокировать или ингибировать активацию и ответ.
Существующие подходы по предотвращению опосредованного комплементом повреждения направлены на применение протеинов, обладающих понижающей регуляторной способностью (CR1, МСР, DAF и факторы Н и I) для ингибирования активации комплемента. Ингибиторы комплемента, такие, как I-фактор, Н-фактор и растворимые производные связанных с мембраной протеинов CR1, DAF, МСР, способны подавлять характерную для жидкой фазы петлю амплификации альтернативного пути. Поэтому были предприняты попытки использовать эти молекулы, в частности CR1 (который, вероятно, является наиболее активным), для снижения опосредованного комплементом повреждения в модельных физиологических ситуациях [10, 18].
Фактор Н представляет собой эндогенный фактор, который присутствует в плазме крови в высоких концентрациях (обычно 0,3-0,5 мг/мл [15]), и поэтому хотя повышенные концентрации ингибиторов могут снижать реакции в жидкой фазе, их активность является недостаточной, вследствие чего требуется вводить in vivo большие количества очищенных протеинов (например, более 5 мг растворимого CR1/кг веса тела). Кроме того, альтернативный путь активируется поверхностями, на которых действие Н-фактора уже затруднено. Хотя это не обязательно одновременно приводит к снижению активности других ингибиторов, можно предположить малую вероятность того, что эти факторы обладают полной или универсальной эффективностью.
Фактор яда кобры (CVF) обладает способностью продуцировать стабильную С3-конвертазу, которая в экспериментальных условиях in vivo может применяться для уменьшения уровня комплемента у животных in vivo и в других образцах (например, в плазме крови человека) in vitro. CVF обладает высокой активностью (например, 40 мкг/кг может нарушить активность комплемента мыши [16]). Однако имеются недостатки, которые делают его непригодным для терапевтического применения на людях.
Во-первых, его получают из яда кобры (что является труднодоступным и опасным источником), и, следовательно, он должен быть тщательно очищен от нейротоксинов яда. Также очевидны трудности в получении непосредственных источников яда. Эта проблема не может быть легко преодолена путем клонирования и экспрессии гена ex vivo, поскольку существуют посттрансляционные модификации, которые происходят в организме змей (специфический протеолитический процессинг), что может затруднить (или сделать невозможной) репродукцию in vitro. Кроме того, ферменты и условия разложения, необходимые для этого процессинга, в настоящее время неизвестны. Во-вторых, протеин является чужеродным по происхождению (для людей) и, следовательно, иммуногенным. Это исключает его повторное терапевтическое применение, что является необходимым для декомплементации пациента в течение многих недель (например, для того, чтобы дать прижиться ксенотрансплантату).
Хотя CVF обладает некоторыми структурными и функциональными гомологиями с человеческим С3 [17], он также обладает важными отличиями в обоих отношениях (например, отличается по строению цепи, месту биосинтеза, отсутствием чувствительности к регуляторам комплемента, по образованию стабильной С3-конвертазы). В настоящее время неизвестен эквивалент С3, который получен из иного источника, отличного от кобры, который может быть клонирован и секвенирован и который по общему строению и функции более сходен с С3 человека, чем CVF [8].
CVF представляет собой специфический для яда продукт из животного, чрезвычайно далекого в эволюционном плане от Homo sapiens. Поэтому не представляется целесообразным применять генетическое манипулирование для модификации этого протеина с целью его превращения в продукт, который может применяться и быть неиммуногенным для людей.
Авторами настоящего изобретения разработана альтернативная стратегия, в которой не используется физиологическая регуляция и которая вместо ингибирования активации комплемента приводит к суперактивации системы. Эта стратегия может применяться в двух случаях. Во-первых, она может использоваться in vivo для активации комплемента до тех пор, пока один или более компонентов не оказываются исчерпанными, что приводит к потере способности продуцировать локальные ответы на любое последующее вмешательство (такое, как ксенотрансплантат). Во-вторых, нерегулируемая суперактивация может быть преднамеренно локализована на конкретной мишени (например, вирусе или зараженной вирусом клетке) с целью повышения чувствительности этой мишени к разрушительным реакциям, которые опосредованы комплементом.
