Способ получения нерацемических сложного эфира и спирта, а также двухфазная негомогенная система для его осуществления

Изобретения относятся к биотехнологии, а именно к ферментативному разделению энантиомерной смеси с получением противовирусных соединений. Способ предусматривает диспергирование энантиомерной смеси соединения формулы I при концентрации 1-25% в системе органических растворителей с образованием органического компонента. Затем получают водный компонент и приводят его в контактирование с органическим компонентом. В результате получают двухфазную негомогенную систему, в которой диспергируют гидролазный фермент. Гидролазный фермент может быть диспергирован также в органическом или водном компоненте. При осуществлении способа создают условия, которые обеспечивают разделение энантиомерной смеси на нерацемический сложный эфир формулы I и нерацемический спирт формулы II. Изобретения позволяют повысить эффективность преобразования гидрофобных субстратов и снизить расходы фермента, что приводит к снижению стоимости противовирусных лекарственных средств. 2 с. и 68 з.п. ф-лы, 8 табл.

Реферат

Область, к которой относится изобретение

Настоящее изобретение относится к способу опосредованного биокатализатором энантиоселективного преобразования энантиомерных смесей гидрофобных сложных эфиров с использованием двухфазной системы растворителей. Более конкретно, настоящее изобретение относится к ферментативно опосредованному энантиоселективному синтезу противовирусных соединений, таких как 2-гидроксиметил-5-(5-фторцитозин-1-ил)-1,3-оксатиолан (FTC) и его аналоги, в негомогенной реакционной системе.

Предпосылки создания изобретения

При разработке коммерчески выгодных способов ферментативного разделения энантиомерных смесей гидрофобных сложных эфиров возникают серьезные препятствия. Так, например, в способе, предусматривающем ферментативное преобразование в присутствии органического растворителя, в отличие от того же способа, осуществляемого в водном растворителе, степень инактивации фермента очень высока. Основная проблема заключается в том, что растворители, которые являются менее деструктивными для данного катализатора, часто обладают меньшей способностью солюбилизировать более гидрофобные субстраты. В идеальном случае многие способы могли бы быть более эффективными, если бы они осуществлялись в более гидрофобных растворителях, таких как несмешивающиеся органические растворители. Одной из целей настоящего изобретения является получение негомогенной системы, которая позволяла бы преобразовывать в продукт более высокие концентрации гидрофобных субстратов, и требовала бы при этом меньшего потребления катализатора.

Вышеуказанные проблемы должны быть решены в целях снижения стоимости изготовления энантиомерных противовирусных лекарственных средств. Указанные лекарственные средства являются жизненно необходимыми в борьбе за полное преодоление вирусных заболеваний. Так, например, даже в настоящее время уровень инфицирования ВИЧ во всем мире неуклонно возрастает и ежедневно регистрируется 16000 новых случаев заражения [Balter, M. Science 280, 1863-1864 (1998)]. В Африке существуют регионы, расположенные ниже Сахары, например Ботсвана и Зимбабве, где инфицированным является, по крайней мере, 25% населения. Однако стоимость противовирусных лекарственных средств в настоящее время настолько высока, что они недоступны для большинства людей, инфицированных ВИЧ.

Нуклеозидные аналоги, такие как 3'-тиарибофуранозил-βL-цитозин ("3-ТС"), 3'-азидо-3'-дезокситимидин (AZT) [Blair Е., Darby G., Gough E., Littler, D., Rowlands, D., Tisdale, M. Antiviral Therapy, BIOS Scientific Publishers Limited, 1998], (-)-2',3'-дидезокси-5-фтор-3'-тиацитидин ("FTC") и 2’,3’-дидезокси-3’-тиацитидин являются важными противовирусными агентами [Liotta, D.C. 216th ACS National Meeting, Medicinal Chemistry Abstract, Boston, MA, August 2327, 1998; Hoong L.K. Strange, L.E., Liotta, D.C., Koszalka, G.W. Burns C.L., & Schinazi, R.F., J. Org. Chem. 1992, 57, 5563-5565]. 3-ТС имеется в продаже как лекарственное средство против ВИЧ и против HBV, a FTC проходит клинические испытания на его эффективность в качестве противовирусного лекарственного средства [Liotta, D.C., Schinazi, R.F., & Choi, W.B., патенты США №5210085, 5700937 и 5814639]. Поскольку оно представляет собой (-)-энантиомер как (-)-FTC, так и (-)-2',3'-дидезокси-3'-тиацитидина, который обладает наиболее сильной противовирусной активностью и наименьшей токсичностью по сравнению с соответствующими (+)-изомерами, то для расширения возможностей лечения пациентов во всем мире крайне необходимо разработать эффективные и недорогостоящие методы получения (-)-FTC и (-)-2’, 3'-дидезокси-3'-тиацитидина [Liotta, D.C. 216th ACS National Meeting, Medicinal Chemistry Abstract, Boston, MA, August 23-27, 1998; Hoong L.K., Strange, L.E., Liotta, D.C., Koszalka, G.W., Burns, C.L., & Schinazi, R.F., J. Org. Chem. 1992, 57, 5563-5565].

