Способ и устройство для плавки и осветления стекломассы

Иллюстрации

Показать все

Изобретение относится к способу и устройству для плавки и осветления стекломассы. Технический результат изобретения – усовершенствование процесса плавки и осветления, использование более компактных установок, снижение энергетических затрат и повышение выхода стекла. В способе плавки и осветления стекломассы вся или часть тепловой энергии, необходимой для плавки указанной стекломассы, получается при сгорании ископаемого топлива с использованием, по меньшей мере, одного окислителя, причем указанное топливо или газообразные продукты, образующиеся при сгорании, направляются в объем стекломассы под ее поверхность. Осветление стекломассы выполняют в тонком слое не более 15 см в виде вспененной массы плотностью от 0,5 до 2 г/см3. Устройство для осветления представляет собой статический отсек, включающий канал для вытекания, состоящий из желоба и свода, причем устройства, ограничивающие расплавленную стекломассу в этом канале в виде тонкого слоя, выбирают с соотношением средней высоты к средней ширине указанного канала меньше 1. Осветление также могут осуществлять при центрифугировании в устройстве, выполненном с возможностью вращения. Внутренние стенки его имеют цилиндрическую форму и в своей полости оно содержит перегородку, заставляющую стекломассу вытекать между внутренними стенками устройства и указанной перегородкой. Среднее расстояние между стенкой и перегородкой задается соотношением их радиусов, равным, по меньшей мере, 0,8. 3 н. и 36 з.п. ф-лы, 5 ил.

Реферат

В настоящем изобретении речь идет о способе плавки и осветления стекломассы, позволяющем получить в непрерывном режиме расплавленное стекло для формовки из него изделий.

В частности, изобретение распространяется как на установки для формования плоских листов стекла, так и установки для формовки объемных изделий из стекла в виде бутылок, флаконов, стеклянных нитей для получения материала типа стекловаты для тепло-и звукоизоляции, а также стеклянных нитей для упрочнения текстильных материалов.

Было выполнено значительное количество исследовательских работ, касающихся этих способов, условно разделяемых на первый этап - плавку, за которым следует этап осветления, предназначенный для выдержки расплавленного стекла в определенных термических и химических условиях, что позволяет избавиться от нерасплавившихся вкраплений, пузырей, всего того, что определяет дефекты в стекле после его формовки.

Когда выполняется стадия плавки, то, например, много внимания уделяется возможности ускорения процесса или повышения его энергетического кпд. В результате можно указать на способ ускоренного, но гомогенного и контролируемого разогрева стеклующихся материалов, когда используется интенсивное механическое перемешивание, обеспечивающее эффективный контакт между еще твердой фазой и уже расплавленной фазой. В частности, этот способ в деталях изложен в патентах FR-2423452, FR-2281902, FR-2340911, FR-2551746 и в нем, как правило, прибегают к электронагреву с использованием погруженных электродов.

Другой типовой способ разогрева изложен в патентах US-3627504, US-3260587 или US-4539034, когда в качестве источника тепла используются погружаемые горелки, то есть горелки с подачей газа и воздуха, как правило, располагаемые на уровне донца так, чтобы пламя было направлено и развивалось прямо в стекломассе, подвергаемой расплаву.

Как в первом, так и во втором случае, если и удается заметно уменьшить время пребывания стекломассы в камере для плавки и увеличить выход по сравнению с "классическим" процессом, то только за счет получения расплавленного стекла в виде массы, богатой пузырями, что затрудняет осветление; особенно трудно в этом случае добиться высокого качества получаемого стекла и, главным образом, когда речь идет об оптическом стекле.

Кроме того, известен ряд публикаций по совершенствованию процесса осветления. Так, например, в патенте FR-2132028 описан процесс осветления с использованием устройства с центрифугой, где внутренние стенки образуют камеру цилиндрической формы с вертикально расположенной осью, и эта камера приводится во вращение. Расплавленное стекло поступает в камеру сверху и распределяется по ней, образуя под действием центробежной силы полость параболической формы.