Понятие "регуляторы активации комплемента" в контексте настоящего описания включает все протеины, активность которых ингибирует усиление превращения С3, и подразумевается, что они не ограничены теми протеинами, гены которых локализованы в генетическом локусе RCA. Это понятие однако не включает "повышающие регуляторы", такие, как пропердин. Понятие "превращение С3" обозначает протеолитическое превращение С3 в С3b и С3а, если не указано иное, и понятие "С3-конвертаза" (или просто "конвертаза") обозначает фермент (обычно комплекс из двух или нескольких компонентов протеина, например, С3bВb, C3iBb, CVFBb или C4b2a), который катализирует эту реакцию.
Таким образом, первым предметом изобретения является протеин нативного пути активации комплемента, модифицированный таким образом, что протеин обладает способностью образовывать устойчивую к понижающей регуляции С3-конвертазу.
Понятие "нативный" обозначает встречающийся в естественных условиях, т.е. получаемый в природе. Таким образом, определение включает любой встречающийся в естественных условиях протеин пути активации комплемента, модифицированный, как указано выше. Подразумевается, что понятие не ограничено видоспецифичными протеинами. Другими словами, модифицированный человеческий протеин может применяться в качестве устойчивой к понижающей регуляции С3-конвертазы, например, в других видах млекопитающих. Обычно следует использовать модифицированные протеины пути активации комплемента этих же видов.
Модификация кодирующей последовательности ДНК С3, например, с использованием сайтнаправленного мутагенеза, может приводить к получению варианта С3, устойчивого к регуляторным протеинам комплемента, который еще сохраняет свои позитивные функциональные свойства (способность расщепляться С3-конвертазами с получением С3b) и особенности структурной целостности (правильное строение цепи и присутствие тиольной сложноэфирной связи). Настоящее изобретение, представленное в данном описании, относится к модифицированным генетическим путем формам нативных протеинов комплемента, например, к человеческому С3, С3b-фрагмент которого приобретает способность становиться устойчивым к физиологической регуляции комплемента. В результате такой устойчивости эти молекулы могут образовывать стабилизированные формы соответствующей С3-конвертазы, что приводит к усиленному превращению С3 в С3b и к последующему разложению продуктов в физиологических условиях (например, in vivo).
В предпочтительном варианте осуществления изобретение относится к модифицированному человеческому протеину С3, который обладает устойчивостью к расшеплению I-фактором.
Это может достигаться путем модификации остатков протеина в протеолитических сайтах.
Особенно предпочтительным вариантом является модифицированный человеческий протеин С3, который модифицирован путем замены либо Arg-1303, либо Arg-1320, либо их обоих на другую аминокислоту. Другая аминокислота может представлять собой тирозин, цистин, триптофан, глутамин, глутаминовую кислоту или глицин. Предпочтительна замена Arg-1303 глутаминовой кислотой или глицином (менее предпочтительна глутамином). Предпочтительна замена Arg-1320 глутамином.
Другие стратегии получения стабильных модифицированных протеинов по изобретению включают:
I) Пониженную чувствительность к ингибиторным действиям фактора Н и родственных протеинов (например, МСР, DAF, CR1). Например, в человеческом С3 остатки 767-776 и 1209-1271 вовлечены в связывание Н-фактора [21, 24] и замена одного или нескольких этих остатков или других остатков, также связанных с действием этих протеинов, может снизить связывание одного или нескольких из этих регуляторных протеинов.
II) Пониженную скорость диссоциации С3bВb. Могут быть интродуцированы мутации, которые будут усиливать взаимодействие между С3b и Вb. Результатом этого может быть как снижение спонтанной деструкции фермента, так и снижение эффективности Н-фактора (и родственных регуляторов) при вытеснении Вb из С3b.
Эти мутации необходимы для снижения скорости как спонтанной, так и опосредованной Н-фактором деструкции С3bВb. Даже при отсутствии Н-фактора время полужизни комплекса С3bВb в жидкой фазе при 37 С в присутствии пропердина составляет только примерно 10 мин [6].
III) Остатки 752-761 человеческого С3 участвуют в связывании В-фактора. Эта область представляет собой высококонсервативную область в С3 и в С4 обнаружена близкородственная к ней последовательность. Поскольку С4 связывает гомолог В-фактора С2, выраженное сходство этой области в С3 и С4, наряду с ее высокой консервативностью в С3, дополнительно подтверждает ее роль в С3 в качестве сайта связывания В-фактора. Таким образом, изменения в этой области могут влиять на аффинность к В и на стабильность С3bВb.
