Структурно-модифицированные полимерные флокулянты

Реферат

 

Изобретение относится к структурно-модифицированным водорастворимым полимерам, которые могут использоваться для осветления органических веществ, полученных полимеризацией в водном растворе мономеров. Структурно-модифицированный, неионогенный, катионогенный или анионогенный водорастворимый полимер содержит смесь линейного полимера и длинноцепного разветвленного полимера с удельной вязкостью свыше 3 дл/г. Полимер получен инициированием полимеризации в водном растворе мономеров в условиях свободнорадикальной полимеризации с образованием раствора полимера и добавлением, по крайней мере, одного структурного модификатора к раствору полимера после того, как произойдет полимеризация, по меньшей мере, 30% мономеров. Способ получения полимера включает инициирование полимеризации в водном растворе мономеров в условиях свободнорадикальной полимеризации с образованием раствора полимера и добавлением, по крайней мере, одного структурного модификатора к раствору полимера после того, как произойдет полимеризация, по меньшей мере, 30% мономеров. Изобретение позволяет получить полимеры с более высокой скоростью растворения, с более высоким значением величин приведенной вязкости, что позволяет более эффективно проводить очистку загрязненных вод. 2 н. и 6 з.п.ф-лы., 36 табл.

Настоящее изобретение относится к структурно-модифицированным водорастворимым полимерам, полученным инициированием полимеризации в водном растворе мономеров в условиях свободнорадикальной полимеризации, и добавлением, по меньшей мере, одного модификатора после завершения полимеризации, по меньшей мере, 30% мономеров, и к использованию упомянутых полимеров в качестве флокулянтов.

Предыстория создания изобретения

Водорастворимые полимерные флокулянты обычно используют для осветления суспензий органических веществ белкового или целлюлозного происхождения, например таких, которые можно встретить в сточных водах и сбросах промышленных обрабатывающих предприятий или же на предприятиях бумажного производства.

Указанные взвешенные вещества являются гидрофильными по своей природе и часто имеют величину удельной плотности, очень близкую к величинам удельной плотности водных растворов, в которых они суспендированы, и значительно отличаются от суспензий более гидрофобных минералов тем, что зачастую их оказывается значительно труднее флокулировать экономичным образом с помощью химических реагентов перед стадией физического обезвоживания, такой как фильтрование, флотация, осаждение или обезвоживание. Указанные трудности становятся особенно ощутимыми при более высоком содержании взвешенных веществ, обычно включающем концентрации от 0,5 процентов по массе и выше, когда суспензии приобретают пастообразную консистенцию и обычно описываются как илы.

Хорошо известно, что осветлению или обезвоживанию сточных вод и промышленных илов, а также аналогичных органических суспензий может способствовать использование химических реагентов, добавляемых для того, чтобы индуцировать коагуляцию или флокуляцию для облегчения процесса отделения от воды в системах твердое вещество/жидкость или жидкость/жидкость. Для этой цели используют известь или соли железа или алюминия. Не так давно установлено, что в этом смысле представляют интерес синтетические полиэлектролиты, особенно некоторые катионные и анионные сополимеры акриламида.

Хотя для осуществления разделения в системах твердое вещество/жидкость используют чисто механические средства, современные методы часто основываются на методах механического разделения, которые дополняют использованием синтетических и природных полимерных материалов для увеличения скорости удаления твердого вещества из воды. Упомянутые способы включают обработку сырой воды катионными полимерными коагулянтами, которые осаждают взвешенное неорганическое вещество и делают воду пригодной для использования в промышленных и хозяйственно-бытовых целях. Другие примеры указанных способов включают удаление окрашенных растворимых веществ из сточных вод предприятий бумажного производства и использование полимерных флокулянтов для обработки промышленной воды в качестве кондиционеров илов для обработки воды хозяйственно-бытовых систем, в качестве добавок, способствующих удерживанию и обезвоживанию веществ в процессах бумажного производства, в качестве химических реагентов для извлечения пригодных для использования и ценных веществ из белой воды в процессах бумажного производства и при разрушении эмульсий.

Стендовое испытание для оценки эффективности флокулянта представляет так называемое дренажное испытание, при котором к илу добавляют полимер и смешивают так, чтобы полимер обеспечивал флокуляцию ила. Затем иловую смесь фильтруют через ткань ленточного фильтр-пресса и скорость, с которой стекает вода, используют как меру эффективности полимера.

