Способ и устройство для передачи электрической энергии

Иллюстрации

Показать все

Изобретение относится к передаче электрической энергии стационарным и мобильным потребителям электроэнергии. Технический результат заключается в повышении эффективности и снижение потерь при передаче электрической энергии. Передача электрической энергии осуществляется путем передачи резонансных колебаний повышенной частоты в цепи, состоящей из генератора повышенной частоты и двух повышающего и понижающего высокочастотных трансформаторов Тесла. От внутреннего вывода высоковольтной обмотки повышающего трансформатора Тесла высоковольтный потенциал и электрическая энергия передаются по однопроводной линии к понижающему трансформатору Тесла, электрический ток выпрямляется и передается к нагрузке путем присоединения низковольтной обмотки понижающего трансформатора Тесла к двум входам однофазного мостового выпрямителя, а двух выходов этого выпрямителя - к нагрузке. Резонансные колебания реактивного тока с длиной волны λ, равной λ=2LАВ/n, где n - целое число, LAB - длина электрической цепи, между наружными выводами А и В высоковольтных обмоток трансформаторов передают от резонансного контура низковольтной обмотки повышающего трансформатора Тесла к резонансному контуру низковольтной обмотки понижающего трансформатора Тесла по однопроводной линии и линии в Земле путем соединения расположенных в непосредственной близости от вывода низковольтной обмотки наружных выводов А и В высоковольтных обмоток повышающего и понижающего трансформатора Тесла к земле и преобразования реактивного тока в постоянный ток в инверторе путем подключения инвертора между выпрямителем и нагрузкой. 14 н. и 16 з.п.ф-лы, 9 ил.

Реферат

Изобретение относится к способу и устройству для передачи электрической энергии стационарным и мобильным потребителям электроэнергии.

Известно, что полная передаваемая мощность в линии электропередач переменного тока составляет

где Р и Q - активная и реактивная мощность. Несмотря на то, что в (1) активная и реактивная мощности входят равноправными компонентами, в электротехнике для передачи энергии используется только активная мощность. Реактивная мощность зависит от режима работы линии и ограничивает передаваемую по линии электрическую энергию. Рассмотрим режимы передачи электрической энергии в линии.

В идеальном режиме реактивная мощность и реактивный ток линии равны нулю, а напряжение вдоль линии постоянно. Активная мощность регулируется изменением угла между векторами напряжения в начале и в конце линии и изменением величины напряжения.

В нормальном режиме работы активная мощность изменяется и при ее уменьшении увеличивается реактивная мощность и напряжение в линии. Для ограничения напряжения используют шунтовые реакторы для компенсации реактивной мощности. Такая линия, как и в идеальном случае, не имеет резонансных характеристик.

Обрыв в линии является аварийным режимом, так как в этом случае активный ток в линии отсутствует, реактивная энергия максимальна и равна энергии электрического поля линии, в линии возникают колебания электромагнитного поля и перенапряжения. Перенапряжения имеют максимальную величину при резонансной частоте колебаний. В этом случае угол между векторами напряжений в начале и в конце линий равен нулю, а величина напряжения изменяется в широких пределах и определяется добротностью линии (Alexandrov G.N., Smolovic S.V. Flexible lines for electric energy transmission over long distances. // V Simposium "Electrical Engineering’2010", October 12-22, 1999, Moscow region. P.35-42).

В линии электропередач в режиме наименьших нагрузок или при отключении нагрузки протекают большие потоки реактивной мощности. Так, например, реактивная мощность в линии 750 кВ реактивная мощность составляет около 400 МВАР. С целью компенсации реактивной мощности в линиях электропередач устанавливают шунтовые реакторы. Мощность этих реакторов выбирается по уравнению баланса реактивной мощности (Электротехнический справочник. Т.3. Производство, передача и распределение электрической энергии. - М.: изд-во МЭН, 2002, с.209).

Целью предлагаемого изобретения является использование режима работы разомкнутой высоковольтной линии в качестве нормального или идеального режима работы в новом методе передачи электроэнергии, в котором основной или единственной компонентой мощности в линии является реактивная мощность.