IV) Устойчивость к другим регуляторам активации комплемента, таким, как CR1, DAF и МСР, также является желательной. Механизм действия всех этих регуляторов аналогичен таковому Н-фактора, и поэтому дополнительный мутагенез не требуется. Аналогично этому некоторые патогенные организмы экспрессируют свои собственные ингибиторы активации комплемента, которые часто структурно и функционально гомологичны Н-фактору (например, секреторный пептид вируса осповакцины (Vaccinia)). Эти молекулы защищают внедряющийся вид от иммунных ответов, и поэтому может оказаться целесообразной атака на них с помощью направленного действия ферментов С3-конвертаз, устойчивых к указанной защите.
V) Мутации, усиливающие стабилизацию С3-конвертазы пропердином. Активность пропердина состоит в стабилизации комплекса С3bВb, в замедлении спонтанной и зависящей от Н-фактора диссоциации. Эта стабилизация неэффективна в жидкой фазе, но, вероятно, является более важной для усиления процесса, если он уже начат на соответствующей активирующей поверхности [5]. Возрастание этой активности (путем увеличения его аффинности) может нарушить баланс в жидкой фазе и тем самым усилить спонтанное превращение С3. Это должно быть особенно важным в сочетании с другими описанными выше модификациями.
VI) Мутации, которые препятствуют приобретению С3bВb С5-конвертазной активности. Истощение активного С3 в кровотоке обычно сопровождается нежелательным побочным эффектом, т.е. получением больших количеств анафилактических пептидов. Наиболее активным из них является С5а, который получается в результате расщепления С5 с помощью некоторых ферментов С3-конвертаз. Эта реакция, вероятно, зависит от аффинности конвертазы к другой молекуле С3b [11] и поэтому может подвергаться подавлению с помощью мутаций С3, которые устраняют это взаимодействие.
VII) Улучшенная активность С3-конвертазы. Активный сайт С3bВb фермента С3-конвертазы находится в Вb-области. Фукциями компонента С3b, вероятно, являются придание активной конформации Вb и/или связывание и ориентация субстрата, на который воздействует Вb. Механизм этого явления пока не известен, но в любом случае в данном случае существует возможность для усиления активности конвертазы посредством мутаций в С3.
VIII) Экспрессия в фунционально активной форме. Для С3 дикого типа необходимо превращение в С3b до того, как он может быть объединен в новый комплекс с С3-конвертазой. Для превращения в С3b (или в C3i) in vivo необходимо замедление действия модифицированного С3. Следовательно, желательно либо введение протеина в форме, способной немедленно формировать конвертазу, либо введение предварительно сформированных комплексов конвертазы. Поэтому представляется целесообразным получить функционально активный С3b-подобный реагент ex-vivo. Это может быть достигнуто in vitro (например, путем протеолиза).
IX) Модификации нативного протеина, которые служат для интродукции новых сайтов расщепления таким образом, что пептидные области, необходимые для связывания В-фактора, сохраняются, а области, необходимые исключительно для связывания Н-фактора, могут быть специально удалены. Например, могут быть интродуцированы такие сайты, что С3b-подобная форма модифицированного С3 может быть дополнительно расщеплена с получением формы, которая все еще связывает В-фактор, но обладает меньшей чувствительностью к инактивации факторами Н и I.
X) Модификации в других областях, которые могут влиять на взаимодействие С3b с В-фактором и/или с Н-фактором.
Изобретение основано на пересмотре традиционного подхода и основано на стимулировании превращения С3 для уменьшения С3, что приводит к выведению из строя системы. Дополнительной областью применения изобретения является возможность стимулировать превращение С3 в определенном месте нахождения и, следовательно, привлечь зависящие от комплемента эффекторные механизмы для атаки на специфическую мишень.
Таким образом, окончательным эффектом должно быть увеличение количества случаев превращения С3, когда модифицированный протеин вводят в физиологическую среду (например, в кровь), содержащую регуляторы активации комплемента. Затем эта активность может использоваться либо для уменьшения в этой среде нативного С3, либо для локализации превращения С3 на требуемой мишени.
