Электропроводящая резистивная композиция

Реферат

 

Изобретение относится к электропроводящей резистивной композиции и может быть использовано при изготовлении нагревательных и резистивных элементов в бытовых и промышленных электроприборах. Техническим результатом является возможность получения электропроводящей композиции с повышенным диапазоном рабочих температур, заданным температурным коэффициентом сопротивления (ТКС), повышенной плотностью тока, исключением старения и высокой химической стойкостью. В электропроводящей композиции, содержащей распределенные в полимерном связующем частицы электропроводящего вещества и частицы электроизолирующего вещества, согласно изобретению она дополнительно содержит вещество, регулирующее температурный коэффициент сопротивления, состоящее из силицидов железа, при этом содержание кремния в силицидах железа находится в пределах 14,3-81,0 вес.%, в качестве полимерного связующего и электроизолирующего вещества использованы термостойкие полимеры, а в качестве электропроводящего вещества использованы пиролитический графит и никель при следующем соотношении компонентов, вес.%: полимерное связующее 24-62, электропроводящее вещество 16-55, регулирующее вещество 20-50. 5 з.п. ф-лы, 1 табл.

Изобретение относится к электропроводящей резистивной композиции и может быть использовано при изготовлении нагревательных и резистивных элементов в бытовых и промышленных электроприборах.

Известна электропроводящая композиция с ограничением температуры нагрева, содержащая распределенные в полимере электропроводящие и электроизолирующие частицы (патент США №5147580, кл. Н 01 В 1/06, 1992), где в качестве электропроводящих частиц использован природный или искусственный графит с размером частиц от 50 до 75 мкм в количестве до 15 вес.%. В качестве изолирующего вещества использована окись кремния SiO 2 с размером частиц от 0.03 до 2.5 мм или кальцит, а в качестве полимера - акрилат. При этом для достижения оптимального результата частицы электроизолирующего вещества должны иметь определенные размеры. Если помол очень тонкий, то они очень хорошо, гомогенно перемешиваются с черным углеродом или графитом, а композиция имеет относительно низкую проводимость.

Недостатками композиции по указанному патенту являются:

- ограниченная температура эксплуатации, т.к. температура размягчения полиметилметакрилата 120° С, а начальная температура разложения - около 200° С.

- использование термического коэффициента линейного расширения (ТКЛР) полимерной матрицы для регулирования ее ТКС уменьшает количество точек соприкосновения проводящих частиц, что, соответственно, уменьшает удельные токовые характеристики.

- при многократном термоциклировании число контактов (точек соприкосновения) между электропроводящими частицами необратимо уменьшается, электросопротивление растет, а электрическая мощность падает, и при некотором критическом числе контактов между многими частицами проводящей порошковой фазы возникают микродуги и элемент локально перегревается.

Наиболее близкой к предлагаемому изобретению является электропроводящая композиция, содержащая распределенные в полимерном связующем частицы электропроводящего вещества и частицы электроизолирующего вещества (патент США №5196145, кл. Н 01 В 1/06, 1993). Указанная композиция содержит от 15 до 60 вес.% кристаллического полимера - полиэтилена или модифицированного полярными группами полиэтилена от 15 до 60 вес.% эластомера, совместимого с кристаллическим полиэтиленом и от 15 до 60 вес.% черного углерода. В качестве полярной группы используют гидроксильные, карбоксильные и аминогруппы. В качестве полимерного связующего используют термопластичные эластомеры, например, бутадиен-стирольный полимер или малеиновый ангидрид.

Недостатками вышеописанной композиции являются: малая рабочая температура 100-120° С, обусловленная свойствами используемых полимеров; ограниченный диапазон удельного электрического сопротивления и удельной мощности, т.к. при высоком содержании "черного углерода" композиция теряет связность по полиэтилену и изделие рассыпается, а при низком содержании "черного углерода" в полимерной матрице теряется электрическая связь между частицами проводящей фазы. Низкие удельные токовые характеристики обусловлены тем, что в проводящей композиции с "черным углеродом" реализуется перескоковый механизм проводимости, но при превышении допустимой плотности тока возникают электрические микродуги, затем локальный перегрев и воспламенение. Недостатком также является то, что эффект саморегулирования температуры нагревательного элемента, изготовленного на основе данной композиции, реализуется при концентрации углерода не выше 30-35 вес.%. При более высоких концентрациях углерода полимерная матрица становится жесткой и повышение температуры элемента не приводит к заметному увеличению геометрических размеров полимерной матрицы и изменению электрического сопротивления, следовательно эффект саморегулирования отсутствует.