Независимо от механизма способов разделения частицы по своей природе имеют либо катионный либо анионный заряд. В соответствии с этим упомянутые частицы часто удаляют водорастворимым полимерным коагулянтом или флокулянтом, имеющим заряд, противоположный заряду частиц. Это называют ускоренным процессом разделения твердое вещество/жидкость в присутствии полиэлектролита, при котором добавляют водорастворимый или диспергируемый полимер с ионным зарядом, чтобы нейтрализовать заряженные частицы или капли эмульсии, подлежащей разделению. Дозировка упомянутых полимеров является критическим параметром при осуществлении способа. Если полимера с ионным зарядом слишком мало, то заряд взвешенных частиц не будет нейтрализован, и они в результате все же будут отталкиваться друг от друга. Если полимера много, то будет перерасход полимера или, что еще хуже, он составит проблему сам по себе.

Несмотря на разнообразие промышленно доступных полимеров, которые оказались способными флокулировать или коагулировать илы, существует ряд обстоятельств, которые ограничивают применимость упомянутых реагентов. Хотя для некоторых типов илов экономичные обработки упомянутыми известными реагентами являются осуществимыми, но чаще илы требуют очень высоких и неэффективных с точки зрения затрат дозировок реагентов для успешной обработки. Кроме того, очень часто имеют место различия в составе ила из одного источника. Например, различия в источнике поступления материала в сточную воду/ил/технологическую воду для бумажной пульпы и/или в условиях окисления, которые могут быть предусмотрены в производстве упомянутых вод, приводят к разнообразию типов частиц, которые подлежат удалению. Кроме того, совсем нередко встречаются илы, которые по некоторым причинам не удается флокулировать ни одним из известных полимерных флокулирующих агентов.

Таким образом, существует потребность в улучшенном семействе полимеров, которые обеспечивают лучшее обезвоживание при более низких дозировках в процессе обезвоживания ила. Аналогично этому существует постоянная потребность в соответствующих обработках для увеличения эффективности производств по изготовлению бумажных масс и бумаги.

Европейский патент 202780 раскрывает измельченные поперечносшитые сополимеры акриламида, по меньшей мере, с 5 мольными процентами диалкиламиноалкилакрилата для использования в качестве флокулянтов в приложениях, характеризующихся высокими сдвиговыми усилиями.

Добавление агента поперечного сшивания и в начале и в процессе полимеризации в условиях, когда его доступность для реакции практически постоянна во всем процессе, раскрыто в патенте США №4950725.

Европейский патент 374458 раскрывает водорастворимые, разветвленные, высокомолекулярные катионные флокулянты, полученные из мономеров, полимеризованных в присутствии агентов переноса цепи, таких как изопропанол, и агентов разветвления, таких как метиленбисакриламид, в которых агент переноса цепи добавляют для предотвращения поперечного сшивания. Поперечное сшивание может привести к нерастворимости полимера в воде.

Добавление агента переноса цепи на завершающей стадии полимеризации сополимера DADMAC/акриламид с получением линейного, более высокомолекулярного сополимера раскрыто в Европейском патенте 363024.

Патент США №4913775 раскрывает использование по существу линейных катионных полимеров, таких как сополимеры акриламид/четвертичная соль диметиламиноэтилакрилатметилхлорида, и бентонита в качестве добавок в производстве бумажной пульпы или бумаги.

Патент США №5393381 раскрывает использование такого порошкообразного разветвленного катионного полиакриламида, как сополимер акриламид/четвертичная соль диметиламиноэтилакрилата и бентонита для производства бумаги или картона.

Краткое изложение сущности изобретения

Авторами изобретения установлено, что добавление структурного модификатора на последней стадии реакции полимеризации, как описано в настоящей заявке, приводит к образованию более эффективного, структурно-модифицированного флокулянта. Когда структурным модификатором является агент переноса цепи, то образующиеся водорастворимые полимеры обычно имеют более высокую скорость растворения, более высокие значения величин приведенной удельной вязкости и являются более активными, чем немодифицированные аналоги. Это применимо к катионным, анионным или неионным полимерам, синтезированным методами эмульсионной, типа вода-в-масле, дисперсионной или гелевой полимеризации.

В соответствии с этим, в своем основном аспекте настоящее изобретение относится к водорастворимому полимеру, полученному инициированием полимеризации в водном растворе мономеров в условиях свободнорадикальной полимеризации с образованием раствора полимера и добавлением, по меньшей мере, одного структурного модификатора к раствору полимера после завершения полимеризации, по меньшей мере, 30% мономеров.