Для разделения сложных эфиров FTC используется множество гидролазных ферментов [Hoong, L.K., Strange, L.E., Liotta, D.C., Koszalka, G.W., Burns, C.L., & Schinazi, R.F., J. Org. Chem. 1992, 57, 5563-5565]. Однако при практической разработке ферментно-опосредованных химических способов продуцирования FTC и аналогичных соединений возникают определенные трудности. Во-первых, предполагается, что гидролазные ферменты, за исключением липаз, подвержены воздействию двухфазной среды (WO 97/44445, Lalonde et al., J. Am. Chem. Soc., 117, 6845-6852 (1995), Milton et al., Chemical Abstracts, 124(5), abstract # 55352 (1996), Brand et al., Chemical Abstracts, 127(20), abstracts # 278395 (1997)). Во-вторых, растворимость многих сложных эфиров FTC в водных средах является слишком низкой для осуществления экономически выгодного производства энантиомерно чистого продукта. Одним из возможных решений этой проблемы является добавление смешивающегося с водой органического сорастворителя для увеличения концентрации сложного эфира в растворе. Примером является использование растворов ацетонитрила и воды [Нооng L.K., Strange, L.E., Liotta, D.C., Koszalka, G.W. Burns, C.L., & Schinazi, R.F., J. Org. Chem. 1992, 57, 5563-5565; Liotta et al., патент США №5827727]. Хотя использование смешивающегося с водой органического растворителя и водного раствора увеличивает концентрацию субстрата в растворе, однако при этом существует нежелательный эффект резкого снижения степени катализируемого ферментом преобразования и стабильности фермента. Эта проблема является особенно очевидной в том случае, когда субстрат полностью не растворяется, и также присутствует в виде нерастворенной твердой суспензии (высокая концентрация загрузки субстрата). Аналогичные результаты были получены в лаборатории заявителей. Если смешивающиеся с водой органические растворители, такие как изопропанол, диметилформамид (ДМФ), 1-метил-2-пирролидинон, диметилсульфоксид (ДМСО), метанол, ацетонитрил, этанол, 1-пропанол, были использованы в качестве сорастворителя для разделения, то максимальная концентрация загрузки субстрата составляет 3%. Присутствие нерастворенного субстрата приводит к снижению энантиоселективности в том случае, если концентрация субстрата составляет выше 3%. Кроме того, использование смешивающегося с водой органического растворителя и водного раствора при концентрации смешиваемых с водой органических сорастворителей выше 20% оказывает значительное негативное влияние на активность фермента, в частности эстеразы печени свиньи (PLE).

В настоящем изобретении рассматриваются некоторые недостатки прототипов, из-за которых указанное ферментативное разделение энантиомерных смесей является экономически невыгодным. Во-первых, очевидно, что ферментативное преобразование должно осуществляться в гомогенных условиях, поскольку двухфазные системы дают плохую воспроизводимость [См. Liotta et al., патенты США №5827727, 5892025, 5914331; или Matson, патент США №4800162, где предполагается, что активированная мембрана разделяет водные и органические компоненты]. Одно из потенциальных преимуществ использования негомогенных систем заключается в том, что оно позволяет увеличить солюбилизацию субстрата. Предполагается, что в негомогенную систему может быть введена более высокая концентрация многих гидрофобных субстратов. Исходя из работ, предшествующих настоящему изобретению, очевидно, что следует избегать использования спиртовых растворителей, поскольку эти растворители денатурируют ферменты [Liotta et al., патенты США №5827727, 5892025, 5914331]. Настоящее изобретение имеет явное преимущество по сравнению с прототипами, поскольку оно конкретно относится к использованию спиртовых растворителей, которые образуют негомогенные системы с водой. Кроме того, использование негомогенных систем растворителей позволяет увеличивать солюбилизацию более гидрофобных субстратов в отличие от предшествующих методов. Этот способ отличается от других способов, в которых сам субстрат делают более водорастворимым, а затем его диспергируют в водный компонент (Wald et al., патент США №5057427). Следовательно, в настоящем изобретении описан способ, который требует меньшего количества фермента на единицу продукта.