Задачей настоящего изобретения является создание электропроводящей резистивной композиции, в которой использование специфических электропроводящих веществ и соответствующих полимерных связующих позволило бы получить электропроводящую композицию с повышенным диапазоном рабочих температур, и заданным температурным коэффициентом сопротивления (ТКС). В основу настоящего изобретения поставлена также задача создания электропроводящей резистивной композиции, специфический состав которой позволил бы получить повышенную плотность тока, исключение старения и высокую химическую стойкость.

Поставленная задача решается тем, что в электропроводящей композиции, содержащей распределенные в полимерном связующем частицы электропроводящего вещества и частицы электроизолирующего вещества, согласно изобретению она дополнительно содержит вещество, регулирующее температурный коэффициент сопротивления, состоящее из силицидов железа, при этом содержание кремния в силицидах железа находится в пределах 14,3-81,0 вес.%, в качестве полимерного связующего и электроизолирующего вещества использованы термостойкие полимеры, а в качестве электропроводящего вещества использована смесь пиролитического графита и никеля (25 и 75 вес.% соответственно) при следующем соотношении компонентов, вес.%:

Полимерное связующее 24-62

Электропроводящее вещество 16-55

Регулирующее вещество 20-50.

Целесообразно, чтобы размер частиц электропроводящего вещества находился в пределах: пиролитический графит - менее 1,0 мкм, никель - менее 5,0 мкм.

Выгодно в качестве термостойкого полимерного связующего использовать фторопласты.

Целесообразно в качестве термостойкого полимерного связующего использовать полиимиды.

Предпочтительно в качестве термостойкого полимерного связующего использовать полиорганосилоксаны.

Выгодно в качестве термостойкого полимерного связующего использовать полиамиды.

Регулирование ТКС в предлагаемой электропроводящей резистивной композиции достигается введением в ее состав силицидов железа с содержанием кремния 14.3-81.0 вес.%, а характер изменения сопротивления от температуры зависит от концентрации кремния в силицидах железа. Кремний, входящий в состав силицидов железа, в зависимости от его концентрации, определяет характер изменения ТКС, концентрационный предел содержания кремния 14,3 вес.% соответствует индивидуальному соединению Fe 3Si, a 81,0 вес.% твердому раствору кремния в FeSi 2 (Силициды. Самсонов Г.В., Дворина Л.А., Рудь Б.М. М.: Металлургия, 1979, с.222).

Электропроводящее вещество, выбранное в указанных границах 16-55 вес.% состоит из смеси порошков никеля и пиролитического графита, взятых в соотношении 3:1, т.е. 75% никеля и 25% пирографита. Данные концентрации определены экспериментально и обусловлены концентрационными ограничениями по диффузии углерода в полимерной матрице - полимерного связующего вещества.

Размер частиц порошка никеля d1<5 мкм определен из степени заполнения резистивного слоя (толщина которого составляет 100-120 мкм) и обеспечения максимального числа контактов в порошковом электропроводящем слое. Степень заполнения любого объема равноразмерными частицами теоретически не может превышать величины 0,63 (т.е. 63% объема). Для увеличения числа контактов между частицами остальные 37% незаполненного объема с размерностью d2 необходимо заполнять материалом с дисперсностью d2<d1, при этом отношение d1/d2 5 приближается к оптимальному. В реальных условиях дисперсные системы не могут заполнить объем на 100%, т.е. пирографит заполняет не 37% объема, а менее. Изменение соотношения степени заполнения пленки (объема) и количества полимерного связующего позволяет регулировать электрическое сопротивление пленочного электропроводящего элемента.

Одним из основных отличий заявляемого изобретения от прототипа является использование термостойких полимеров в качестве связующего и электроизолирующего вещества, что позволяет повысить рабочую температуру электропроводящей резистивной композиции до 180-500° С. Среди апробированных полимерных материалов выбраны к практическому использованию фторопластсодержащие композиции на основе водных суспензий фторопластов различных марок (Ф-4, Ф-4Д, Ф-4МД-Б), полиорганосилоксаны, полиимиды, полиамиды.

Пример 1 получения электропроводящей резистивной композиции согласно предлагаемому изобретению.