Подробное описание изобретения

Определение терминов

В настоящем описании использованы следующие сокращения и термины, имеющие следующие значения:

"AcAm" для акриламида.

"DADMAC" для диаллилдиметиламмонийхлорида.

"DMAEA" для диметиламиноэтилакрилата.

"DMAEM" для диметиламиноэтилметакрилата.

"DMAEА·BCQ" для четвертичной соли диметиламиноэтилакрилатбензилхлорида.

"DMAEA·MCQ" для четвертичной соли диметиламиноэтилакрилатметилхлорида.

"EDTA·4Na+" для тетранатриевой соли этилендиаминтетрауксусной кислоты.

"Alfonic®1412-60" означает этоксилированный линейный спирт (60% этиленоксида), доступного от фирмы Vista Chemical Co., Houston, TX.

"Span 80" для моноолеата сорбитана, доступного от ICI Specialty Chemicals, Wilmington, DE.

"Triton®N-101" для нонилфеноксиполиэтоксиэтанола, доступного от Rohm and Haas Co., Philadelphia, PA.

"Tween 61" для РОЕ(4)моностеарата сорбитана, доступного от ICI Specialty Chemicals, Wilmington, DE.

"AIBN" для 2,2’-азобис(изобутиронитрила), доступного от фирмы E.I. duPont Nemours & Co. Inc.; Wilmington, DE.

"AIVN" для 2,2’-азобис(2,4-диметилвалеронитрила), доступного от фирмы E.I.duPont Nemours & Co. Inc.; Wilmington, DE.

"POE" для полиэтиленоксида.

"RSV" обозначает приведенную удельную вязкость (Reduced Specific Viscosity). В пределах ряда полимерных гомологов, которые являются по существу линейными и хорошо растворимыми, величины "приведенной удельной вязкости (RSV)" для разбавленных полимерных растворов являются показателями длины полимерной цепи и средней молекулярной массы, согласно Paul J. Flory, в "Principles of Polymer Chemistry", Cornell University Press, Ithaca, NY., ®1953, Chapter VII, "Determination of Molecular Weights", pp.266-316. RSV измеряют при заданных концентрации полимера и температуре и рассчитывают следующим образом:

где - вязкость раствора полимера;

o - вязкость растворителя при той же температуре;

с - концентрация полимера в растворе.

Единицами концентрации "с" являются (грамм/100 мл или г/децилитр). Поэтому единицами RSV являются дл/г. В настоящей патентной заявке для измерения RSV используют 1,0 молярный раствор нитрата натрия, если не указано иначе. Концентрация полимера в указанном растворителе составляет 0,045 г/дл. RSV измеряют при 30єС. Вязкости и о измеряют с использованием полумикроразбавительного вискозиметра Cannon Ubbelohde, размер 75. Вискозиметр закрепляют точно в вертикальном положении в бане с постоянной температурой, установленной на 30±0,02°С. Ошибка, характерная для расчета RSV, составляет примерно 2 дл/граммов. Когда два полимерных гомолога в пределах ряда имеют одинаковые значения RSV, то это указывает на то, что они имеют одинаковые молекулярные массы.

"IV" означает характеристическую вязкость, которая представляет собой RSV, экстраполированную к пределу бесконечного разбавления, причем разбавление считают бесконечным тогда, когда концентрация полимера равна нулю.

"В расчете по формуле" означает количество добавленного реагента в расчете на массу всей формулы.

"В расчете на активный полимер" и "в расчете на мономер" означает количество добавленного реагента в расчете на содержание винилового мономера в формуле или на содержание полимера, образующегося после полимеризации, исходя из предположения 100%-ной конверсии.

"Сырая вода" означает воду из природных географических источников, включая реки, озера, колодцы, дождевую воду и тому подобное.

"Технологическая вода" означает воду, использованную в таком процессе как процесс производства (на бумагоделательной машине), производство стали, процессы химического производства, процессы нефтепереработки, процессы производства пищевых продуктов (например, сахарное производство) и тому подобное.

"Сточная вода" означает воду из производственного процесса, хозяйственно-бытовые сточные воды или другие воды, которые требуют обработки перед сбросом в приемные потоки, озера или другой водный путь.