Наиболее близким аналогом заявленного изобретения по независимым пунктам формулы являются способ и устройство варки и очистки стеклообразующих материалов, раскрытые в статье М.И.Козьмина и др. "Испытание опытной печи с сжиганием газа в стекломассе и осветлением в тонком слое", ж-л "Стекло и керамика", 1974, № 9, стр.13, 14. В известном способе предусмотрено подведение тепловой энергии для плавки стеклообразующих материалов посредством сжигания топлива газом-окислителем в погружных горелках. Газообразные продукты, полученные в результате сжигания, направляют в объем стекломассы под ее поверхность, а осветление пластмассы после плавки осуществляют в тонком слое, при этом в качестве окислителя используют воздух, а в качестве топлива - ископаемое топливо (природный газ). Горелки проходят сквозь донце печи таким образом, чтобы продукты горения направлялись в объем стекломассы, при этом осуществляется активное перемешивание стекломассы за счет конвекции. Поддержание контактного горения стекломассы подразумевает соответствующее регулирование высоты стекломассы и высоты, на которой образуются продукты горения.

Устройство по указанной публикации включает в себя плавильную камеру, оснащенную погружными горелками, в которые подают газообразное топливо и воздух в качестве окислителя. Горелки расположены в дне плавильной камеры таким образом, чтобы газы, получаемые в результате горения, располагались ниже уровня стекломассы. Далее расположена камера осветления, где осуществляется осветление стекломассы в тонком слое.

В итоге задачей изобретения является усовершенствование процесса плавки и осветления, в частности, направленное на использование более компактных и/или более универсальных установок, в том числе и с более высоким выходом; процесс должен обеспечивать получение такого же или более тугоплавкого стекла, а его обработка должна осуществляться с меньшими энергетическими затратами и т.д., и все эти преимущества производства не должны достигаться за счет снижения качества получаемого продукта.

Поставленная задача решается тем, что в способе плавки и осветления стекломассы, в котором часть или всю тепловую энергию, необходимую для плавки пластмассы, получают за счет сгорания ископаемого (ископаемых) топлива (топлив) с использованием хотя бы одного сорта газа-окислителя, причем указанное (указанные) топливо/газ или газообразные продукты, получаемые при сгорании, направляют в объем стекломассы под ее поверхность, согласно изобретению проводят осветление расплавленной стекломассы в виде стекла с пузырьками с плотностью вспененной массы от 0,5 до 2 г/см3.

В рамках предлагаемого изобретения под термином "осветление в тонком слое" понимается процесс, в ходе которого расплавленная масса растекается очень тонким слоем, например слоем не более 15 и даже 10 см толщиной, и это осуществляется целым рядом способов. Например, можно заставить вытекать расплавленную массу между двумя близко расположенными стенками, причем расстояние между ними определяет глубину/толщину слоя (истечение, например, обеспечивается за счет использования центробежной силы или просто за счет действия силы тяжести). Кроме того, указанные характеристики тонкого слоя могут быть достигнуты другими способами, в частности, за счет выбора размеров отсека или отсеков для осветления, за счет выбора способа подачи в них массы или ее удаления из них. Некоторые из этих приспособлений будут описаны ниже. Основным преимуществом создания тонкого слоя текущего расплавленного материала в процессе осветления является то, что в этом случае существенно укорачивается траектория движения пузырьков, образовавшихся в расплавленной массе, к ее свободной поверхности или к стенкам, ее ограничивающим, и таким образом облегчается удаление и ликвидация этих пузырьков.

Оказалось, что с точки зрения условий производства выгодно одновременно и совместно использовать процесс расплава, называемый в дальнейшем для простоты "с помощью погружаемой горелки" и способ осветления "в тонком слое", как это определено выше.

Однако, так как назвать очевидным использование такой комбинации было бы затруднительно, то можно было бы ожидать, что достижение описанных ниже в деталях преимуществ получается только за счет изготовления стекла среднего качества, что не соответствует действительности. Действительно, в изобретении используется специальный процесс осветления, при котором, помимо прочего, варьируется такой параметр, как размер, а именно вместо подачи в зону осветления "классического" стекла в настоящем изобретении используется стекло, получаемое в процессе плавки с погружаемыми горелками, то есть стекло с совершенно особыми характеристиками с той точки зрения, что оно полностью заполнено пузырьками и имеет относительно низкую плотность по сравнению с тем, что наблюдается в стандартном случае. И ничто не предвещало ситуацию, когда удается полностью в тонком слое удалить все пузыри из стекла, заметно вспененного на входе.