Другие усовершенствования, достигаемые посредством настоящего изобретения, позволяют использовать некоторые спиртовые растворители в ферментативном процессе. Кроме того, настоящее изобретение относится к альтернативному способу, в котором потребность в ферменте и органическом растворителе снижается благодаря добавлению поверхностно-активных веществ. И, наконец, настоящее изобретение относится к разработке более эффективного ферментативного способа, который позволяет поддерживать энантиоселективность на высоком уровне.

На Схеме 1 показано энантиоселективное преобразование энантиомерной формы энантиомерной смеси бутирата FTC в соответствующий нерацемический спирт и желаемый нерацемический сложный эфир.

Краткое описание изобретения

Настоящее изобретение относится к некоторым усовершенствованным способам получения хирального нерацемического сложного эфира. Более конкретно, настоящее изобретение относится к усовершенствованному способу, в котором используется двухфазная негомогенная система, применяемая в биокатализе для разделения энантиомерных смесей сложных эфиров FTC и аналогов сложных эфиров FTC. Кроме того, настоящее изобретение относится к усовершенствованиям, которые обеспечивают высокую загрузку субстрата и снижение количества потребляемого фермента.

Первый усовершенствованный способ по настоящему изобретению относится к диспергированию энантиомерной смеси сложного эфира в системе органических растворителей с получением органического компонента при высокой загрузке субстрата. Для этого получают водный компонент, который предпочтительно содержит диспергированный гидролазный фермент. Альтернативно, данный гидролазный фермент может быть добавлен ко всей негомогенной системе или, менее предпочтительно, к органическому компоненту. Этот способ, кроме того, требует контактирования органического компонента и водного компонента с образованием негомогенной системы в условиях, позволяющих проводить разделение смеси с получением хирального нерацемического сложного эфира и нерацемического спирта. Сочетание органического компонента и водного компонента образует негомогенную систему. С использованием негомогенной системы можно получить гораздо большие концентрации субстрата. В одном из вариантов осуществления изобретения, после проведения реакции, хиральное нерацемическое сложноэфирное соединение может быть выделено из органического компонента, а хиральное нерацемическое спиртовое соединение может быть выделено из водного компонента. Стадии выделения могут варьироваться в зависимости от конкретного соединения и условий.

Настоящее изобретение также относится к альтернативному способу, который дает улучшенные результаты благодаря резкому снижению количества фермента, требуемого для получения данного продукта. Такое усовершенствование достигается добавлением поверхностно-активного вещества к указанной негомогенной системе в целях получения улучшенной негомогенной системы, которая требует меньшего количества органического растворителя для солюбилизации субстрата.

В другом варианте своего осуществления настоящее изобретение относится к способу, который предусматривает использование пониженного соотношения органической/водной фазы и который приводит к дополнительному снижению требуемого количества гидролазного фермента.

В другом варианте осуществления настоящего изобретения добавление поверхностно-активного вещества к этой системе позволяет увеличивать скорость ферментативной реакции и улучшать солюбилизацию субстрата. Более высокие скорости реакции приводят к общему снижению затрат на ферменты, используемые для осуществления этого способа.

Подробное описание изобретения

В нижеследующем описании используемые термины имеют следующие значения:

Биокатализатор - молекула белка, такая как гидролазный фермент. Примерами являются эстеразы, протеазы и липазы.

Хоральное соединение - соединение, которое не совмещается со своим зеркальным отражением и обычно содержит ассиметрический атом углерода, где четыре различных группы присоединены к одному и тому же атому углерода.

Сорастворитель - органический растворитель.

Преобразование - процесс обработки энантиомерной смеси соединений катализатором, который преобразует один энантиомер в другую химическую молекулу.

Диастереомеры - стереоизомеры, которые не являются зеркальными отражениями друг друга.

Диспергирование - распределение фермента или материала энантиомерной смеси в растворителе. Этот фермент может присутствовать в виде кристаллического перекрестносшитого фермента, иммобилизованного фермента или растворимого фермента, а энантиомерная смесь может быть растворимой или может содержать остаточные частицы. Эта дисперсная система может содержать вплоть до трех фаз, а именно твердые кристаллические и/или корпускулярные вещества и две другие жидкие фазы.