Аналог С3, С3b-фрагмент которого устойчив к воздействиям I-фактора (например, производное, описанное в примере 1), должен связывать В-фактор, который затем должен быть расщеплен D-фактором и в конце концов диссоциирован до неактивной формы. В отсутствие инактивации I-фактором модифицированный С3b должен обладать способностью повторно связывать новые молекулы В-фактора и тем самым усиливать свою инактивацию. Следовательно, другим потенциальным применением модификаций, описанных в данном изобретении, может быть инактивация альтернативного пути с помощью исчерпывания активности В-фактора. Аналогичный подход может также применяться к модификации С4 для усиления расхода С2 и тем самым выведения из строя классического пути активации комплемента.
Изобретение включает любую другую протеазу, применяемую аналогично ферменту С3bВb, которая приводит к расщеплению С3 до С3b, несмотря на присутствие регуляторов активации комплемента.
Изобретение также включает последовательности ДНК, которые кодируют протеин по изобретению, а также конструкции ДНК, содержащие такие последовательности ДНК.
Понятие "последовательности ДНК" включает все другие нуклеотидные последовательности, которые благодаря вырожденности генетического кода, также кодируют данную аминокислотную последовательность, или которые практически гомологичны этой последовательности. Эти последовательности, таким образом, также подпадают под объем изобретения.
Нуклеотидные последовательности, которые являются "практически гомологичными", также подпадают под объем настоящего изобретения. "Практическая гомологичность" может рассматриваться либо на нуклеотидном уровне, либо на аминокислотном уровне. На нуклеотидном уровне последовательностями, имеющими значительную гомологию, могут считаться таковые, которые гибридизуются с нуклеотидными последовательностями по изобретению в строгих условиях (например, при температуре 35-65 С в растворе соли концентрации примерно 0,9М). На аминокислотном уровне последовательность протеина может считаться существенно гомологичной другой последовательности протеина, если значительное количество конститутивных аминокислот обладает гомологией. Могут быть гомологичными (в возрастающем порядке по предпочтительности) по крайней мере 55%, 60%, 70%, 80%, 90%, 95% или даже 99% аминокислот.
Как указано выше, протеины по изобретению могут применяться для достижения эффектов локализованной активации комплемента. Одним из путей, обеспечивающих это, является конъюгация протеина с фрагментом, который должен связываться с требуемой мишенью. Таким образом, вторым предметом изобретения является конъюгат, содержащий протеин по изобретению, сшитый со специфичным связывающим фрагментом, например со специфичным связывающим протеином. Примером такого протеина может быть антитело или его антигенсвязывающий фрагмент.
Протеины по изобретению предназначены для введения субъекту для достижения требуемого терапевтического эффекта. Поэтому изобретение также включает:
а) протеин по изобретению, предназначенный для применения в терапии;
б) применение протеина или конъюгата по изобретению для изготовления лекарственного средства, предназначенного для уменьшения уровней протеинов пути активации комплемента, и, в частности, применение для предупреждения отторжения чужеродного материала;
в) фармацевтическую композицию, содержащую один или несколько протеинов или конъюгатов по изобретению вместе с одним или с несколькими фармацевтически приемлемыми носителями и/или эксципиентами; и
г) способ уменьшения протеинов пути активации комплемента у млекопитающего, включающий введение млекопитающему протеина по изобретению, предпочтительно в форме фармацевтической композиции.
Фармацевтические композиции могут быть в виде стандарных дозируемых форм, содержащих предварительно определенное количество действующего вещества в дозе. Такая стандартная доза может содержать как минимум, например, 1 мг действующего вещества и предпочтительно 2-3 мг. Верхний предел, которого может достигать такая стандартная доза, будет зависеть от многих факторов, таких, как подлежащее лечению состояние, путь введения и возраст, вес и состояние пациента, а также от экономических факторов. Например, стандартная доза может содержать 10 мг или даже 100 мг действующего вещества.