Удивительно, но это свойство было подтверждено на практике и оказалось, что получаемое в результате плавки с использованием погружаемых горелок стекло с пузырьками характеризуется относительно большим размером последних: если согласно изобретению стекло на выходе из камеры для плавки представляет собой массу с пузырьками, требующую осветления, то оказывается возможным контролировать размер содержащихся в стекле пузырьков и, самое главное, при использовании определенной конфигурации и при заданном составе стекломассы становится возможным избавиться практически от самых малых по размерам пузырьков вплоть до диаметра 100 мкм, во всяком случае - до диаметра 200 мкм, причем в процессе плавки этого стекла выполняется "микроосветление", предшествующее основному осветлению, следующему за плавкой, при этом в ходе микроосветления происходит слияние пузырьков, маленькие пузырьки уступают место пузырям большего диаметра, и этот процесс стимулируется путем добавления в осветляемую массу агентов типа кокса или сульфатов, облегчающих ход осветления. Помимо этого, на выходе из камеры для плавки в стекле содержится определенный, хотя и небольшой процент нерасплавившихся включений; сочетание крупных пузырьков и нерасплавившихся включений также заставляет прибегать к использованию осветления в тонком слое, что в значительной степени облегчает весь процесс осветления, который в значительной степени происходит еще на стадии плавки. Крупные пузырьки имеют большую скорость подъема, они быстрее сливаются и в конечном счете быстрее удаляются из стекла.

Здесь следует отметить, что, как правило, стекло, получаемое при использовании погружаемых горелок, содержит малый процент сульфатов, который до осветления не превышает 600 частиц на миллион, как правило, это 200 или 100 частиц на миллион, или в весовых долях в пересчете на SО3 составляет менее 50 частиц на миллион в пересчете на SО3 независимо от состава стекломассы, в состав которой могут входить неконтролируемые примеси и даже при целенаправленном добавлении в него сульфатов. Это могло бы проявляться в виде парциального давления воды, выделяемой в процессе горения при погружении.

Отметим, что стекло без сульфатов снижает трудности, связанные с образованием летучих компонентов в поплавковой ванне, при этом уменьшается риск образования сернистых соединений олова и, как результат, снижается вероятность образования дефектов олова на листах стекла. Это также снижает количество сульфатов (если только не приводит к полному избавлению от них) в случае восстановленных стекол, в частности, снижает содержание сернистого железа, определяющего остаточные нежелательные желтые/янтарные цветовые тона, или включения сернистого цинка, которые способны приводить к расколу стекла в процессе его термической обработки типа отжига.

Использование изобретения позволяет также получать стекло с очень низким содержанием сульфатов еще на стадии до осветления и уж тем более - после него и все это без очистки/подбора стеклующихся материалов, в которых содержалось бы мало сульфатов. Более того, сульфаты могут быть добавлены на начальной стадии.

Преимущества, получаемые при использовании комбинации, предлагаемой в изобретении, также распространяются на проблему энергетических затрат: использование погружаемых горелок позволяет отказаться от электроплавки с погружаемыми электродами, себестоимость которой в зависимости от страны может быть высока. Еще одним важным обстоятельством является то, что плавка с погружаемыми горелками приводит к конвективному перемешиванию в массе стекла при его расплаве, как это более подробно будет описано в дальнейшем. Такое интенсивное перемешивание между еще нерасплавившимися и уже жидкими компонентами является чрезвычайно эффективным и позволяет достичь расплава стекломассы идентичного химического состава при более низкой температуре и/или значительно быстрее, чем при традиционном способе нагрева.

Рабочие температуры при плавке, как правило, оказываются более низкими, чем при обычно применяемых способах, что экономически более выгодно хотя бы с точки зрения энергетических затрат, кроме того, это связано с выбором огнеупорных материалов, используемых при сооружении установок, так как при меньшем нагреве они меньше корродируют.

Значительно снижается время нахождения в зоне плавки и осветления, что положительно влияет на выход продукции и на условия эксплуатации всей установки в целом. Одновременно изобретение позволяет создавать очень компактные установки; действительно, использование погружаемых горелок, приводящее к интенсивному перемешиванию, позволяет заметно снизить габариты камеры для плавки. А осветление в тонком слое также снижает размеры отсека или отсеков, где проводится эта операция. При уменьшении толщины слоя стекла в ходе осветления процесс удаления пузырьков ускоряется и в результате становится возможным заметное "укорочение" (в направлении движения стеклянной массы) отсека или отсеков для осветления. В целом установка становится меньше при очевидном выигрыше в себестоимости конструкции, упрощении ее работы, снижении износа конструкционных материалов и т.п.