Энантиомеры - пары стереоизомеров, которые являются зеркальными отражениями по отношению друг к другу. Энантиомер не совмещается со своим зеркальным отражением. Энантиомерами являются хиральные стереоизомеры, которые отличаются только тем, как они реагируют с другими хиральными молекулами, и своим поведением по отношению к плоскополяризованному свету. Отдельные энантиомеры вращают плоскость поляризованного света одинаково, но в противоположном направлении. Различные энантиомеры идентифицируются по R- и S-обозначениям, и по тому признаку, поворачивается ли плоскость поляризованного света вправо (правовращение (+)) или влево (левовращение (-)).

Энантиомерный избыток - в смеси (растворе) двух энантиомеров, где один энантиомер присутствует в большем количестве, причем этот раствор обнаруживает оптическое вращение ((+)- или (-)-вращение), соответствующее энантиомеру, присутствующему в избытке. Энантиомерный избыток представляет собой процентное содержание энантиомера, имеющегося в избытке по отношению к рацемической смеси, и вычисляется следующим образом: (удельное вращение смеси)÷(удельное вращение чистого энантиомера) × 100 = % энантиомерного избытка.

Энантиомерная смесь - смесь двух энантиомеров.

Энантиоселективность - предпочтение превращению одного энантиомера из энантиомерной смеси.

Бутират FTC - означает энантиомерную смесь соединения 2',3'-дидезокси-5'-бутират-5-фтор-3'-тиацитидина или в соответствии с альтернативной номенклатурой это соединение представляет собой 2-бутирилоксиметил-5-(5-фторцитозин-1-ил)-1,3-оксатиолан или, менее формально, эфир 5'-масляной кислоты и 2-гидроксиметил-5-(5-фторцитозин-1-ил)-1,3-оксатиолана.

Неполностью смешивающийся с водой органический растворитель - органический растворитель, который не полностью растворяется в воде при 25°С и образует негомогенные растворы с водой.

Негомогенная система - двухфазная среда, содержащая биокатализатор, органический компонент, водный компонент и субстрат. Негомогенная система может также называться негомогенной средой, негомогенными условиями или негомогенной композицией.

Система органических растворителей - раствор, содержащий один или несколько нижеследующих растворителей, таких как незамещенные C18-алканы, спирты, ароматические растворители, кетоэфиры, нитро-, галогеналкан или ароматический органический растворитель, такой как трет-амиловый спирт, изоамиловый спирт, 1-пентанол, 3-пентанол, 1-бутанол, 2-бутанол, трет-бутанол, 3-метил-3-пентанол, 4-метил-2-пентанол, 3-этил-3-пентанол, 3-гептанол, толуол, бутилацетат, нитроэтан, нитрометан, дихлорметан, метилизобутилкетон, диметилсульфид, сульфолан или любые другие органические растворители, которые смешиваются с водой не более чем приблизительно на 50%, и которые облегчают растворение энантиомерной смеси без нарушения функции фермента.

Рацемическая смесь - эквимолярная смесь двух энантиомеров, также известная как рацемическая модификация, обычно образующаяся в результате химической реакции у хирального центра, где ни один энантиомерный продукт не является преобладающим.

Расщепление энантиомеров или разделение - процесс разделения пар энантиомеров в энантиомерной смеси.

Расщепление рацемической смеси - разделение рацемическоой смеси энантиомеров.

Стереохимия FTC и бутирата FTC - Стереохимия соединений FTC, рассматриваемая в данной заявке и показанная ниже:

Стереоизомер - соединение, атомы которого расположены в том же порядке, как и в другом соединении, и отличается от этого другого соединения лишь расположением своих атомов в пространстве. Примерами стереомеров являются энантиомеры и диастереомеры.

Загрузка субстрата - концентрация энантиомерной смеси. В качестве примера, указанного ниже: загрузка субстрата выражается в % (масса/объем негомогенной системы), т.е. исходя из полного объема растворителя. Другими словами, процент (%) (масса/объем) загрузки субстрата вычисляют, исходя из объема всей негомогенной системы, которая включает как водные, так и органические компоненты.