"Процесс бумажного производства" означает способ получения бумажной продукции из целлюлозной массы, включающий формирование водной целлюлозной композиции для выработки бумаги, обезвоживание бумажной композиции с получением листового материала и сушку листового материала. Стадии формирования целлюлозной композиции для выработки бумаги, обезвоживания и сушки могут быть осуществлены любым удобным методом, обычно хорошо известным специалистам в данной области техники. Традиционные коагулянты, традиционные флокулянты, микрочастицы, квасцы, катионный крахмал или их комбинации могут быть использованы в качестве добавок вместе со структурно-модифицированным водорастворимым полимером настоящего изобретения, хотя следует подчеркнуть, что для эффективного удерживания и обезвоживания добавки не требуются.

"Мономер" означает полимеризационноспособное аллильное, виниловое или акриловое соединение. Мономер может быть анионным, катионным или неионным. Виниловые мономеры являются предпочтительными, и акриловые мономеры являются более предпочтительными.

Характерные примеры неионных водорастворимых мономеров включают акриламид, метакриламид, N,N-диметилакриламид, N,N-диэтилакриламид, N-изопропилакриламид, N-винилформамид, N-винилметилацетамид, N-винилпирролидон, гидроксиэтилметакрилат, гидроксиэтилакрилат, гидроксипропилакрилат, гидроксипропилметакрилат, N-трет-бутилакриламид, N-метилолакриламид и тому подобное.

Характерные примеры анионных мономеров включают акриловую кислоту и ее соли, включая, но не ограничивая ими объем притязаний, акрилат натрия и акрилат аммония, метакриловую кислоту и ее соли, включая, но не ограничивая ими объем притязаний, метакрилат натрия и метакрилат аммония, 2-акриламидо-2-метилпропансульфоновую кислоту (AMPS), натриевую соль AMPS, винилсульфонат натрия, стиролсульфонат, малеиновую кислоту и ее соли, включая, но не ограничивая объем притязаний, натриевую соль и аммониевую соль, сульфонатитаконат, сульфопропилакрилат или метакрилат или другие водорастворимые формы указанных или других полимеризационноспособных карбоновых или сульфоновых кислот, сульфометилсодержащий акриламид, аллилсульфонат, винилсульфонат натрия, итаконовая кислота, акриламидометилбутановая кислота, фумаровая кислота, винилфосфониевая кислота, винилсульфоновая кислота, аллилфосфоновая кислота, сульфометилсодержащий акриламид, фосфонометилсодержащий акриламид и тому подобное.

Характерные примеры катионных мономеров включают диалкиламиноалкилакрилаты и метакрилаты и их четвертичные или кислотные соли, включая, но не ограничивая ими объем притязаний, четвертичную соль диметиламиноэтилакрилатметилхлорида, четвертичную соль диметиламиноэтилакрилатметилсульфата, четвертичную соль диметиламиноэтилакрилатбензилхлорида, сернокислотную соль диметиламиноэтилакрилата, соль хлористоводородной кислоты и диметиламиноэтилакрилата, четвертичную соль диметиламиноэтилметакрилатметилхлорида, четвертичную соль диметиламиноэтилметакрилатметилсульфата, четвертичную соль диметиламиноэтилметакрилатбензилхлорида, сернокислотную соль диметиламиноэтилметакрилата, соль хлористоводородной кислоты и диметиламиноэтилметакрилата, диалкиламиноалкилакриламиды или метакриламиды и их четвертичные или кислотные соли, такие как акриламидопропилтриметиламмонийхлорид, четвертичная соль диметиламинопропилакриламидметилсульфата, сернокислотная соль диметиламинопропилакриламида, соль хлористоводородной кислоты и диметиламинопропилакриламида, метакриламидопропилтриметиламмонийхлорид, четвертичная соль диметиламинопропилметакриламидметилсульфата, сернокислотная соль диметиламинопропилметакриламида, соль хлористоводородной кислоты и диметиламинопропилметакриламида, диэтиламиноэтилакрилат, диэтиламиноэтилметакрилат, диаллилдиэтиламмонийхлорид и диаллилдиметиламмонийхлорид. Алкильными группами обычно являются С1-4 алкилы.

"Структурный модификатор" означает агент, который добавляют к водному раствору полимера для регулирования структуры полимера и параметров растворимости. Структурный модификатор выбирают из группы, включающей агенты поперечного сшивания и агенты переноса цепи.