Что касается процесса плавки, в качестве используемого окислителя согласно изобретению может применяться воздух, воздух, обогащенный кислородом, и даже, в основном, кислород. Высокая концентрация кислорода в окислителе обладает рядом преимуществ: снижается объем продуктов сгорания, что выгодно с точки зрения энергетических потерь и не приводит к чрезмерному разжижению расплавленного стекла и снижает риск разбрызгивания его на оборудование и на свод камеры для плавки. Кроме того, образующиеся "языки пламени" оказываются более короткими, что обеспечивает более эффективную теплопередачу стеклу, а с точки зрения конструкции, при желании, позволяет уменьшить глубину "ванны" для расплавляемых стеклянных масс. Хотя здесь употребляется термин "языки пламени", но это совсем не обязательно пламя в обычно употребляемом значении. Здесь об этом говорится в общем смысле, как и об используемом в нижеследующем тексте термине "топливо". Еще одним преимуществом является снижение до минимума выделения загрязняющих атмосферу окислов азота NOx.

Что касается используемого топлива, то таким продуктом может быть ископаемое газообразное или другое топливо, природный газ, пропан, газойль или любое другое углеводородное топливо. Может быть использован водород. Процесс с использованием погружаемых горелок согласно изобретению обладает преимуществом, если применяется водород, который затруднительно использовать при работе непогружаемых "воздушных" горелок, если учитывать сниженную теплопередачу за счет излучения при сгорании водорода в атмосфере кислорода.

Сочетание в процессе плавки погружаемых горелок, использующих в качестве окислителя кислород и в качестве топлива водород, обеспечивает эффективную теплопередачу от горелки к расплавляемому стеклу при одновременном обеспечении "чистоты" процесса, то есть снижения выхода окислов азота МОх, или без образования газов с парниковым эффектом типа СO2, если не считать возможности его образования в процессе обугливания исходных компонентов.

Желательно, чтобы плавка согласно изобретению происходила, по меньшей мере, в одной камере, оборудованной горелками, расположенными так, чтобы сам процесс сгорания происходил в массе расплавленного стекла и там же оставались газы, образующиеся в ходе этого процесса. Возможна установка горелок сквозь боковые стенки, донце и/или их можно подвесить над расплавом, прикрепив к своду или к какой-нибудь подходящей структуре. Конструкция горелок может быть такова, что трубопроводы для подачи в них газов располагаются на уровне стенок, через которые проходят горелки. Желательно, чтобы эти трубопроводы хотя бы частично "входили" в стекломассу с тем, чтобы пламя не подходило бы слишком близко к стенкам и не приводило бы к преждевременному износу огнеупорных материалов. Таким способом можно добиться положения, когда подаются только газы для реализации процесса, тогда как процесс горения происходит практически вне камеры для плавки.

Ранее было установлено, что такой способ нагрева за счет конвекции вызывает значительное перемешивание стекломассы: с одной и с другой стороны от струи продуктов горения или "пламени" формируются конвективные потоки, постоянно эффективно перемешивая расплавленные и еще нерасплавленные массы. В результате достигаются очень высокие характеристики плавки "с перемешиванием" и при этом нет необходимости прибегать к способам механического, не слишком надежного и/или приводящего к быстрому износу перемешивания.

Желательно регулировать высоту расплавленной стекломассы в камере для плавки, а также положение, в котором оказываются продукты горения или газы, получаемые при сгорании с тем, чтобы эти продукты горения/газы оставались в сердцевине стекломассы; преследуемая при этом цель - сформировать конвективные потоки в среде в процессе ее размягчения.

В общем случае такой тип плавки позволяет значительно снизить в камере для плавки образование пыли любого происхождения и уменьшить выход газов типа NOx, так как процессы теплопередачи происходят очень быстро и не возникает температурных пиков, способствующих образованию этих газов. Одновременно заметно снижается выход газов типа CO2, причем энергетические затраты при работе установки оказываются сниженными по сравнению с расходом энергии на традиционных установках, использующих пламенные печи, например, работающие в режиме инверсии.