Реактивный канал перекачки энергии рассматривался при оценке энергетической возможности преобразования ионосферных токов в наземном однопроводном сверхпроводящем контуре. В работе делается вывод, что вопрос преобразования реактивной электрической энергии в электроэнергию технического назначения недостаточно ясен (Данилкин Н.П., Кирьянов Д.В. К оценке энергетической возможности конвертора Солнце-Ионосфера-Земля. // Электричество, 1999, №7. С.59-63). Определение реактивной мощности связано с интенсивностью колебательных процессов обмена электромагнитной энергии между реактивными элементами электрической цепи. Реактивная мощность в цепях с синусоидальными формами напряжения и тока определяется из уравнения (1), как векторная разность полной и активной мощности (Зиновьев Г.С. О реактивной мощности в электрической цепи. // Изв. АЛ СССР. Энергетика и транспорт, 1986, №4, с.80-86, Демирчян К.С. Реактивная или обменная мощность // Изв. АН СССР. Энергетика и транспорт. 1984, №2, с.66-72).

Существуют электрические устройства, в которых активная мощность пренебрежимо мала, а основной компонентной мощности является реактивная мощность. Источниками реактивной мощности являются конденсаторы и синхронные машины - компенсаторы при перевозбуждении. Индуктивности и синхронные компенсаторы при недовозбуждении являются потребителями реактивной мощности. В обмотках синхронного компенсатора протекают реактивные токи, которые не создают динамических усилий, поэтому крепление лобовых частей обмоток делают менее прочным, чем в турбогенераторах (Копылов И.П. Электрические машины. - М.: изд-во Логос, 2000, с.436-438).

Примером электрических цепей, в которых основной компонентой является реактивная мощность в цепи, является резонансный контур.

В резонансном контуре происходит обмен реактивной энергией между конденсатором и катушкой индуктивности контура. В процессе колебаний энергия электрического поля конденсатора превращается в энергию магнитного поля катушки и затем происходит обратный процесс (Калашников А.М., Степук Я.В. Основы радиотехники и радиолокации. // Колебательные системы. - М.: 1965, с.34-35, 138).

Известны способ и устройство для преобразования и передачи электрической энергии по однопроводной линии на большое расстояние, разработанные Н.Тесла в 1997 году. Согласно изобретению Н.Тесла устройство состоит из двух трансформаторов, один для повышения, а другой для уменьшения потенциала тока, указанные трансформаторы имеют один вывод обмотки с проводом большой длины, соединенный с линией, и другой вывод этой обмотки, примыкающий к обмотке из провода более короткой длины, соединен электрически с ней и с землей. Повышающий трансформатор имеет первичную обмотку, соединенную с электрическим генератором повышенной частоты. Первичная обмотка намотана на вторичную высоковольтную обмотку, длина провода которой значительно больше длины первичной обмотки и приблизительно равна четверти длины волны электромагнитного поля в линии. В этом случае потенциал одного вывода высоковольтной обмотки равен нулю, а потенциал другого вывода будет максимальный. Внутренний конец высоковольтной вторичной обмотки соединен с линией передачи электрической энергии, а наружный конец вторичной обмотки в целях электробезопасности соединен с прилегающим выводом первичной обмотки с землей. Понижающий трансформатор выполнен аналогично. Выводы низковольтной обмотки соединены с электрической нагрузкой в виде ламп и электродвигателей. Однопроводная линия электропередач имеет длинные изоляторы на опорах для снижения потерь на утечку тока (Н. Тесла. Электрический трансформатор. Пат. США №593138 от 02.11.1897 г.).

Недостатком известного способа и устройства является потери мощности в заземляющем проводе при отклонении частоты от резонансной, соответствующей условию равенства длины высоковольтной обмотки четверти длины волны. В этом случае потенциал нулевого вывода высоковольтной обмотки у обоих трансформаторов отличен от нуля и существует утечка тока и мощности в землю, минуя сопротивление нагрузки. Другим недостатком является отсутствие выпрямителей и преобразователей частоты для использования в нагрузке постоянного тока или стандартной частоты 50-60 Гц.

Известна мостовая схема выпрямления, в которой четыре диода образуют четыре плеча выпрямительного моста. Половина диодов выпрямителя образует группу, к которой присоединены катодные выводы нагрузки по постоянному току, а у второй половины диодов соединены в анодные выводы. Вход переменного тока подводится к двум диодам, один из которых подключен ко входу катодным выводом, а второй анодным выводом (А.С.Касаткин, М.В.Немцов. Электротехника. Изд. Высшая школа, 2000 г., стр.261-264).

Аналогично устроена схема удвоения напряжения, у которой по входу подключены два диода с обратной полярностью, т.е. катод одного диода и анод второго диода. Из сравнения схем мостового выпрямителя и удвоения напряжения следует, что мостовая схема выпрямления состоит из двух (для однофазной цепи) или трех схем (для трехфазной цепи) удвоения напряжения, у которых соединены параллельно и подключены к нагрузке анодные и катодные выводы.