Протеины по изобретнию могут применяться in vivo для выведения из строя системы комплемента. Это может оказаться целесообразным в следующих обстоятельствах:
(а) С целью предотвращения опосредованной комплементом деструкции или повреждения трансплантата, в частности ксенотрансплантата (материала, трансплантированного из других видов животных), и особенно дискордантного ксенотрансплантата (когда виды донора и реципиента являются дискордантными (несовпадающими)). У реципиента предварительно до операции должно быть проведено удаление комплемента, и он должен находиться в таком состоянии до тех пор, пока либо не произойдет аккомодация трансплантата, либо он будет заменен на более совместимый орган.
Первоначальное лечение должно быть проведено в течение нескольких дней до трансплантации. Дополнительное удаление комплемента может потребоваться во время кризиса отторжения. Лечение может проводиться с использованием антигистаминных препаратов для борьбы с общими воспалительными реакциями (например, с расширением кровеносных сосудов), вероятно, являющихся результатом производства С3а и/или С5а.
Удаление комплемента также может оказаться целесообразным при использовании искусственных органов или тканей (например, диализных мембран искусственной почки), что активирует систему комплемента. Как описано ранее, протеин может применяться либо в неактивированной форме, функционально подобной С3b-форме, либо в виде предварительно образованной активной С3-конвертазы (типа С3bВb). Эти формы могут вводиться с помощью любого пути, причем активная конвертаза должна встречаться с находящимся в кровотоке С3 (например, вводиться внутривенно, подкожно и т.д.).
Другим альтернативным способом может быть обработка ex vivo, например, путем трансфузии крови через матрикс, несущий активную конвертазу. Это может иметь преимущество, состоящее в том, что анафилактические пептиды (С3а и С5а) и другие низкомолекулярные медиаторы воспаления (наприимер, гистамин и оксид азота) могут быть удалены (например, путем диализа) до того, как кровь (или плазма) с удаленным комплементом будет возвращена пациенту.
(б) С целью предотвращения опосредованного комплементом повреждения, являющегося результатом крупного хирургического вмешательства. У пациента должен быть удален комплемент, как описано выше, предпочтительно до операции (но, если необходимо, после нее), и он должен находиться в таком состоянии до тех пор, пока не будет устранена опасность дополнительного внутреннего повреждения вследствие зависящей от комплемента иммунной атаки.
(в) С целью минимизации опосредованного комплементом повреждения, являющегося результатом нехирургического поражения. В этих случаях удаление комплемента должно быть осуществлено после первичного поражения, но композиции и методы введения, вероятно, в целом должны соответствовать описанным выше. Это может быть особенно целесообразным, когда восстановление включает реперпузию ишемической ткани путем циркуляции (например, ишемия миокарда, отморожения, ожоги и т.д.).
(г) С целью минимизации опосредованного комплементом повреждения, являющегося результатом взаимодействий антитело-антиген. Опосредованные комплементом защитные реакции являются особенно нежелательными при аутоиммунных заболеваниях, которые включают гломерулонефрит, гемолитическую анемию, перемежающуюся хромоту, диабет типа I, ревматоидный артрит и рассеянный склероз. Выведение из строя системы комплемента во время серьезных стадий заболевания может облегчить состояние, что может быть осуществлено, например, путем локального введения в сустав при ревматоидном артрите.
(д) С целью увеличения чувствительности специфической патогенной мишени к опосредованным комплементом иммунным механизмам. При этом подходе целью является не применение суперактивной С3-конвертазы для достижения общего уменьшения С3, а вместо этого для обеспечения превращения С3 в требуемой мишени конвертазу применяют локально. Мишень может представлять собой патогенный организм, такой, как бактерия, вирус или другой паразит, или вредоносную клетку-хозяина или ткань, такую, как клетка опухоли или инфицированная вирусом клетка. С3-конвертаза может быть локализована в мишени либо путем местного нанесения (например, возможна прямая инъекция в среду, которая задерживает ее распределение в общем кровотоке), либо путем объединения с направляющим фрагментом, например, антителом. Так, например, модифицированный протеин может быть сшит со специфическим иммуноглобулином либо с помощью химического перекрестного сшивания протеинов, либо путем объединения кодирующих последовательностей ДНК и экспрессии (и очистки) слитого протеина (например, в случае IgG, либо тяжелая, либо легкая цепь должна быть связана с С3 и совместно экспрессироваться с С3, или обе цепи могут быть объединены в одном полном слитом полипептиде), либо путем включения специфических кодирующих последовательностей (например, для доменов, подобных лейциновой "молнии") в ДНК обоих участвующих в слиянии партнеров (например, модифицированного
С3 и специфического антитела) таким образом, что экспрессируемые продукты при смешении вместе сами связываются между собой, образуя стабильные конъюгаты. Слитый протеин может затем вводиться локально или в общий кровоток.