Как вариант, плавке может предшествовать этап предварительного разогрева стекломассы, но до температуры, существенно более низкой, чем температура размягчения, например не выше 900°С. Для такого предварительного разогрева рационально использовать тепло продуктов сгорания. Использование их тепловой энергии позволяет значительно снизить удельный расход энергии на установке.

В состав стекломассы могут входить первичные материалы, в том числе и стеклобой и отходы материалов, способных стекловаться. В нее могут входить горючие материалы (органической природы), так, например, можно повторно утилизировать обработанные энзимами минеральные волокна совместно со связывающими материалами (типа волокон, используемых в термо- и звукоизоляции или материалов, используемых для упрочнения пластмасс), листовое стекло, листы полимеров типа поливинилбутираля, используемых, например, для автомобильных стекол, или любого типа материалов, называемых "композитными", где стекло находится в соединении с пластмассами, как это имеет место в ряде типов бутылок. Повторной утилизации также можно подвергнуть "композитные материалы типа стеклометалл или композиты с металлом", такие как специальные стекла с покрытием, включающим в себя металлы; эти материалы до настоящего времени трудно повторно утилизировать из-за угрозы постепенного загрязнения камер для плавки металлами, накапливающимися на поверхности днища. Однако перемешивание в ходе плавки в процессе, описанном в настоящем изобретении, позволяет избавиться от подобного осаждения и, таким образом, повторно утилизировать стекло со слоями эмали, слоями с металлом и/или с различными элементами, используемыми в схемотехнике.

Кроме того, задачей изобретения является возможность повторной утилизации всех видов элементов, содержащих в своем составе стекло, за счет плавки с погружаемыми горелками в печи для варки стекла. В частности, можно использовать печи с погружаемыми горелками, основным назначением которых является работа с боем стекла при использовании различных материалов для вторичной утилизации, специальный состав стеклянного боя, предназначенного играть роль первичных материалов, объединенного или нет со стандартным стеклянным боем, обрабатываемым в традиционных печах для варки стекла.

Преимуществом способа является возможность вводить частично или всю стекломассу в камеру для плавки под уровень стекломассы, уже находящейся на стадии плавки. Можно вводить часть этой стекломассы обычным способом поверх массы, находящейся на стадии расплавления, а оставшуюся часть вводить под основную массу за счет использования, например, приспособлений типа шнека. Возможно введение материалов непосредственно в расплавляемую массу в одной зоне или в нескольких зонах, распределенных по стенкам камеры для плавки. Подобный способ непосредственного введения в расплавляемую стекломассу (в дальнейшем обозначаемую как "ванна для стекла") обладает целым рядом преимуществ: прежде всего, в нем заметно снижен риск выброса первичных материалов из ванны, следовательно, снижена вероятность образования твердотельной пыли, образующейся в печи. Кроме того, в этом способе легче контролировать минимальное время пребывания указанных компонентов перед их подачей в зону осветления, а также селективно их подавать в зоны с наиболее интенсивным конвекционным перемешиванием в зависимости от расположения погруженных горелок. Эта или эти зоны подачи стекла в ванну также могут располагаться вблизи от поверхности или на большей глубине ванны, например, по высоте ванны от 1/5 до 4/5 от общей глубины ванны, если вести отсчет от дна последней, а также на уровне от 1/3 до 2/3 от этой глубины.

Как уже указывалось, способ согласно изобретению позволяет выполнять повторную утилизацию пластмасс, взятых в форме композитных материалов, связанных, в частности, со стеклом, причем эти пластические материалы частично могут играть роль горючего. Кроме того, возможно и это имеет определенное преимущество вводить целиком или частично горючее, необходимое для плавки с использованием погруженных горелок, в виде твердотельного топлива (органические материалы типа полимеров, угля) и даже в форме жидкого топлива, при этом это топливо частично замещает жидкие или газообразные горючие материалы (особенно ископаемого происхождения), запитывающие горелки. В общем случае под терминами "стекломасса" или "первичные материалы", используемыми в настоящем тексте, понимаются совместно материалы, необходимые для получения стеклообразной матрицы (или керамической, а также стеклокерамической матрицы) и все включения (добавки для осветления...), все возможные жидкие или твердотельные компоненты топлива (пластмасса в композитных материалах или просто пластмасса, органические компоненты, уголь, ...) и любой вид стеклянного боя.