Недостатком всех известных способов и устройств передачи электрической энергии является то, что они не позволяют использовать реактивные токи в высоковольтной обмотке понижающего трансформатора, соединенной с естественной емкостью и с Землей.

Задачей предлагаемого изобретения является повышение эффективности и снижение потерь при передаче электрической энергии.

Вышеуказанный результат достигается тем, что в способе передачи электрической энергии путем создания резонансных колебаний повышенной частоты в цепи, состоящей из генератора повышенной частоты и двух повышающего и понижающего высокочастотных трансформаторов Тесла, повышения потенциала внутреннего вывода высоковольтной обмотки повышающего трансформатора Тесла, передачи высоковольтного потенциала и электрической энергии по однопроводной линии к понижающему трансформатору Тесла, понижения потенциала высоковольтного вывода понижающего трансформатора Тесла, выпрямления тока и передачи электрической энергии нагрузке путем присоединения низковольтной обмотки понижающего трансформатора Тесла к двум входам однофазного мостового выпрямителя, а двух выходов этого выпрямителя к нагрузке, резонансные колебания электромагнитной энергии с длиной волны λ , равной λ =2LAB/n, где n - целое число, LAB - длина электрической цепи, между наружными выводами А и В высоковольтных обмоток трансформаторов передают от резонансного контура низковольтной обмотки повышающего трансформатора Тесла к резонансному контуру низковольтной обмотки понижающего трансформатора Тесла по однопроводной линии и линии в Земле путем соединения расположенных в непосредственной близости от вывода низковольтной обмотки наружных выводов А и В высоковольтных обмоток повышающего и понижающего трансформатора Тесла к земле и преобразования реактивного тока и реактивной мощности в однопроводной линии в постоянный ток и мощность постоянного тока, а затем в активный переменный ток и активную мощность промышленной частоты в инверторе путем подключения инвертора между выпрямителем и нагрузкой.

Еще в одном способе передачи электрической энергии резонансные колебания электромагнитной энергии с длиной волны λ =2LАВ/n, где n - целое число, LAB - длина электрической цепи между наружными выводами высоковольтных обмоток трансформаторов, передают от резонансного контура низковольтной обмотки, повышающего трансформатора Тесла к резонансному контуру низковольтной обмотки понижающего трансформатора Тесла по двухцепной линии, содержащей однопроводную линию и линию в проводящей среде путем присоединения к проводящей среде расположенных в непосредственной близости от выводов низковольтной обмотки выводов высоковольтных обмоток повышающего и понижающего трансформатора Тесла и преобразования реактивного тока и реактивной мощности в однопроводной линии в переменный ток и мощность промышленной частоты в инверторе.

В способе передачи электрической энергии путем создания резонансных колебаний повышенной частоты в цепи, состоящей из генератора повышенной частоты и двух повышающего и понижающего высокочастотных трансформаторов Тесла, передачи высоковольтного потенциала и электрической энергии по однопроводной линии к понижающему трансформатору Тесла, выпрямления тока и передачи электрической энергии нагрузке путем присоединения низковольтной обмотки понижающего трансформатора Тесла к двум входам однофазного мостового выпрямителя, а двух выходов этого выпрямителя к нагрузке, резонансные колебания электромагнитной энергии с длиной волны λ , равной λ =2LАВ/n, где n - целое число, LAB - длина электрической цепи между наружными выводами высоковольтных обмоток трансформаторов, передают от резонансного контура низковольтной обмотки повышающего трансформатора Тесла к резонансному контуру низковольтной обмотки понижающего трансформатора Тесла по изолированной от Земли однопроводной электрической цепи с длиной LАВ, преобразуют реактивный ток и реактивную мощность в однопроводной линии в ток и мощность и энергию переменного тока высокой частоты, содержащие векторную сумму активного и реактивного тока, активной и реактивной мощности и энергии, затем преобразуют ток, мощность и энергию высокой частоты в постоянный ток и мощность в энергию постоянного тока, а затем преобразуют постоянный ток, мощность и энергию постоянного тока в переменный ток, мощность и электрическую энергию промышленной частоты.

