Хладостойкий сплав на основе железа

Использование: эксплуатация сплава в металлоконструкциях в условиях климатического холода при статических нагрузках. Хладостойкий сплав на основе железа содержит компоненты в следующем соотношении, мас. %: титан 1 - 2; углерод не более 0,009; кремний не более 0,1; алюминий не более 0,003; медь не более 0,03; никель не более 0,1; железо - остальное. Техническим результатом изобретения является повышение прочности сплава при сохранении пластичности. Сплав не охрупчивается при охлаждении до температуры минус 78°С, а благодаря повышению содержания титана, содержание углерода в сплаве существенно снижено, что обеспечивает хладостойкость. 1 ил., 1 табл.

Реферат

Изобретение относится к металловедению, а конкретно к разработке сплавов для изготовления металлоконструкций, предназначенных к эксплуатации в условиях климатического холода при статических нагрузках.

Известным прототипом изобретения по совокупности признаков (прочность, технологичность, хладостойкость) является горячекатаная углеродистая сталь обыкновенного качества ВСт3 (ГОСТ 380-71), которую широко применяют для изготовления сварных металлоконструкций, пригодных для эксплуатации до температур минус 20°С.

Химический состав и механические свойства стали ВСт3 обыкновенного качества приведены в таблице

Таблица
С, % массовыеMn, % массовыеВременное сопротивление δg, МПаПредел текучести δт, МПаОтносительное удлинение δ, %
0,140,40-0,65380-490Не менее 250Не менее 27

Сущность изобретения заключается в разработке сплава, который не охрупчивается при охлаждении до температуры минус 78°С, т.е. на 58°С ниже предела для стали ВСт3, и имеет механические свойства и технологические качества не ниже, чем эта сталь.

Хладостойкий сплав на основе железа, содержащий углерод, кремний, титан, дополнительно содержит алюминий, медь и никель в следующем соотношении, мас.%: титан 1-2; углерод не более 0,009; кремний не более 0,1; алюминий не более 0,003; медь не более 0,03; никель не более 0,1 и железо - остальное.

Сплав является твердым раствором титана в железе. Благодаря титану содержание углерода в сплаве существенно снижено, что обеспечивает хладостойкость. Вторая роль титана - упрочнение железа при сохранении пластичности.

Содержание титана в сплаве можно варьировать от 1 до 2 мас.%. В сплаве допускаются примеси углерода, кремния, алюминия, меди и никеля.

Механические свойства сплава приведены на графиках. Предел прочности и условный предел текучести возрастают с увеличением содержания титана. Относительное удлинение падает, а ударная вязкость KCU не изменяется с увеличением содержания титана; эти характеристики остаются на высоком уровне.

Относительное удлинение при температуре минус 78°С имеет такое же значение, как при температуре плюс 20°С для сплава соответствующего состава.

Слитки сплавов Fe-Ti, содержащие различные концентрации титана (от 1 до 2 мас.%), были получены на основе железа Армко в высокочастотной печи плавкой на воздухе. Для легирования был применен губчатый титан марки ТГ-О. Слитки гомогенизировались в течение 20 час при температуре 1200°С. Горячей прокаткой из них были получены прутки диаметром 8 мм и штанги сечением 16×16 мм2. Из прутков были изготовлены образцы для испытания на растяжение, а из штанг - образцы для определения ударной вязкости.

Получены качественные сварные швы на заготовках из сплава Fe - 1,32 мас.% Ti по аргонодуговому методу с присадкой из стали 04Х18Н10Т.

На основании вышеизложенного можно считать, что полученный сплав обладает конструктивной прочностью и пластичностью при температуре до 78°С в условиях эксплуатации при статических нагрузках.

Хладостойкий сплав на основе железа, содержащий углерод, кремний, титан и железо, отличающийся тем, что он дополнительно содержит алюминий, медь и никель в следующем соотношении, мас.%:

титан1 - 2
углерод не более 0,009
кремнийне более 0,1
алюминийне более 0,003
медьне более 0,03
никельне более 0,1
железоостальное.