Поверхностно-активное вещество - поверхностно-активные вещества способствуют снижению поверхностного натяжения растворов при растворении в указанных растворах. Поверхностно-активные вещества также снижают межфазное натяжение между двумя жидкостямиили между жидкостью и твердым веществом. Поверхностно-активные вещества разделяются на три категории, которые действуют по аналогичному механизму. Эти категории включают детергенты, эмульгаторы и смачивающие агенты в зависимости от природы рассматриваемых поверхностей. Концентрацию поверхностно-активного вещества выражают в процентах (%) (масса/объем) и вычисляют, исходя из объема всей негомогенной системы, которая включает как водные, так и органические компоненты.

Не смешивающийся с водой органический растворитель - органический растворитель, который имеет растворимость в воде при 25°С максимально 10% и образует негомогенные растворы с водой. Концентрацию этого органического растворителя выражают в процентах (%) (объем/объем) и вычисляют, исходя из объема всей негомогенной системы, которая включает как водные, так и органические компоненты.

Органический растворитель, который смешивается с водой не более чем на 50% - органический растворитель, который имеет растворимость в воде при 25°С не более чем 50% и образует негомогенные растворы с водой.

Смешивающийся с водой органический сорастворитель - органический растворитель, который полностью смешивается с водой при 25°С.

Настоящее изобретение относится к способу получения хирального нерацемического сложного эфира формулы I с использованием гидролазного фермента

где

R представляет собой C1-C8-алкил, алкенил или алкинил;

Х=Н или F;

Y=СН2, О, S, Se или NH;

где указанный способ включает следующие стадии:

(a) диспергирование энантиомерной смеси сложного эфира формулы I при концентрации от около 1 до около 25% (масса/объем негомогенной системы) в системе органических растворителей с получением органического компонента;

(b) получение системы водных растворителей для образования водного компонента и

(c) контактирование указанного органического компонента и указанного водного компонента с образованием негомогенной системы в условиях, позволяющих проводить разделение смеси с получением хирального нерацемического сложного эфира формулы 1 и нерацемического спирта формулы II;

где

Х=Н или F;

Y=СН2, О, S, Se или NH и

где указанный гидролазный фермент диспергируется либо в указанном органическом компоненте, либо в указанном водном компоненте, либо в указанной негомогенной системе.

Настоящее изобретение также относится к способу получения хирального нерацемического гидрофобного сложного эфира с использованием гидролазного фермента, где указанный способ включает следующие стадии:

(a) диспергирование энантиомерной смеси указанного гидрофобного сложного эфира при концентрации от около 1 до около 25% (масса/объем негомогенной системы) в системе органических растворителей с получением органического компонента;

(b) получение системы водных растворителей для образования водного компонента и

(c) контактирование указанного органического компонента и указанного водного компонента с образованием негомогенной системы в условиях, позволяющих осуществлять энантиоселективное преобразование одной энантиомерной формы указанной энантиомерной смеси в соответствующий спирт, и

где указанный гидролазный фермент диспергируется либо в указанном органическом компоненте, либо в указанном водном компоненте, либо в указанной негомогенной системе.

Альтернативно, настоящее изобретение относится к способам получения хирального нерацемического сложного эфира формулы I из энантиомерной смеси формулы I или из энантиомерной смеси гидрофобного сложного эфира, где указанный способ, кроме того, предусматривает использование поверхностно-активного вещества.

Кроме того, настоящее изобретение относится к способу получения хирального нерацемического сложного эфира 2-бутирилоксиметил-5-(5-фторцитозин-1-ил)-1,3-оксатиолана с использованием гидролазного фермента, где указанный способ включает следующие стадии:

(a) диспергирование энантиомерной смеси указанного 2-бутирилоксиметил-5-(5-фторцитозин-1-ил)-1,3-оксатиолана при концентрации от около 1 до около 25% (масса/объем негомогенной системы) в системе органических растворителей с получением органического компонента;

(b) получение системы водных растворителей для образования водного компонента и

(c) контактирование указанного органического компонента и указанного водного компонента с образованием негомогенной системы в условиях, позволяющих осуществлять энантиоселективное преобразование одной энантиомерной формы указанной энантиомерной смеси в соответствующий спирт;

где указанный гидролазный фермент диспергируют либо в указанном органическом компоненте, либо в указанном водном компоненте, либо в указанной негомогенной системе и

где концентрацию указанной энантиомерной смеси вычисляют, исходя из объема указанной негомогенной системы.