В способе передачи электрической энергии, включающем создание резонансных колебаний повышенной частоты в цепи, состоящей из генератора повышенной частоты и двух повышающего и понижающего высокочастотных трансформаторов Тесла, повышение потенциала внутреннего вывода высоковольтной обмотки повышающего трансформатора Тесла, передачу высоковольтного потенциала и электрической энергии по однопроводной линии к понижающему трансформатору Тесла, понижение потенциала высоковольтного вывода понижающего трансформатора Тесла, выпрямление тока и передачу электрической энергии нагрузке путем присоединения низковольтной обмотки понижающего трансформатора Тесла к двум входам однофазного мостового выпрямителя, а двух выходов к конденсатору и инвертору, а инвертора - к нагрузке этого выпрямителя, резонансные колебания электромагнитной энергии передают между резонансным контуром низковольтной обмотки повышающего трансформатора Тесла, работающем в автотрансформаторном режиме и резонансным контуром низковольтной обмотки понижающего трансформатора Тесла, а реактивный ток, реактивную мощность и реактивную электрическую энергию в однопроводной линии от наружного вывода высоковольтной обмотки понижающего трансформатора Тесла передают через нагрузку и конденсатор в естественную емкость в виде земли или проводящего изолированного тела путем присоединения к выводам конденсатора и нагрузки двух выводов второго однофазного выпрямителя, присоединения наружного вывода высоковольтной обмотки к одному из входов второго однофазного мостового выпрямителя и присоединения естественной емкости ко второму входу второго однофазного выпрямителя.

В другом варианте способа передачи электрической энергии и передачу электрической энергии к нагрузке осуществляют путем присоединения низковольтной обмотки понижающего трансформатора Тесла к двум входам трехфазного мостового выпрямителя, а двух выводов нагрузки и конденсатора к двум выходам этого выпрямителя, резонансные колебания электромагнитной энергии передают от резонансного контура низковольтной обмотки повышающего трансформатора Тесла к резонансному контуру низковольтной обмотки понижающего трансформатора Тесла в автотрансформаторном режиме для обоих трансформаторов путем соединения расположенных в непосредственной близости друг от друга выводов низковольтной и высоковольтной обмоток повышающего и понижающего трансформаторов Тесла, а реактивный ток, реактивную мощность и реактивную электрическую энергию в однопроводной линии передают от наружного вывода высоковольтной обмотки понижающего трансформатора Тесла передают через нагрузку и конденсатор в естественную емкость в виде земли или изолированного проводящего тела путем присоединения естественной емкости к третьему входу трехфазного мостового выпрямителя.

Еще в одном способе передачи электрической энергии резонансные колебания электромагнитной энергии передают от резонансного контура низковольтной обмотки повышающего трансформатора Тесла к резонансному контуру низковольтной обмотки понижающего трансформатора Тесла в автотрансформаторном режиме для понижающего трансформатора по двухцепной линии, состоящей из однопроводной линии и линии в Земле путем соединения расположенных в непосредственной близости друг от друга выводов низковольтной и высоковольтной обмоток понижающего трансформатора Тесла и соединения с Землей вывода высоковольтной обмотки повышающего трансформатора Тесла, расположенной в непосредственной близости от вывода низковольтной обмотки, а реактивный ток, реактивную мощность и реактивную электрическую энергию в однопроводной линии от наружного вывода высоковольтной обмотки понижающего трансформатора Тесла передают через нагрузку и конденсатор в естественную емкость в виде Земли или изолированного проводящего тела путем присоединения естественной емкости к третьему входу трехфазного мостового выпрямителя.

В устройстве для передачи электрической энергии, содержащем высокочастотный генератор, повышающий и понижающий высокочастотные трансформаторы Тесла, соединенные между собой однопроводной линией, нагрузочный конденсатор и нагрузку, подключенную к низковольтной обмотке через однофазный мостовой выпрямитель, низковольтная обмотка повышающего трансформатора Тесла с контурным конденсатором образует передающий резонансный контур, низковольтная обмотка понижающего трансформатора Тесла с контурным конденсатором образует приемный резонансный контур, параметры контуров связаны соотношением L1·C1=L2·C2, где L1 и C1 и L2 и С2 - индуктивность и емкость резонансных контуров, прилегающие выводы низковольтной и высоковольтной обмоток повышающего трансформатора Тесла соединены между собой, параллельно нагрузочному конденсатору и нагрузке подключены выходы второго однофазного выпрямителя, к двум входам которого подключены наружный вывод высоковольтной обмотки понижающего трансформатора Тесла и естественная емкость в виде Земли или изолированного проводящего тела.