"Агент переноса цепи" означает любую молекулу, использованную в процессе свободнорадикальной полимеризации, которая будет взаимодействовать с полимерным радикалом с образованием неактивного полимера и нового радикала. В частности, добавление агента переноса цепи к полимеризационной смеси приводит к обрыву цепи и сопутствующему этому снижению размера полимеризующейся цепи. Таким образом, добавление агента переноса цепи ограничивает молекулярную массу получаемого полимера. Характерные примеры агентов переноса цепи включают такие спирты, как метанол, этанол, 1-пропанол, 2-пропанол, бутиловый спирт, глицерин и тому подобное, такие серосодержщие соединения, как алкилтиолы, тиомочевины, сульфиты и дисульфиды, такие карбоновые кислоты, как муравьиная и яблочная кислота и их соли, и такие фосфиты, как гипофосфит натрия и их комбинации. Смотри Berger et al., “Transfer Constants to Monomer, Polymer, Catalist, Solvent, and Additive in Free Radical Polymerization”, Section II, pp. 81-151, в книге “Polymer Нandbook”, edited by J.Brandrup and E.H.Immergut, 3d edition, John Wiley & Sons, New York (1989) и George Odian, Principles of Polymerization, second edition, John Wiley & Sons, New York (1981). Предпочтительным спиртом является 2-пропанол. Предпочтительные серосодержащие соединения включают этантиол, тиомочевину и бисульфит натрия. Предпочтительные карбоновые кислоты включают муравьиную кислоту и ее соли. Более предпочтительными агентами переноса цепи являются гипофосфит натрия и формиат натрия.

"Агент поперечного сшивания" или "агент разветвления" означает полифункциональный мономер, который, будучи добавленным к полимеризующемуся мономеру или мономерам, приводит к образованию "поперечносшитых" полимеров, в которых разветвление или разветвления от одной полимерной молекулы соединяются с другими полимерными молекулами. Предпочтительными агентами поперечного сшивания являются полиэтиленненасыщенные мономеры. Характерные примеры предпочтительных агентов поперечного сшивания включают N,N-метиленбисакриламид, N,N-метиленбисметакриламид, триаллиламин, триаллиламмониевые соли, диметакрилат этиленгликоля, диметакрилат диэтиленгликоля, диакрилат полиэтиленгликоля, диметакрилат триэтиленгликоля, диметакрилат полиэтиленгликоля, N-винилакриламид, N-метилаллилакриламид, глицидилакрилат, акролеин, глиоксаль и такие винилтриалкоксисиланы, как винилтриметоксисилан (VTMS), винилтриэтоксисилан, винилтрис(-метоксиэтокси)силан, винилтриацетоксисилан, аллилтриметоксисилан, аллилтриацетоксисилан, винилметилдиметоксисилан, винилдиметоксиэтоксисилан, винилметилдиацетоксисилан, винилдиметилацетоксисилан, винилизобутилдиметоксисилан, винилтриизопропоксисилан, винилтри-н-бутоксисилан, винилтри-втор-бутоксисилан, винилтригексилоксисилан, винилметоксидигексилоксисилан, винилдиметоксиоктилоксисилан, винилметоксидиоктилоксисилан, винилтриоктилоксисилан, винилметоксидилаурилоксисилан, винилдиметоксилаурилоксисилан, винилметоксидиолеилоксисилан и винилдиметоксиолеилоксисилан. Более предпочтительным винилалкоксисилановым мономером является винилтриметоксисилан.

Предпочтительные варианты осуществления изобретения

Водорастворимые модифицированные полимеры, полученные, как описано в настоящем описании, могут быть катионными, анионными или неионными. Они могут представлять собой полимерные эмульсии, полимерные дисперсии или полимерные гели.

"Полимерная эмульсия" и "полимерный латекс" означают эмульсию полимера типа вода-в-масле, включающую катионный, анионный или неионный полимер согласно изобретению в водной фазе, углеводородное масло для масляной фазы и эмульгирующий агент для эмульсии типа вода-в-масле. Обратные полимерные эмульсии представляют непрерывную углеводородную среду с водорастворимыми полимерами, диспергированными в углеводородной матрице. Обратные полимерные эмульсии являются "обращенными" или активированными для использования выделением полимера из частиц под действием сдвига, разбавления или обычно другого поверхностно-активного вещества. Смотри патент США №3734873, включенный в данное описание в качестве ссылки. Характерные примеры получения высокомолекулярных полимеров полимеризаций в обратных эмульсиях описаны в патентах США №№2982749; 3284393 и 3734873. Смотри также "Mechanism, Kinetics and Modeling of the Inverse-Microsuspention Homopolymerization of Acrylamide", Hunkeler, et al., Polymer (1989), 30(1), 127-42; и "Mechanism, Kinetics and Modeling of Inverse-Microsuspention Polymerization: 2. Copolymerization of Acrylamide with Quaternary Ammonium Cationic Monomers", Hunkeler et al., Polymer (1991), 32(14), 2626-40.

