Полимерная композиция, формованные изделия и способ их получения

Иллюстрации

Показать все

Изобретение относится к технологии получения формованных изделий из биологически распадающихся полимеров и может быть использовано при производстве упаковочного материала или волокнистых материалов - пряжи, нетканых или текстильных изделий. Композиция для формования включает биологически распадающийся полимер и материал из морских растений и/или панцирей морских животных или по меньшей мере два компонента, выбранных из группы, состоящей из сахаридов и их производных, белков, аминокислот, витаминов и ионов металлов. Композиция обладает хорошей устойчивостью и способностью к переработке. Изделия обладают низкой способностью к фибриллированию. 4 н. и 14 з.п. ф-лы, 3 ил., 19 табл.

Реферат

Изобретение относится к полимерной композиции, включающей биологически распадающийся полимер, а также к ее применению в производстве формованного изделия, к формованному изделию, полученному из указанной полимерной композиции, к способу его получения и его применению, и к изделию одежды, включающему формованное изделие в виде волокон. Известны полимерные композиции с различными добавками для производства формованных изделий.

В патенте США 5766746 раскрывается нетканый материал из целлюлозных волокон, включающий огнестойкий фосфорный компонент.

В патенте США 5565007 описываются модифицированные искусственные волокна с модифицирующим агентом для улучшения красящих свойств волокон.

В патенте США 4055702 раскрыты волокна холодной вытяжки, сформованные из расплава синтетического органического полимера с включенными добавками. Указанные добавки могут быть рецепторами, агентами, придающими огнестойкие свойства, антистатическими агентами, стабилизаторами, ингибиторами плесени или антиокислителями.

В “Lenzinger Berichte”, 76/97, на странице 126 раскрывается лиоцеллюлозное волокно, сформованное из целлюлозного раствора в N-метилморфолин-N-оксиде (далее именуемым "NMMNO"), в которое могут быть включены агенты с поперечными связями в количестве от 0.5 до 5 вес.% от веса целлюлозы для улучшения показателя истирания в мокром состоянии. Кроме того, волокно включает лиоцеллюлозные волокна, карбоксиметилхитин, карбоксиметилхитозан или полиэтиленимин для улучшения фунгицидных свойств, полиэтиленимин для адсорбции ионов металла и красителей, гиалуроновую кислоту для улучшения бактерицидных свойств, ксантен, гуар, карубин, бассорин или крахмал для улучшения гидрофильных свойств, адсорбции воды и проницаемости водяного пара, или крахмал для ускоренного ферментного гидролиза.

В WO 98/58015 описана композиция, содержащая тонкие частицы твердого материала для добавления к формуемому раствору целлюлозы в водной окиси третичного амина. Композиция включает твердые частицы, окись третичного амина, воду и по меньшей мере еще одно вещество. Это вещество может быть стабилизатором или диспергирующим агентом. Твердые частицы могут быть пигментами.

Более того, известно, что высокие концентрации железа и переходных металлов влияют на стабильность формовочной массы целлюлозы, NMMNO и воды. Высокие концентрации железа снижают температуру распада раствора до степени, в которой могут произойти реакции взрывоподобного распада раствора. Распад и стабилизация целлюлозы, растворенной в NMMNO, описана в работе "Das Papier", F.A.Buitenhuijs 40. year, volume 12, 1986, в которой также упоминается влияние железа - Fe(III) на вышеуказанные растворы целлюлозы. С добавлением 500 тыс. долей Fe(III), более 40% NMMNO было преобразовано в продукт распада N-метилморфолин ("NMM"), при этом добавление Cu+2 также снижает устойчивость раствора. С добавлением меди к NMMNO целлюлозному раствору, свободному от меди, температура распада (Т°С начала процесса) в присутствии 900 мг меди/кг массы снижалась со 175°С до 114°С. Кроме того, в ссылке описано положительное действие стабилизаторов, таких как пропилгаллат и эллаговая кислота.