В устройстве для передачи электрической энергии, содержащем высокочастотный генератор, повышающий и понижающий высокочастотные трансформаторы Тесла, соединенные между собой однопроводной линией, конденсатор и нагрузку, подключенную к низковольтной обмотке понижающего трансформатора Тесла через мостовой выпрямитель, низковольтная обмотка повышающего трансформатора Тесла с контурным конденсатором образует резонансный контур, низковольтная обмотка понижающего трансформатора Тесла с контурным конденсатором образует резонансный контур, параметры контуров связаны соотношением L1·C1=L2·C2, где L1 и C1 и L2 и С2 - индуктивность и емкость резонансных контуров, прилегающие выводы низковольтных обмоток соединены между собой у повышающего и понижающего трансформатора Тесла, выводы низковольтной обмотки понижающего трансформатора Тесла присоединены к двум входам трехфазного мостового выпрямителя, а к третьему входу трехфазного мостового выпрямителя подключена естественная емкость в виде земли или изолированного проводящего тела.

В устройстве для передачи электрической энергии, содержащем высокочастотный генератор, повышающий и понижающий высокочастотные трансформаторы Тесла, соединенные между собой однопроводной линией, конденсатор и нагрузку, подключенную к низковольтной обмотке понижающего трансформатора Тесла через однофазный мостовой выпрямитель, низковольтная обмотка повышающего трансформатора Тесла с контурным конденсатором образует резонансный контур, низковольтная обмотка понижающего трансформатора Тесла с контурным конденсатором образует резонансный контур, параметры контуров связаны соотношением L1·C1=L2·C2, где L1 и C1 и L2 и С2 - индуктивность и емкость резонансных контуров, прилегающие выводы низковольтной и высоковольтной обмоток соединены у повышающего и понижающего трансформатора Тесла, а к одному из выходов однофазного мостового выпрямителя подключена естественная емкость в виде Земли или изолированного проводящего тела.

В устройстве для передачи электрической энергии, содержащем высокочастотный генератор, повышающий и понижающий высокочастотные трансформаторы Тесла, соединенные между собой однопроводной линией, конденсатор и нагрузку, подключенную к низковольтной обмотке через однофазный мостовой выпрямитель, низковольтная обмотка повышающего трансформатора Тесла с контурным конденсатором образует резонансный контур, низковольтная обмотка понижающего трансформатора Тесла с контурным конденсатором образует резонансный контур, параметры контуров связаны соотношением L1·C1=L2·C2, где L1 и C1 и L2 и С2 - индуктивность и емкость резонансных контуров, прилегающий к выводу низковольтной обмотки вывод высоковольтной обмотки повышающего трансформатора соединен с Землей, параллельно конденсатору и нагрузке подключены выходы второго однофазного выпрямителя, к двум входам которого подключены наружный вывод высоковольтной обмотки понижающего трансформатора Тесла и естественная емкость в виде Земли или изолированного проводящего тела.

В устройстве для передачи электрической энергии, содержащем высокочастотный генератор, повышающий и понижающий высокочастотные трансформаторы Тесла, соединенные между собой однопроводной линией, конденсатор и нагрузку, подключенную к низковольтной обмотке понижающего трансформатора Тесла через мостовой выпрямитель, низковольтная обмотка повышающего трансформатора Тесла с контурным конденсатором образует резонансный контур, низковольтная обмотка понижающего трансформатора Тесла с контурным конденсатором образует резонансный контур, параметры контуров связаны соотношением L1·C1=L2·C2, где L1 и C1 и L2 и С2 - индуктивность и емкость резонансных контуров, прилегающий к выводу низковольтной обмотки вывод высоковольтной обмотки соединен с Землей у повышающего трансформатора Тесла, выводы низковольтной обмотки понижающего трансформатора Тесла присоединены к двум входам трехфазного мостового выпрямителя, а к третьему входу трехфазного мостового выпрямителя подключена естественная емкость в виде земли или изолированного проводящего тела.

В устройстве для передачи электрической энергии, содержащем высокочастотный генератор, повышающий и понижающий высокочастотные трансформаторы Тесла, соединенные между собой однопроводной линией, конденсатор и нагрузку, подключенную к низковольтной обмотке понижающего трансформатора Тесла через однофазный мостовой выпрямитель, низковольтная обмотка повышающего трансформатора Тесла с контурным конденсатором образует резонансный контур, низковольтная обмотка понижающего трансформатора Тесла с контурным конденсатором образует резонансный контур, параметры контуров связаны соотношением L1·C1=L2·C2, где L1 и C1 и L2 и С2 - индуктивность и емкость резонансных контуров, прилегающие к выводу низковольтной обмотки выводы высоковольтной обмотки соединены с Землей у повышающего и понижающего трансформатора Тесла, а к одному из выходов однофазного мостового выпрямителя подключена естественная емкость в виде земли или изолированного проводящего тела.