Кроме того, теперь возможна повторная утилизация листового стекла и листов из полимера, например поливинилбутираля, автомобильного стекла и других типов композитных материалов, включающих в себя стекло и пластмассу, как, например, некоторые типы бутылок.

Аналогичным образом, возможна повторная утилизация специального стекла с металлическим покрытием, которое до настоящего времени было трудно утилизировать, так как это приводило к постепенному накоплению на поверхности стенок и дна камеры для плавки металлов. Однако перемешивание, тесно связанное с процессом плавки в технологии согласно изобретению, позволяет избежать такого осаждения и таким образом осуществить повторную утилизацию, например, стекол, покрытых слоем эмали, слоями металла и различными компонентами, используемыми в схемотехнике.

Способ согласно изобретению может быть осуществлен при повышенном содержании боя стекла.

Как это было отмечено ранее, осветление согласно изобретению выполняется для расплавленной стекломассы, находящейся в состоянии с заметным содержанием пузырьков. Как правило, эта вспененная масса характеризуется плотностью от 0,5 до 2 г/см3, обычно в пределах 1-2 г/см3 (сравнить с плотностью порядка 2,3 или 2,4 г/см3 для стекла без пузырьков); она может содержать более 600 частиц на миллион сульфата или не более 100 частиц на миллион, пересчитанных на вес SО3, и кроме того, содержать основную массу пузырьков диаметром не более 100 или 200 мкм.

Для достижения осветления высокого качества предпочитают добавлять в стекломассу различные компоненты, способствующие проведению процесса, причем целью добавки является удаление из стекла пузырьков диаметром менее 100 мкм или менее 200 мкм еще на стадии плавления, как это описывалось выше. Здесь речь может идти о добавке восстановителей, таких как кокс (что также позволяет скорректировать редокс-показатель стекла). В этом случае желательно выбрать порошок кокса со средним размером зерна менее 200 мкм. Также здесь речь может идти и о сульфатах. Другие добавки для улучшения осветления будут более эффективны на стадии собственно осветления уже после расплава. В частности, они позволяют "дестабилизировать" вспененный материал, при этом речь идет, например, о фторе или о соединениях фтора или хлора, в общем случае это галоидные соединения, а также нитраты типа NaNO3; фтор (галоген) способен снизить вязкость стекла; он также способен облегчить скольжение по слоям, образующимся между пузырьками, таким образом, этот процесс облегчает разделение фаз во вспененном материале. Кроме того, он снижает величину поверхностного натяжения стекла.

Преимуществом способа согласно изобретению является то, что он позволяет проводить процесс при температурах, не превышающих 1400°С, как правило, это значение температур до 1380 или 1350°С, а осветление происходит при температурах, не превышающих 1500°С.

Осветление, предлагаемое в изобретении в первом варианте, может проводиться хотя бы в одном неподвижном отсеке (неподвижном в процессе работы) на выходе после камеры для плавки, выполненном в виде канала истечения и с применением устройства (устройств), ограничивающих распространение расплавленной стекломассы с тем, чтобы осветление происходило в тонком слое, в частности, при толщине не более 15 см или в слое, не превышающем 10 см. Предпочтительно, чтобы это устройство (устройства) также служило(и) препятствием, не позволяющим образовываться обратному потоку стекла, направленному на расплавленную стекломассу, поступающую в указанный отсек (отсеки). Под "обратным потоком" подразумеваются конвективные циркуляционные вихри, образующиеся в расплавленной массе в большинстве отсеков для осветления, используемых при традиционной технологии. Детальное описание способа борьбы с обратными потоками и преимущества, связанные с этим способом без ограничения общности задачи, даны, например, в патенте ЕР-616983.

Оказалось, что значительным преимуществом способа истечения в тонком слое является то, что здесь удается исключить обратные потоки, достигая в отсеке для осветления режима истечения типа ламинарного движения. При таком режиме истечения расплавленные массы более не имеют компонента скорости, направленного вниз, в то время как пузырьки устремляются вверх к поверхности стекла и на них более не воздействуют силы, заставляющие их "снова погрузиться" в массу вследствие вихрей, которые теперь устранены.