В одном из вариантов своего осуществления настоящее изобретение относится к способу получения хирального нерацемического сложного эфира 2-бутирилоксиметил-5-(5-фторцитозин-1-ил)-1,3-оксатиолана с использованием гидролазного фермента, где указанный способ включает следующие стадии:

(а) диспергирование энантиомерной смеси указанного 2-бутирилоксиметил-5-(5-фторцитозин-1-ил)-1,3-оксатиолана при концентрации от около 1 до около 25% (масса/объем негомогенной системы) в системе органических растворителей с получением органического компонента;

(b) получение системы водных растворителей для образования водного компонента и

(c) контактирование указанного органического компонента и указанного водного компонента с образованием негомогенной системы в условиях, позволяющих осуществлять энантиоселективное преобразование одной энантиомерной формы указанной энантиомерной смеси в соответствующий спирт;

где указанный гидролазный фермент диспергируют либо в указанном органическом компоненте, либо в указанном водном компоненте, либо в указанной негомогенной системе;

где указанный органический компонент составляет от около 5 до около 90% от указанной негомогенной системы;

где указанная негомогенная система также содержит от около 1 до около 20% поверхностно-активного вещества и

где указанную концентрацию поверхностно-активного вещества вычисляют, исходя из объема указанной негомогенной системы.

Другой целью настоящего изобретения является получение негомогенной системы, предназначенной для получения хирального нерацемического гидрофобного эфира с использованием гидролазного фермента, и включающей:

(a) гидролазный фермент;

(b) субстрат для гидрофобного сложного эфира;

(c) органический компонент и

(d) водный компонент.

Объектом настоящего изобретения является способ выделения желаемого энантиомера из энантиомерной смеси.

Объектом настоящего изобретения также является способ выделения желаемого энантиомера из энантиомерной смеси гидрофобных сложных эфиров.

Другим объектом настоящего изобретения является способ разделения энантиомеров противовирусных соединений, имеющих вышеуказанную формулу I.

В наиболее предпочтительном варианте своего осуществления настоящее изобретение относится к способу разделения энантиомерного бутирата FTC (или вышеуказанного соединения формулы I, где R представляет пропил, Х=F и Y=S).

Загрузка субстрата приводит к диспергированию энантиомерной смеси гидрофобного сложного эфира в системе органических растворителей с образованием органического компонента. Интервал концентраций, выраженный в единицах %-ного соотношения (масса/объем негомогенной системы), выбирают из группы, включающей следующие интервалы: от около 0,5% до около 45%; от около 1,0% до около 45%; от около 5,0% до около 45%; от около 10% до около 40%; от около 10% до около 30%; от около 5% до около 20%; от около 1% до около 5% и от около 10% до около 20%.

В предпочтительном варианте осуществления изобретения системы органических растворителей содержат один или несколько органических растворителей, которые смешиваются с водой не более чем на 50%, что облегчает растворение энантиомерной смеси.

В другом предпочтительном варианте системы органических растворителей по настоящему изобретению содержат один или несколько С48 спиртов.

В наиболее предпочтительном варианте системы органических растворителей по настоящему изобретению содержат либо н-амиловый спирт, либо 3-метил-3-пентанол, либо тот и другой.

В предпочтительном варианте системы водных растворителей по настоящему изобретению содержат воду, одну или несколько буферных солей, подщелачивающие агенты, противомикробные консерванты, стабилизаторы, ускорители фильтрации, коферменты или другие наполнители, облегчающие диспергирование и функционирование данного фермента.

В другом предпочтительном варианте системы водных растворителей по настоящему изобретению содержат воду и от около 0,01 до около 0,5 моль фосфатного буфера при рН, приблизительно равном 7,0-8,0.

В наиболее предпочтительном варианте системы водных растворителей по настоящему изобретению содержат воду и от около 0,2 до около 0,4 моль фосфатного буфера при рН, приблизительно равном 7,2-7,8.

В другом варианте осуществления изобретения гидролазный фермент обладает способностью расщеплять пару энантиомеров.

В другом варианте осуществления изобретения гидролазный фермент обладает способностью расщеплять пару энантиомеров посредством ферментативно катализируемой стереоселективной реакции с одним энантиомером.

В предпочтительном варианте осуществления изобретения данный гидролазный фермент обладает способностью расщеплять пару энантиомеров посредством ферментативно катализируемого стереоселективного преобразования одного энантиомера.

В наиболее предпочтительном варианте осуществления изобретения гидролазный фермент обладает способностью расщеплять пару энантиомеров посредством ферментативно катализируемого стереоселективного преобразования (+)-энантиомера 2-бутирилоксиметил-5-(5-фторцитозин-1-ил)-1,3-оксатиолана (или соединения вышеуказанной формулы I, где R представляет пропил, Х=F и Y=S или бутират FTC).