В устройстве для передачи электрической энергии, содержащем высокочастотный генератор, повышающий и понижающий высокочастотные трансформаторы Тесла, соединенные между собой однопроводной линией, конденсатор и нагрузку, подключенную к низковольтной обмотке понижающего трансформатора Тесла через мостовой выпрямитель, низковольтная обмотка повышающего трансформатора Тесла с контурным конденсатором образует резонансный контур, низковольтная обмотка понижающего трансформатора Тесла с контурным конденсатором образует резонансный контур, параметры контуров связаны соотношением L1·C1=L2·C2, где L1 и C1 и L2 и С2 - индуктивность и емкость резонансных контуров, вывод высоковольтной обмотки повышающего трансформатора Тесла, прилегающий к выводу низковольтной обмотки соединен с Землей, прилегающие выводы высоковольтной и низковольтной обмоток соединены между собой и с Землей у понижающего трансформатора Тесла. В устройстве для передачи электрической энергии, содержащем высокочастотный генератор, повышающий и понижающий высокочастотные трансформаторы Тесла, соединенные между собой однопроводной линией, конденсатор и нагрузку, подключенную к низковольтной обмотке понижающего трансформатоpa Тесла через однофазный мостовой выпрямитель, обмотка повышающего трансформатора Тесла с контурным конденсатором и образует резонансный контур, низковольтная обмотка понижающего трансформатора Тесла с контурным конденсатором образует резонансный контур, параметры контуров связаны соотношением L1·C1=L2·C2, где L1 и C1 и L2 и С2 - индуктивность и емкость резонансных контуров, прилегающие к низковольтной обмотке выводы высоковольтной обмотки у повышающего и понижающего трансформатора Тесла соединены с Землей.

В устройстве для передачи электрической энергии контурный конденсатор и низковольтная обмотка повышающего трансформатора Тесла соединены параллельно высокочастотному генератору, а контурный конденсатор и низковольтная обмотка понижающего трансформатора соединены последовательно к мостовому выпрямителю.

Устройства для передачи электрической энергии резонансные контуры низковольтной обмотки повышающего трансформатора Тесла и низковольтной обмотки понижающего трансформатора Тесла выполнены с последовательным соединением контурных конденсаторов и низковольтных обмоток трансформаторов.

Способ и устройство для передачи электрической энергии иллюстрируется на фиг.1, 2, 3, 4, 5, 6, 7, 8, 9.

На фиг.1 представлена блок-схема способа передачи электрической энергии, в котором заземлены наружные А и В высоковольтные выводы повышающего и понижающего трансформаторов.

На фиг.2 - блок-схема способа передачи электрической энергии, в котором высоковольтные выводы повышающего и понижающего трансформаторов изолированы.

На фиг.3 - электрическая схема устройства с двумя трансформаторами Тесла, у повышающего трансформатора заземлена высоковольтная обмотка, а у понижающего трансформатора соединены с землей низковольтная и высоковольтная обмотка.

На фиг.4 - электрическая схема устройства с двумя трансформаторами, где у повышающего трансформатора заземлена высоковольтная обмотка, а у понижающего трансформатора соединены низковольтная и высоковольтная обмотки.

На фиг.5 - электрическая схема устройства с двумя трансформаторами, у понижающего трансформатора заземлена высоковольтная обмотка, а у повышающего трансформатора соединены низковольтная и высоковольтная обмотки.

На фиг.6 - электрическая схема устройства с двумя однофазными мостовыми выпрямителями с заземлением высоковольтной обмотки повышающего трансформатора.

На фиг.7 - электрическая схема устройства с двумя однофазными выпрямителями и с двумя автотрансформаторами Тесла.

На фиг.8 - электрическая схема устройства с двумя автотрансформаторами Тесла и трехфазным мостовым выпрямителем.

На фиг.9 - электрическая схема устройства с двумя автотрансформаторами Тесла и однофазным мостовым выпрямителем.