Водную фазу готовят смешением в воде одного или нескольких водорастворимых мономеров и любых полимеризационных добавок, таких как неорганические соли, хелатообразователи, буферы рН и т.п.

Масляную фазу готовят смешением инертной углеводородной жидкости с одним или несколькими маслорастворимыми поверхностно-активными веществами. Поверхностно-активная смесь должна иметь низкое значение гидрофильно-липофильного баланса (HLB), чтобы обеспечить образование непрерывной масляной эмульсии. Подходящие поверхностно-активные вещества для эмульсионной полимеризации типа вода-в-масле, которые являются коммерчески доступными продуктами, указаны в North American Edition of McCutcheon’s Emulsifiers & Detergents. Может оказаться необходимым нагрев масляной фазы, чтобы обеспечить образование гомогенного масляного раствора.

Затем масляную фазу загружают в реактор, снабженный мешалкой, термопарой, трубкой для продувки азота и холодильником. Водную фазу добавляют в реактор, содержащий масляную фазу, при интенсивном перемешивании с образованием эмульсии. Образующуюся эмульсию нагревают до желательной температуры, продувают азотом и добавляют инициатор свободных радикалов. Реакционную смесь перемешивают в течение нескольких часов в атмосфере азота при желательной температуре. По завершении реакции эмульсию полимера типа вода-в-масле охлаждают до комнатной температуры, и в этот момент могут быть добавлены любые желательные пост-полимеризационные добавки или поверхностно-активное вещество с высоким HLB (как описано в патенте США 3734873).

Образующаяся полимерная эмульсия представляет свободнотекучую жидкость. Водный раствор полимерной эмульсии типа вода-в-масле может быть образован добавлением желательного количества полимерной эмульсии к воде при интенсивном перемешивании в присутствии поверхностно-активного вещества с высоким HLB (как описано в патенте США 3734873).

"Полимерная дисперсия" означает дисперсию мелких частиц полимера в водном солевом растворе, который получают полимеризацией мономеров при перемешивании в водном солевом растворе, в котором образующийся полимер нерастворим. Смотри патенты США №№5708071; 4929655; 5006590; 5597859; 5597858 и Европейские патенты №№657478 и 630909.

В типичном методе получения полимерной дисперсии водный раствор, содержащий одну или несколько неорганических или гидрофобных солей, один или несколько водорастворимых мономеров, любые полимеризационные добавки, такие как технологические добавки, хелатообразователи, буферы рН и водорастворимый полимерный стабилизитор, загружают в реактор, снабженный мешалкой, термопарой, трубкой для продувки азотом и водяным холодильником. Раствор мономера интенсивно перемешивают, нагревают до желательной температуры, а затем добавляют водорастворимый инициатор. Через раствор продувают азот в условиях поддержания температуры и перемешивают в течение нескольких часов. По истечении указанного времени смесь охлаждают до комнатной температуры и загружают в реактор любые пост-полимеризационные добавки. Водные непрерывные дисперсии водорастворимых полимеров представляют свободнотекучие жидкости с вязкостью продукта обычно 100-10000 сП, измеренной при низком сдвиге.

В типичном методе получения полимерных гелей готовят водный раствор, содержащий один или несколько водорастворимых мономеров и любые дополнительные полимеризационные добавки, такие как хелатообразователи, буферы рН и тому подобное. Указанную смесь загружают в реактор, снабженный мешалкой, термопарой, трубкой для продувки азота и водяным холодильником. Раствор интенсивно перемешивают, нагревают до желательной температуры, а затем добавляют один или несколько водорастворимых инициаторов свободнорадикальной полимеризации. Через раствор продувают азот, поддерживая температуру и осуществляя перемешивание в течение нескольких часов. Обычно вязкость раствора возрастает в течение этого периода. После завершения полимеризации содержимое реактора охлаждают до комнатной температуры, а затем переносят на хранение. Вязкость полимерного геля меняется в широких пределах и зависит от концентрации и молекулярной массы активнодействующего полимерного компонента.