В одном из вариантов осуществления изобретения указанным биокатализатором является фермент.

В другом предпочтительном варианте настоящего изобретения указанным ферментом является гидролаза.

В предпочтительном варианте осуществления изобретения указанный фермент выбран из группы, состоящей из эстераз, липаз и протеаз.

В наиболее предпочтительном варианте осуществления изобретения данный фермент выбран из группы, включающей панкреатическую липазу свиньи ("PL"), липазу Pseudomonas species, липазу Aspergillus niger, субтилизин или эстеразу печени свиньи ("PLE").

В одном из вариантов осуществления изобретения указанный биокатализатор добавляют к негомогенной системе после контактирования водного компонента с органическим компонентом, в результате чего получают негомогенную систему.

В другом варианте осуществления изобретения указанный биокатализатор добавляют к органической фазе как части органического компонента до контактирования водного компонента с органическим компонентом, в результате чего получают негомогенную систему.

В предпочтительном варианте осуществления изобретения биокатализатор добавляют к водной фазе для создания водного компонента после контактирования водного компонента с органическим компонентом, но перед встряхиванием и размешиванием, в результате чего получают негомогенную систему.

В наиболее предпочтительном варианте осуществления изобретения биокатализатор добавляют к водной фазе для создания водного компонента до контактирования водного компонента с органическим компонентом, в результате чего получают негомогенную систему.

В одном из вариантов осуществления изобретения негомогенная система, используемая в данном способе разделения энантиомерных смесей, содержит поверхностно-активное вещество. Интервал концентраций поверхностно-активного вещества в процентах (масса/объем негомогенной системы) выбирают из группы, содержащей следующие интервалы: от около 1% до около 30% поверхностно-активного вещества, от около 1% до около 20% поверхностно-активного вещества, от около 1% до около 10% поверхностно-активного вещества, от около 1% до около 5% поверхностно-активного вещества, от около 5% до около 30% поверхностно-активного вещества, от около 10% до около 25% поверхностно-активного вещества, от около 15% до около 25% поверхностно-активного вещества, от около 20% до около 30% поверхностно-активного вещества и от около 5% до около 15% поверхностно-активного вещества.

В одном из вариантов осуществления изобретения данный фермент иммобилизован на матрице.

В предпочтительном варианте осуществления изобретения данный фермент имеет форму перекрестносшитого кристаллического фермента, такого как, например, фермент, описанный в патентной публикации РСТ WO 92/02617 (Navia et al.).

В другом предпочтительном варианте осуществления изобретения фермент имеет форму перекрестносшитого кристаллического белка с регулируемым растворением, такого как, например, фермент, описанный в патентной публикации РСТ WO 98/46732 (Margolin et al.).

В наиболее предпочтительном варианте осуществления изобретения данный фермент имеет растворимую форму.

В одном из вариантов осуществления изобретения указанные негомогенные системы содержат от около 10% до 99% органического компонента. В другом варианте осуществления изобретения указанные негомогенные системы содержат от около 10% до около 90% органического компонента. Более предпочтительные негомогенные системы содержат от около 20% до около 80% органического компонента. Еще более предпочтительные негомогенные системы содержат от около 30% до около 70% органического компонента. В другом предпочтительном варианте осуществления изобретения указанные негомогенные системы содержат от около 10% до около 50% органического компонента. В другом более предпочтительном варианте изобретения негомогенные системы содержат от около 10% до около 60% органического компонента. В другом предпочтительном варианте осуществления изобретения указанные негомогенные системы содержат от около 20% до около 70% органического компонента. В еще одном предпочтительном варианте осуществления изобретения негомогенные системы содержат от около 50% до около 20% органического компонента.

В одном из вариантов осуществления изобретения указанные способы разделения нужного энантиомера осуществляют при температуре или температурах, выбранных из группы, включающей температуры: от около 0°С до около 45°С, от около 10°С до около 45°С, от около 20°С до около 45°С, от около 30°С до около 45°С, от около 10°С до около 40°С, от около 10°С до около 30°С, от около 10°С до около 25°С, от около 15°С до около 40°С, от около 15°С до около 35°С, от около 15°С до около 30°С, от около 15°С до около 25°С и от около 20°С до около 35°С.