Липосомы (несущие антитело на поверхности с модифицированным протеином, находящимся либо на поверхности или внутри липосомы) и/или вирионы (например, сконструированные для экспрессии протеинов на их поверхности) также могут применяться для совместной доставки антитела и модифицированного протеина. Эта стратегия может использоваться непосредственно, одна или в сочетании с другими системами обработки, на любой стадии заболевания. Может оказаться особенно целесообразно применять ее для элиминации любых раковых клеток, сохранившихся в кровотоке после удаления опухоли хирургическим путем. Конъюгаты антитела с модифицированным протеином также могут применяться ex vivo для элиминации патогенной ткани. Например, для уничтожения клеток лейкемии в экстрактах костного мозга и последующего возвращения оставшихся здоровых клеток пациенту.
В альтернативном варианте лимфоциты, которые не подходят к типам главного комплекса гистосовместимости (МНС) реципиента, могут быть удалены из костного мозга до трансплантации. Кроме того, модифицированный протеин может быть сшит с антигеном, и эта комбинация может применяться либо in vivo, либо ех vivo, для атаки на лимфоциты с ненужной реакционной способностью (например, против трансплантированной или собственной ткани).
Такая же методика может применяться для лечения других видов с использованием либо производного человеческого модифицированного протеина, либо подобного аналога, сконструированного специально для этих видов.
Предпочтительные характеристики каждого предмета изобретения являются также предпочтительными и для каждого другого предмета изобретения mutatis mutandis (при внесении соответствующих изменений).
Ниже изобретение поясняется на примерах, которые не направлены на ограничение объема изобретения, со ссылкой на прилагаемые чертежи.
На фиг.1 показана теоретически предсказанная последовательность протеина человеческого С3, закодированного в РС3 (использован стандартный однобуквенный код для аминокислот).
На фиг.2 показана последовательность кДНК в РС3 (использован стандартный однобуквенный код для дезоксинуклеотидов смысловой цепи, записано в направлении 5’-3’).
На фиг.3 показана визуализация модифицированных протеинов по изобретению.
На фиг.4 показано воздействие различных мутаций в человеческом С3, приводящих к замене Arg1303 или Arg1320, на опосредованное I-фактором расщепление в этих сайтах.
Примечание:
1) образцы, меченные биосинтетическим путем с помощью [35S],
2) реакции проведены при нормальной ионной силе,
3) иммуноосаждение с помощью анти-С3,
4) ДСН-ПААГ в восстанавливающих условиях,
5) авторадиогарфия.
На фиг.5 показана увеличенная устойчивость человеческого С3, имеющего мутацию Arg1303 Gln1303, по отношению к инактивации факторами I и Н.
На фиг.6 показан анализ расщепления С3-конвертазой, имеющей мутации на остатках 752-754 и 758-760.
Представлена фотография вестерн-блоттинга, проведенного в 7,5%-ном полиакриламидном ДСН-ПААГ-геле (восстанавливающие условия), после электрофоретического переноса на нитроцеллюлозу, зондирования овечьим античеловеческим антителом к С3 и применения пероксидазы из хрена, сшитой с антиовечьим иммуноглобулином, и субстратов, усиливающих хемилюминесценцию "Enhanced ChemiLuminescence" (метод и реагенты для определения поставляются фирмой Amersham, Великобритания), запечатленная на рентгеновскую пленку. Реакции расщепления и определение проводили согласно примеру 4 при сопоставлении с результатами, приведенными на фиг.3.
Пояснение:
Дорожки 1-4: С3 дикого типа (экспрессирован в клетках COS).
Дорожки 5-8: Мутантный С3 (остатки 752-754 заменены на Gly-Ser-Gly и остатки 758-760 также заменены на Gly-Ser-Gly) (экспрессирован в клетках COS).
Дорожки 1,5: без добавления.
Дорожки 2, 6: + CVFBb.
Дорожки 3, 7: + факторы Н+I.