Реакции полимеризации, описанные в данной заявке, инициируют любым способом, который приводит к образованию подходящих свободных радикалов. Радикалы, полученные термическим способом, в котором радикальные фрагменты образуются при термической, гомолитической диссоциации азосоединения, пероксида, гидропероксида и сложного надэфира, являются предпочтительными. Особенно предпочтительными инициаторами являются азосоединения, включая дигидрохлорид 2,2’-азобис(2-амидинопропана), дигидрохлорид 2,2’-азобис[2-(2-имидазолин-2-ил)пропана], 2,2’-азобис(изобутиронитрил) (AIBN), 2,2’-азобис(2,4-диметилвалеронитрил) (AIVN) и тому подобное.

Условия полимеризации, использованные в данном случае, выбирают таким образом, что образующийся водорастворимый, структурно-модифицированный полимер имеет молекулярную массу от 2 миллионов до 30 миллионов и характеристическую вязкость свыше 1, более предпочтительно - свыше 6, и еще более предпочтительно - от 15 до 30 дл/г. Приведенная удельная вязкость водорастворимого, структурно-модифицированного полимера обычно составляет свыше 3, предпочтительно - свыше 12 и часто - свыше 24 дл/г.

Структурные модификаторы вводят в реакционную смесь после начала полимеризации мономеров и перед завершением полимеризации мономеров. Они могут быть введены сразу целиком за один прием или порциями. Содержание модификатора, добавленного к водному раствору полимера, зависит от эффективности структурного модификатора, концентрации полимера и степени полимеризации, при которой его добавляют.

Степень полимеризации мономеров определяют по изменению плотности реакционной смеси при полимеризации в эмульсии типа вода-в-масле, калориметрическим измерением теплоты реакции, количественной инфракрасной спектроскопией или хроматографически измерением содержания непрореагировавшего мономера.

Когда структурным модификатором является агент переноса цепи, то агент переноса цепи может быть добавлен весь сразу, за один прием, порциями или таким образом, что скорость добавления будет меняться параллельно конверсии полимера. В одном варианте осуществления добавление проводят за один прием после прохождения полимеризации примерно 30%, предпочтительно примерно 50% мономеров. Содержание добавленного агента переноса цепи обычно составляет величину примерно от 1 до примерно 30000 млн-1, предпочтительно от примерно 25 до примерно 10000 млн-1, и более предпочтительно от примерно 50 до примерно 2000 млн-1 в расчете на мономер. Когда агентом переноса цепи является гипофосфит натрия, то содержание добавленного агента обычно составляет от примерно 2 до примерно 2000 млн-1, предпочтительно - от примерно 100 до примерно 1000 млн-1.

Когда структурным модификатором является агент поперечного сшивания, то агент поперечного сшивания добавляют после прохождения полимеризации примерно 30%, предпочтительно - примерно 50% мономеров. Содержание агента поперечного сшивания обычно составляет от примерно 0,1 до примерно 50 млн -1, предпочтительно от примерно 1 до примерно 50 млн -1 в расчете на мономер. Когда агентом поперечного сшивания является метиленбисакриламид, то содержание его обычно составляет от примерно 0,5 до примерно 50 млн-1, предпочтительно от примерно 1 до примерно 10 млн-1 в расчете на мономер.

Когда сшивающим агентом является винилтриалкоксисилан, то содержание сшивающего агента обычно составляет от примерно 0,1 до примерно 30000 млн-1, предпочтительно от примерно 0,5 до примерно 15000 млн-1, более предпочтительно от примерно 1 до примерно 3000 млн-1 в расчете на мономер. Винилтриалкоксисилан может быть добавлен весь сразу, в один прием, или порциями после начала полимеризации мономеров, предпочтительно после полимеризации примерно 30% мономеров.

Когда структурным модификатором является комбинация сшивающего агента и агента переноса цепи, то количества каждого могут широко меняться, исходя из постоянной "производительности" в переносе цепи агентом переноса цепи, кратности и "производительности" агента поперечного сшивания и момента введения в процессе полимеризации. Например, целесообразным может быть от примерно 1000 до примерно 5000 млн-1 (в расчете на мономер) такого умеренного агента переноса цепи, как изопропиловый спирт, хотя могут быть использованы значительно более низкие количества, обычно от примерно 100 до примерно 500 млн-1, более эффективных агентов переноса цепи, таких как меркаптоэтанол. Характерные примеры комбинаций агентов поперечного сшивания и агентов переноса цепи содержат от примерно 1 до примерно 30000 млн-1, предпочтительно от примерно 25 до примерно 10000, и более предпочтительно от примерно 300 до примерно 1500 млн-1 (в расчете на мономер) агента переноса цепи и от примерно 1 до примерно 500, предпочтительно от примерно 2 до примерно 100, и более предпочтительно от примерно 5 до примерно 50 млн-1 (в расчете на мономер), агента поперечного сшивания. Предпочтительной комбинацией агента поперечного сшивания и агента переноса цепи является метиленбисакриламид и муравьиная кислота и ее соли, предпочтительно формиат натрия.