Во втором варианте реализации изобретения осветление в тонком слое происходит либо прямо в камере для плавки, либо, по меньшей мере, в одном неподвижном отсеке, расположенном на выходе камеры, когда расплавленные массы под действием силы тяжести устремляются между, по меньшей мере, двумя соседними стенками, как правило, параллельными между собой и хотя бы частично погруженными в расплавленную массу, а также расположенными наклонно по отношению к плоскости дна камеры для плавки или отсека (иначе говоря, стенки представляют собой плоскости, параллельные между собой и наклоненные по отношению к продольной оси камеры для плавки или отсека, следующего за камерой, упомянутых выше). Желательно, чтобы эти стенки входили бы в состав одного или нескольких конструктивных элементов, выполненных в виде трубчатых конструкций, в частности, примерно прямоугольного поперечного сечения, разделенных перегородками в продольном направлении (рядом перегородок); в результате процесс осветления происходит в целом ряде тонких слоев стекла, вытекающих вдоль "перегородок", образованных упомянутыми стенками; детали такого процесса осветления будут изложены в дальнейшем в сопровождении иллюстраций.

В третьем варианте осветление проводится на выходе из камеры для плавки, но в отсеке, который можно привести во вращение с тем, чтобы иметь возможность осуществлять осветление за счет центрифугирования; этот отсек оборудуется устройством (устройствами) для ограничения расплавленной стекломассы в пределах тонкого слоя при "относительной толщине" R1/R0 менее 0,8 или в абсолютных значениях при "абсолютной толщине" не более 10 см.

В изобретении под отношением R1/R0 подразумевается следующее: R0 является средним радиусом полости цилиндрической формы, представляющей собой отсек, куда стекает расплавленная масса, R1 представляет собой средний радиус приспособлений, которые вводятся в полость для ограничения местоположения в пространстве расплавленной массы между боковыми стенками и этими приспособлениями.

Третий вариант представляет собой комбинацию двух первых, когда для проведения осветления используется неподвижный отсек, а затем второй вращающийся отсек.

(В описании изобретения используются термины "после..." и "до..." для обозначения направления истечения стекла в установке, начиная от загрузки стекломассы в камеру для плавки и кончая извлечением осветленного стекла).

Способ плавки/осветления согласно изобретению позволяет получать стекло самого различного состава и с различными свойствами. Вследствие гибкости технологии способ позволяет легко переходить от одного состава к другому за очень короткий промежуток времени. Он обеспечивает расплавленным и осветленным стеклом установки для изготовления плоского стекла, полых стеклянных форм, стекловолокна или стеклонитей для упрочнения.

Он также позволяет производить заметно восстановленное стекло, характеризуемое редокс-параметром, равным или превышающим 0,3. (Этот параметр определяется как процентное отношение по весу содержания железа в форме Fed к общему содержанию железа в смеси, пересчитанному на форму Fе2O3).

Он также позволяет изготовлять стекло с повышенным содержанием SiO2, например, не менее 72 и даже 75% по весу, то есть стекло, которое трудно расплавить, но которое обладает тем преимуществом, что его исходные компоненты дешевы, оно обладает низкой плотностью и хорошо совместимо с пластмассами. Кроме того, можно изготовлять специальные стекла с высоким содержанием щелочно-земельных металлов, например, содержащих до 18% по весу СаО, которые характеризуются высокой коррелирующей способностью при традиционных способах приготовления, проходящих при более высоких температурах, чем в настоящем изобретении, а также стекла с низким содержанием окиси натрия, например не более 11% по весу, или при низком содержании сульфатов, например не более 600 частиц на миллион. Железосодержащие стекла с повышенным редокс-параметром, но при низком включении сульфатов позволяют получать изделия с цветовым оттенком в области синего участка спектра, что является ценным качеством с точки зрения эстетики и используется в автомобилестроении для изготовления плоских стекол, а также, например, в строительстве. Этим способом можно получить солнцезащитные стекла с селективным светопропусканием, на которые можно наносить солнцезащитный слой для увеличения их термопрочности, например, типа TIN, такие слои описаны в патентах ЕР-638527 и ЕР-511901.