Электропроводящее вещество, например никель, дисперсностью менее 5 мкм, перемешивают с силицидом железа, содержащим 60 вес.% кремния, дисперсностью менее 60 мкм, затем к полученной смеси добавляют фторопластсодержащую суспензию при следующем соотношении компонентов, г: электропроводящее вещество 45; силицид железа 25; фторопластовая суспензия 30. После перемешивания в вибромельнице композицию наносят методом пульверизации на диэлектрическую подложку, которую помещают в термошкаф, где подсушивают при температуре 80° С в течение 0,5 часа, затем температуру поднимают до 400° С со скоростью 2-2,5 градуса в минуту и выдерживают 5-10 мин. Охлаждение происходит со скоростью естественного остывания печи. Для определения электрических параметров полученного таким образом образца электропроводящей резистивной композиции к его противоположным сторонам подводят металлические электроды и производят измерения. В конкретном примере при соотношении сторон 20× 20 см и толщине 0,1 мм сопротивление составляет 3,6 Ом. При напряжении на электродах 12 В электрическая мощность, выделяемая на образце, составляет 40 Вт, электрический ток составляет 3,3 А, а температура поверхности 85° С при свободном конвективном и лучистом теплообмене с окружающей средой. При напряжении на электродах 36 В выделяемая на образце электрическая мощность составляет 360 Вт, температура поверхности достигает 195° С, а электрический ток через элемент достигает значения 10 А. Температурный коэффициент сопротивления данного образца составляет +0,2 Ом/градус. Другие примеры, характеризующие данное изобретение, приведены в таблице. Максимальной рабочей температурой, согласно проведенному нами анализу электропроводящей композиции с полимерными связующими по прототипу, является 120° С. Электропроводящие резистивные композиции, изготовленные в соответствии с заявляемым изобретением, выдерживают более высокие рабочие температуры (таблица).

Таким образом, использование в качестве полимерного связующего и электроизолирующего вещества термостойких полимеров: фторопластов, полиимидов, полиамидов, полиорганосилоксанов и веществ, регулирующих термический коэффициент сопротивления, использование силицидов железа с высоким и низким содержанием кремния, а в качестве проводящего вещества использование пиролитического графита в сочетании с никелем позволяет получать электропроводящую резистивную композицию для толстопленочных нагревателей и резисторов с заданными электротехническими параметрами - удельной проводимостью и температурным коэффициентом сопротивления.

Совокупность нововведенных признаков позволило создать терморезистивные композиции с более высокой удельной плотностью тока и увеличить рабочую температуру нагревательных элементов, созданных на основе заявляемой электропроводящей композиции с эффектом регулирования ТКС.

Важно, что при применении фторопластов или их композиций в качестве связующих растворителем является вода, они не оказывают вредного воздействия на экологию производства нагревателей и резисторов с использованием заявляемых электропроводящих резистивных композиций. Помимо этого, применение вышеуказанных термостойких полимеров обеспечивает высокую химическую стойкость разработанной композиции в присутствии химически агрессивных реагентов.

Формула изобретения

1. Электропроводящая резистивная композиция, содержащая распределенные в полимерном связующем частицы электропроводящего вещества и электроизолирующее вещество, отличающаяся тем, что она дополнительно содержит вещество, регулирующее температурный коэффициент сопротивления, состоящее из силицидов железа, при этом содержание кремния в силицидах железа находится в пределах 14,3÷81,0 вес.%, в качестве полимерного связующего и электроизолирующего вещества использованы термостойкие полимеры, а в качестве электропроводящего вещества использована смесь пиролитического графита и никеля (25 и 75 вес.% соответственно) при следующем соотношении компонентов, вес.%:

Полимерное связующее 24÷62

Электропроводящее вещество 16÷55

Регулирующее вещество 20÷50

2. Композиция по п.1, отличающаяся тем, что размер частиц электропроводящих веществ составляет никель - менее 5 мкм, пиролитический графит - менее 1,0 мкм.

3. Композиция по п.1, отличающаяся тем, что в качестве термостойкого полимерного связующего использованы фторопласты.

4. Композиция, отличающаяся тем, что в качестве термостойкого полимерного связующего использованы полиимиды.

5. Композиция по п.1, отличающаяся тем, что в качестве термостойкого полимерного связующего использованы полиорганосилоксаны.

6. Композиция по п.1, отличающаяся тем, что в качестве термостойкого полимерного связующего использованы полиамиды.