Когда структурным модификатором является агент поперечного сшивания, полимеры, образованные при добавлении агента поперечного сшивания в полимеризационную систему обычно после достижения конверсии от 30 до 99%, предпочтительно от 50 до 90% конверсии, и часто от 65 до 85% конверсии, являются более активными, чем немодифицированные полимеры, которые являются практически линейными, поперечносшитыми, водонерастворимыми полимерными частицами, раскрытыми в патенте США 4950725 и Европейском патенте 202780, и высоко разветвленными, водорастворимыми полимерами, раскрытыми в патенте США 5945494.

Полимер, модифицированный агентом поперечного сшивания после начала полимеризации, отличается от порошкообразных полимерных флокулянтов, раскрытых в патенте США 4950725 и Европейском патенте 202780, которые представляют собой набухаемые, но нерастворимые в воде полимеры. Указанные частицы образуются либо при добавлении водорастворимого агента поперечного сшивания или смеси различных агентов поперечного сшивания с различной реакционноспособностью, обычно полиэтиленненасыщенных мономеров, в момент начала процесса или, в другом варианте, как в начале процесса, так и в конце или незадолго до конца процесса, так что доступность агента поперечного сшивания по существу остается постоянной в течение всей реакции, либо при поперечном сшивании предварительно образованных водорастворимых полимеров. Полимеры, модифицированные агентом поперечного сшивания, как описано в настоящей заявке, не образуют макрочастицы в водном растворе.

Полимеры настоящего изобретения также отличаются от полимеров, раскрытых в патенте США 5945494, которые представляют водорастворимые, высокоразветвленные соединения. Существенным для образования указанных полимеров является включение модифицирующего молекулярную массу агента или агента переноса цепи в сочетании с высоким содержанием агента разветвления (4 к 80 млн-1 , в расчете на исходное мольное содержание) с образованием высокоразветвленных, водорастворимых полимеров. Как указывают в патенте США 5945494, столбец 5, строки 35-38, в отсутствие агента переноса цепи введение даже чрезвычайно небольших количеств агента разветвления, например, 5 частей на миллион, может вызвать поперечное сшивание, придавая полимеру нерастворимость в воде. Комбинация агента разветвления и модификатора молекулярной массы, введенная в водный раствор мономеров в начале реакции, как раскрыто в патенте США 5945494, приводит к образованию высокоразветвленных полимеров с полимерными цепями ограниченной молекулярной массы.

Полагают, что полимеры, модифицированные агентом поперечного сшивания после начала полимеризации, описанные в настоящей заявке, содержат смесь линейного, высокомолекулярного полимера, образованного на начальной стадии реакции, и длинноцепочечного разветвленного полимера, образованного на завершающей стадии реакции. Для водных растворов, приготовленных из полимеров, модифицированных добавлением агента поперечного сшивания на поздней стадии реакции, возможно существование водорастворимых, не являющихся макрочастицами агрегатов нескольких переплетенных полимерных цепей. Было высказано предположение о наличии переплетений макромолекулярных цепей для высокомолекулярных полимеров, образованных методами свободнорадикальной полимеризации (Gardner, et al., J.Applied Polymer Science, 22 881-882, (1978); A.Wan, Polymer Preprints, Am. Chem. Soc., Division of Polymer Chemistry, 37 (2), 655, (1996).

В предпочтительном аспекте настоящего изобретения структурно модифицированный водорастворимый полимер выбирают из группы, включающей полимерные эмульсии, полимерные дисперсии и полимерные гели.

В другом предпочтительном аспекте мономеры выбирают из акриламида или метакриламида и одного или нескольких мономеров, выбранных из группы, включающей диаллилдиметиламмонийхлорид, четвертичную соль диметиламиноэтилакрилатметилхлорида, акриламидопропилтриметиламмонийхлорид, четвертичную соль диметиламиноэтилметакрилатметилхлорида, метакриламидопропилтриметиламмонийхлорид, акриловую кислоту, акрилат н