В предпочтительном варианте осуществления изобретения указанный водный компонент, используемый в способах по настоящему изобретению, составляет по крайней мере 10% (объем/объем) от указанной негомогенной системы.

В другом предпочтительном варианте осуществления изобретения указанный водный компонент, используемый в способах по настоящему изобретению, составляет по крайней мере 50% (объем/ объем) от указанной негомогенной системы.

В наиболее предпочтительном варианте осуществления изобретения указанный водный компонент, используемый в способах по настоящему изобретению, составляет по крайней мере 90% (объем/объем) от указанной негомогенной системы.

В одном из вариантов осуществления изобретения указанный способ выделения нужного энантиомера осуществляют в негомогенной системе, содержащей поверхностно-активное вещество. Если поверхностно-активное вещество является частью указанной негомогенной системы, то интервал концентраций органического компонента в % (объем/объем) выбирают из группы, включающей интервал от около 5% до около 90% от указанной негомогенной системы, от около 5% до около 80% от указанной негомогенной системы, от около 5% до около 70% от указанной негомогенной системы, от около 5% до около 60% от указанной негомогенной системы, от около 5% до около 50% от указанной негомогенной системы, от около 5% до около 30% от указанной негомогенной системы, от около 5% до около 20% от указанной негомогенной системы, от около 5% до около 10% от указанной негомогенной системы, от около 10% до около 30% от указанной негомогенной системы, от около 10% до около 20% от указанной негомогенной системы, от около 20% до около 70% от указанной негомогенной системы или от около 25% до около 50% от указанной негомогенной системы и от около 30% до около 60% от указанной негомогенной системы.

Реакционная схема разделения энантиомерной смеси проиллюстрирована на Схеме 1 (см. ниже), где субстратами являются: эфир, ацетат, формиат, пропионат, бутират, пентаноат или другой н-алкил, и разветвленная цепь или сложные ариловые эфиры FTC, или производные указанных сложных эфиров FTC, а органическими сорастворителями являются любые растворители, которые не более чем на 50% смешиваются с водой, а именно спиртовые, алкановые, ароматические, кетоэфирные, нитро, нитро, галогеналкан или ароматические органические растворители, такие как н-амиловый спирт, изоамиловый спирт, трет-амиловый спирт, 3-пентанол, 1- или 3-гептанол, 3-метил-3-пентанол, 4-метил-2-пентанол, 3-этил-3-пентанол, 1- или 2-бутанол, нитрометан, дихлорметан, метилизобутилкетон, диметилсульфид, сульфолан и другие.

На Схеме 1, представленной ниже, продуктами реакции являются нерацемический сложный эфир и нерацемический спирт (схема 1). В одном примере, где Х представляет фтор, R представляет С3Н7, а Y представляет серу, соединение А представляет собой энантиомерную смесь бутирата FTC. Различные гидролитические ферменты, такие как эстераза печени свиньи (PLE), липаза Pseudomonas species (PSL) и липаза Aspergillus niger (ANL), используются в качестве катализатора [для PLE-катализируемых реакций в смешанных органических растворителях: См. Ariente-Fliche, С., Braun, J., & Le Goffic, F., Synth. Commun. 22, 1149-1153 (1992); Basavaiah D., & Krishna, P.R., Pure & Applied Chem., 64, 1067-1072 (1992); Basavaiah, D., Pandiaraju, S., & Muthukumaran, K., Tetrahedron: Asymmetry, 1, 13-16, (1996); Mahmoudian, М., Baines, B.S., Dawson, M.J. & Lawrence, G.C., Enzyme Microb. Technol., 14, 911-916, (1992); Izumi Т. & Kasahara, А., патент Японии JP 08092269 A (1996)].

где: R представляет собой С18 алкил, алкенил или алкинил; Х=Н или F; Y=СН2, О, S, Se или NH; причем указанным биокатализатором может быть либо растворимый фермент, либо иммобилизованный фермент, либо перекрестносшитый фермент в кристаллической форме; а органическим сорастворителем может быть любой органический растворитель, который не более чем на 50% смешивается с водой, такой как н-амиловый спирт, изоамиловый спирт, трет-амиловый спирт, 3-пентанол, 1- или 3-гептанол, 3-Ме-3-пентанол, 4-Ме-2-пентанол, 3-Et-3-пентанол, 1- или 2-бутанол, нитрометан, дихлорметан и др.

Биокатализаторами могут быть либо растворимые ферменты, либо иммобилизованные ферменты, либо перекрестносшитые ферменты в кристалл