На фиг.1 - представлена блок-схема способа передачи электрической энергии, где 1 - генератор повышенной частоты, 2 - резонансный контур повышающего трансформатора, 3 - однопроводная линия, 4 - резонансный контур понижающего высоковольтного трансформатора, 5 - выпрямитель, 6 - инвертор, преобразующий постоянный ток в переменный, 7 - нагрузка, 8 - естественная емкость в виде Земли подключена к высоковольтной обмотке 9 повышающего трансформатора 10 и высоковольтной обмотке 11 понижающего трансформатора 12. Параллельный резонансный контур 2 повышающего трансформатора 9 состоит из конденсатора 13 и низковольтной обмотки 14, соединенных параллельно с высокочастотным генератором 1. Резонансный контур 4 понижающего трансформатора 12 состоит из низковольтной обмотки 15, соединенной последовательно с контурным конденсатором 16. Способ передачи электрической энергии реализуется следующим образом. Электрическая энергия из высокочастотного генератора 1 поступает в резонансный контур 2 повышающего трансформатора 10, настроенный на частоту генератора I f0, 0,5 кГц < f0 < 500 кГц. Длина электрической цепи LAB, состоящая из длины однопроводной линии 3 и длины двух высоковольтных обмоток 9 и 11 повышающего 10 и понижающего трансформатора 12 связана с длиной волны и с частотой f0 резонансных колебаний в электрической цепи следующими соотношениями

λ =2LAB/n, f=Cn/2LAB

где n - натуральное число, с - скорость света. В качестве генератора 1 используют электромагнитный генератор или статический преобразователь высокой частоты. Резонансный контур и повышающий трансформатор преобразуют переменный ток и электрическую мощность генератора 1 в реактивный ток, реактивную мощность в однопроводной линии 3 и увеличивают потенциал линии 3 до 10 - 1000 кВ. Реактивный ток, мощность и электромагнитную энергию передают по однопроводной электрической цепи длиной LАВ в резонансном режиме в контур 4 понижающего трансформатора 12, настроенного на частоту f0. В резонансном контуре 4 понижающего трансформатора происходит преобразование реактивного тока, реактивной мощности в переменный ток и электрическую мощность и энергию, которые являются векторной суммой реактивной и активной компонент тока и мощности и энергии. Соотношение активной и реактивной компонент определяется характером нагрузки 7. Электрический ток с частотой f0 поступает в выпрямитель 5. Постоянный ток после выпрямления поступает в инвертор 6, где он преобразуется в трехфазный ток промышленной частоты, например, 50 Гц. После инвертора 6 электрическая энергия поступает в нагрузку 7, которая может быть реактивную и активную компоненты.

В ряде случаев потребителю требуется постоянный ток, в этом случае нагрузку 7 подключают непосредственно к выпрямителю 5. Если в нагрузке 7 используют электрическую энергию с резонансной частотой f0, нагрузку 7 присоединяют к выводам резонансного контура 4. Соединение с землей 8 высоковольтных обмоток 9 и 11 увеличивает электрическую мощность, передаваемую по линии 3 в случае наличия в электрической цепи гармоник напряжения и тока с частотой, отличной от резонансной f0, а также в случае, когда длина высоковольтных обмоток 9 и 11 меньше или больше четверти длины волны колебаний электромагнитных волн в линии 3. Соединение с землей 8 также увеличивает электрическую безопасность способа и устройства передачи электрической энергии.

В способе и устройстве для передачи электрической энергии на фиг.2 - заземление 8 удалено и наружные выводы А и В высоковольтных обмоток изолированы. Такое выполнение устройства возможно при небольших напряжениях в линии 3 или в случае синусоидальной формы гармоник напряжения и тока с частотой f0 в цепи, а также равенства целому числу полуволн длины цепи между наружными выводами А и В высоковольтных обмоток 9 и 11, включая длину обмоток 9 и 11 и длину линии 3. Заземление 8 в этом случае отсутствует и наружные выводы А и В обмоток 9 и 11 изолированы. В условиях резонанса на наружных выводах обмоток 9 и 11 создают потенциал, близкий к нулю, потери энергии в цепи минимальны и, при достаточно хорошей изоляции между высоковольтными 9 и 11 и низковольтными 14 и 15 обмотками трансформаторов 10 и 12, не происходит пробой между высоковольтной и низковольтной обмоткой трансформаторов 10 и 12.

В устройстве для передачи электрической энергии на фиг.3 высоковольтная обмотка 9 повышающего трансформатора 10 соединена с землей 8, а понижающий трансформатор 12 выполнен в режиме автотрансформатора путем соединения между собой и с землей наружного вывода высоковольтной обмотки 11 и прилегающего вывода низковольтной обмотки 15. Выводы последовательного резонансного контура 4 соединены с двумя входами 17 и 18 однофазного мостового выпрямителя 5, на выходе которого присоединен конденсатор 19 и инвертор 6. К инвертору 6 присоединена трехфазная нагрузка 7, работающая на частоте инвертора 6.