Поставленная задача решается также тем, что устройство для плавки и осветления, в частности, предназначенное для осуществления вышеописанного способа, содержит, по меньшей мере, одну камеру для плавки, оборудованную горелками, запитываемыми ископаемым (ископаемыми) топливом (видами топлива) типа природного газа и окислителем (окислителями), например воздухом или кислородом, причем горелки располагаются так, чтобы направлять упомянутые виды топлива/газ или газы, образующиеся при сгорании, в объем стекломассы, ниже уровня стекла загруженной в камеру для плавки; устройства, ограничивающие расплавленную стекломассу так, чтобы она поступала на осветление в виде "тонкого слоя", причем эти устройства входят в состав самой камеры для плавки или в состав, по меньшей мере, отсека для осветления, расположенного после этой камеры, и отсек (отсеки) для осветления является статическим устройством и включает в себя канал для вытекания, состоящий из желоба и свода, а устройства, ограничивающие расплавленную стекломассу в этом канале в виде тонкого слоя при ламинарном характере течения, в частности при толщине слоя менее 15 см, выбирают с отношением средней высоты к средней ширине указанного канала, меньшим 1 и, в частности, меньшим 0,5.

Как уже было указано, желательно, чтобы камера для плавки была бы оборудована, по меньшей мере, одним устройством для подачи стекломассы на уровень ниже ванны для стекла, особенно выгодно, если это два устройства, и желательно, чтобы было отверстие (отверстия) в прилегающих стенках для устройства для подачи типа шнека. Таким способом снижают вероятность образования пыли, сохраняя при этом возможность введения в ванну для стекла сверху стекломассы, например, в виде кремнезема, которая может быть подвергнута предварительному разогреву без угрозы "схватывания".

Независимо от того, проводится ли операция осветления, преимущество изобретения связано с конструкцией стенок камеры для плавки, предназначенных для осуществления контакта с ванной для стекла. Здесь возможны различные варианты. В ряде случаев можно использовать только известные огнеупорные материалы на основе окислов таких веществ, как алюминий, цирконий, окись хрома, огнеупоры, носящие название AZS (алюминий-цирконий-окись кремния). Как правило, их стремятся объединить с системой охлаждения за счет циркуляции жидкости, например воды ("водяная рубашка"). Возможен вариант расположения водяной рубашки снаружи, при этом огнеупоры оказываются в непосредственном контакте со стеклом, или рубашку помещают внутри. При этом роль рубашки заключается в создании более холодного потока стекла вблизи огнеупоров, особенно желательного в контексте изобретения, так как стекломасса, расплавленная с помощью погруженных горелок, вызывает образование интенсивных конвекционных потоков вдоль стенок.

В другом варианте реализации в зоне расплава стекла огнеупоры не применяют, а используют только указанную выше водяную рубашку.

В еще одном варианте изобретения используют огнеупорные материалы (при необходимости объединенные с системой охлаждения типа водяной рубашки) и их дублируют металлическим кожухом из тугоплавкого металла типа молибдена (или сплава с Мо). Этот кожух желательно располагать на расстоянии (например, на расстоянии от одного до нескольких мм) от огнеупорных стенок и в непрерывном контакте с расплавленной стекломассой (сплошные пластины (один лист) из Мо) или поверхность имеет разрывы (пластина (пластины) из Мо с отверстиями). Этот кожух служит для предотвращения прямого конвективного перемещения стекла с попаданием на огнеупоры; в результате вдоль поверхности огнеупоров формируется "спокойный слой" стекла или стекло не касается огнеупоров.

По всей камере для плавки или в ее части располагают погруженные горелки таким образом, чтобы они могли распространять в стекломассу жидкость или газ, не принимающий участия в процессе горения и замещающий (временно) окислитель и/или топливо. В качестве такого газа может быть выбран инертный газ типа N2 или жидкость для охлаждения, например вода, немедленно испаряющаяся в зоне стекломассы. Прием временного прерывания процесса сгорания при продолжении подачи флюида на уровне горелки, как правило, преследует две цели: либо возникает необходимость прекратить работу горелки, а в более общем случае - работу всей камеры для плавки, при этом подача инертного газа типа N2 позволяет обезопасить камеру на уровне горелок, либо возникла необходимость заменить горелку в процессе работы других горелок при наличии в ванне расплавленной стекломассы. В этом случае, как это будет описано ниже более подробно, подача соответствующим способом воды через горелку позволяет на время зафиксировать стекло над горелкой, образуя над ней типа "колпака", что обеспечивает временной интервал, необходимый для операции по замене без того, чтобы горелка покрылась слоем стекла.

В