Дорожки 4, 8 + CVFBb + факторы H+I.
Полосы, обозначенные стрелками, соответствуют следующим:
А: альфа-цепь С3,
В: альфа’-цепь С3,
С: бета-цепь С3,
D: продукт расщепления альфа’-цепи С3 с молекулярной массой 68 кДа Е: тяжеля цепь IgG.
На фиг.7 показан анализ расщепления радиоактивномеченного В-фактора D-фактором в присутствии С3 дикого типа и мутантного С3 (С3i).
Приведена фотография авторадиографического исследования ДСН-ПААГ-геля. Все образцы содержали D-фактор и меченный с помощью 225I В-фактор и их инкубировали в течение 3 ч при 37 С.
Образцы в пронумерованных дорожках также включали:
1) только буфер,
2) разбавление 1/125 С3 дикого типа,
3) разбавление 1/25 С3 дикого типа,
4) разбавление 1/5 С3 дикого типа,
5) разбавление 1/25 мутантного С3 (остатки 1427 Gln, 1431 Asp и 1433 Gln),
6) разбавление 1/5 мутантного С3,
7) неразбавленный мутантный С3,
Полосы, обозначенные стрелками, соответствуют следующим:
А. Нерасщепленный меченный с помощью 125I В-фактор (93 кДа).
B. Расщепленный продукт 60 кДа ("Вb").
С: Расщепленный продукт 33 кДа ("Ва").
На фиг.8 показано исследование с помощью ДСН-ПААГ, иллюстрирующее образование конъюгата между C3i и IgG.
Результат получен при окрашивании с помощью кумасси (Coomassie) 4%-ного акриламидного ДСН-ПААГ-геля при разгонке в невосстанавливающих условиях.
Пронумерованные дорожки содержат следующие образцы:
1. PDP-IgG
2. C3i
3. PDP-IgG + реакционную смесь с C3i
Стрелками показаны:
А. Возможный конъюгат C3i-IgG (350 кДа)
В. C3i (200 кДа)
С. IgG (150 кДа)
На фиг.9 показано, что конъюгат направляет активность С3-конвертазы против овечьих эритроцитов.
На этом графике представлен % лизированных овечьих эритроцитов после сенсибилизации разбавлениями конъюгата C3i-IgG, PDP-IgG или C3i с последующей промывкой, получения С3-конвертаз с помощью пропердина и факторов В и D и окончательного проведения лизиса с помощью NGPS в CFD/ЭДТК, как описано в методах. Лизис вызывается только конъюгатом, и этот лизис зависит от дозы.
На фиг.10 и 11 показаны особенности расщепления мутанта С3 DV-1AM (см. примеры 12-14).
Применительно к фиг.10 супернатанты клеток COS, содержащие экспрессированный С3 дикого типа (А) и мутант С3 DV-1AM (В), обрабатывали с помощью 1) оставляли без обработки; 2) CVFBb; 3) 10 мкг/мл I-фактора и 50 мкг/мл Н-фактора; или 4) CVFBb плюс 10 мкг/мл I-фактора и 50 мкг/мл Н-фактора, подвергали иммуноосаждению, анализировали с помощью ДСН-ПААГ (в указанных дорожках) и переносили с помощью электроблоттинга на нитроцеллюлозу, как описано в примере 4. В этом случае блоттинг проводили, используя комбинацию крысиных моноклональных антител Clone-3 и Clone-9, которые реагируют с С3dg-областью С3 и ее фрагментированными продуктами (Lachmann PJ. и др., J. Immunol. 41:503 (1980)), а затем пероксидазу из хрена, сшитую с анти-крысиным иммуноглобулином (от фирмы Sigma), и выявляли, используя ECL-реагенты и инструкции, поставляемые фирмой Amersham.
Применительно к фиг.11 супернатанты клеток COS, содержащие экспрессированный мутант С3 DV-1B (А), С3 дикого типа (В) и мутант С3 DV-6 (С), обрабатывали с помощью 1) оставляли без обработки; 2) 10 мкг/мл I-фактора и 50 мкг/мл Н-фактора; 3)CVFBb; 4) CVFBb плюс 10 мкг/мл I-фактора и 2 мкг/мл Н-фактора; 5) CVFBb п