В устройстве для передачи электрической энергии на фиг.4 резонансный контур 2 повышающего трансформатора 10 выполнен из последовательно соединенных конденсатора 13 и низковольтной обмотки 14. Наружный вывод высоковольтной обмотки 9 повышающего трансформатора 10 присоединен к Земле 8, понижающий трансформатор 12 выполнен в виде автотрансформатора согласно фиг.3 и изолирован от земли 8, а выводы резонансного контура 4 понижающего трансформатора 12 присоединены к двум входам 20 и 21 трехфазного мостового выпрямителя 27, а к третьему входу 22 трехфазного мостового выпрямителя 27 присоединена естественная емкость 23 в виде Земли или изолированного проводящего тела. Выпрямитель 5 соединен с конденсатором 19 и инвертором 6. К инвертору 6 подключена трехфазная нагрузка 7.

В устройстве для передачи электрической энергии на фиг.5 повышающий трансформатор 10 выполнен в виде автотрансформатора путем соединения между собой наружного вывода высоковольтной обмотки 9 и прилегающего к высоковольтной обмотке 9 вывода низковольтной обмотки 14. У понижающего трансформатора 12 наружный вывод высоковольтной обмотки 11 соединен с естественной емкостью 23 в виде Земли и изолированного проводящего тела.

В устройстве для передачи электрической энергии на фиг.6 наружный вывод высоковольтной обмотки 9 повышающего трансформатора 10 соединен с землей 8, аналогично фиг.3. Наружный вывод высоковольтной обмотки 11 понижающего трансформатора 12 соединен с входом 24 второго однофазного мостового выпрямителя 25, а к другому входу 26 однофазного мостового выпрямителя подключена естественная емкость 23 в виде земли или изолированного проводящего тела. Выходы обоих выпрямителей присоединены к конденсатору 19 и нагрузке 7, которая работает на постоянном токе.

В устройстве для передачи электрической энергии на фиг.7 повышающий трансформатор 10 выполнен в виде автотрансформатора и изолирован от земли аналогично фиг.5, а наружный вывод высоковольтной обмотки 11 понижающего трансформатора 12 соединен с одним из входов 24 второго однофазного мостового выпрямителя 25 аналогично фиг.6. Выходы обоих выпрямителей 5 и 25 соединены с конденсатором 19 и инвертором 6, к которому присоединена нагрузка 7, работающая на переменном токе, вырабатываемым инвертором 6.

В устройстве для передачи электрической энергии на фиг.8 у повышающего 10 и понижающего 12 трансформатора соединены прилегающие выводы высоковольтной и низковольтной обмотки 11 и 15, 9 и 14 для работы в режиме автотрансформатора.

Выводы резонансного контура присоединены к двум входам 20 и 21 трехфазного мостового выпрямителя 27, а третьему входу 22 выпрямителя 27 присоединена естественная емкость 23 в виде Земли или изолированного проводящего тела. Выводы трехфазного мостового выпрямителя 27 присоединены к конденсатору 19 и инвертору 6 аналогично фиг.7.

В устройстве для передачи электрической энергии на фиг.9 повышающий 10 и понижающий 12 трансформаторы выполнены в виде автотрансформаторов, согласно фиг.8, а выводы резонансного контура 4 присоединены к двум входам 17 и 18 однофазного мостового выпрямителя 5 аналогично фиг.3. Один из выходов выпрямителя 5 соединен с естественной емкостью 23 в виде Земли или изолированного проводящего тела.

Пример выполнения способа и устройства для передачи электрической энергии.

В качестве генератора высокой частоты использован транзисторный преобразователь частоты мощностью 25 кВт частотой 3,6 кГц с выходным напряжением 400 В.

Отличительной способностью высокочастотных трансформаторов 10, 12 является ассиметрия потенциалов на выводах высоковольтной обмотки 9 или 11 относительно Земли. В идеальном случае синусоидальных форм напряжения и тока, когда длина цепи между точками А и В, состоящей из двух высоковольтных обмоток 9 и 11, повышающего 10 и понижающего 12 трансформаторов и длины однопроводной лини 3 равна целому числу полуволн, потенциал наружного вывода А и В каждой высоковольтной обмотки равен нулю и эти выводы можно заземлить и соединить их с прилегающими выводами низковольтной обмотки 14 или 15. Это повышает электробезопасность устройства, но не сказывается существе