Введение добавок в волокна затрудняет сохранение таких свойств волокон, как механическая прочность, удлинение волокна, прочность волокна в петле, устойчивость к истиранию, восприимчивость к крашению.

В JP 1228916 описана пленка, выполненная из двух слоев тканого материала или нетканой ткани, пространство между которыми заполнено тонко измельченными хлопьями водоросли, такой как Phodophyceae, закрепленными клеем или сваркой нагревом. Таким образом, получают пленку, которая в применении оказывает оздоровляющее действие.

Однако, недостаток упомянутой пленки в том, что тонко измельченный (растертый) материал водоросли занимает пустоты между двумя слоями, поэтому при нарушении целостности пленки он выпадает.

В патентах США 4421583 и 4562110 описан способ, в котором волокнистый материал получают из альгината. Для этой цели альгинат добывают экстракцией из морских растений и полученный таким образом растворимый альгинат непосредственно формуют с получением волокон.

В DE 19544097 описан способ получения формованных изделий из полисахаридных смесей растворением целлюлозы и второго полисахарида в органическом растворителе из полисахарида, смешиваемым с водой, которая также может содержать второй растворитель, посредством выдавливания раствора под давлением через фильеру для получения формованных изделий, и отверждения их коагуляцией в коагуляционной ванне. Кроме целлюлозы в качестве вторых полисахаридов там упоминаются гексозы с гликозидной 1,4 и 1,6 связью, уроновые кислоты и крахмал, в частности пуллулан, карубин, буаран, гиалуроновые кислоты, пектин, альгин, каррагинан или ксантен. Более того, там описано, что кроме второго полисахарида, может использоваться и третий полисахарид, предпочтительно хитин, хитозан или их соответствующие производные. Формованные изделия, полученные таким способом, используются как средства для связывания воды и/или тяжелых металлов, в качестве волокна с бактерицидными и/или фунгицидными свойствами, или в качестве нити, обладающей повышенной скоростью распада в желудке жвачных животных.

Использование зародышеобразователей в производстве формованных изделий из термопластичных высокомолекулярных полимеров, в частности α-олефиновых полимеров, описывается в патенте США 3367926. В качестве зародышеобразователей упомянуты аминокислоты, их соли и белки.

Известно, что для снижения тенденции к фибриллированию в целлюлозных формованных изделиях в последующей стадии обработки на свежесформованном или высушенном волокне применяются дефибриллирующие агенты. Все описанные ранее дефибриллирующие агенты являются агентами с поперечной связью.

В соответствии с описанием в ЕР-A-O 538 977, для снижения тенденции к фибриллированию, волокна целлюлозы обрабатывают в щелочной среде химическим реагентом, содержащим от 2 до 6 функциональных групп, способных реагировать с целлюлозой.

Другой способ снижения тенденции к фибриллированию целлюлозных формованных изделий посредством текстильной добавки описывается в WO 99/19555. До сих пор вопрос снижения тенденции к фибриллированию волокон целлюлозы во время процесса формования не решен.

Следовательно, задачей настоящего изобретения является получение полимерной композиции с добавкой, обладающей хорошей устойчивостью и способностью к обработке, получение формованного изделия из нее с низкой способностью к фибриллированию, а также способ получения этого изделия.

Эта задача решается получением полимерной композиции, включающей полимер, способный к биологическому разложению, и материал из морских растений и/или панцирей морских животных; формованного изделия из этой композиции; а также способом получения композиции и изделия по пунктам 1-6 и 12-25.

Кроме того, задача решается получением полимерной композиции, включающей биологически распадающийся полимер и по меньшей мере два компонента, выбранных из группы, состоящей из сахаридов и их производных, белков, аминокислот, витаминов и ионов металлов; производством формованного изделия из этой полимерной композиции, а также способом получения композиции и изделия по пунктам 7-25.

Биологически распадающийся полимер предпочтительно выбирают из группы, состоящей из целлюлозы, модифицированной целлюлозы, латекса, растительного или животного белка, в частности, целлюлозы, и их смесей. Можно также использовать полиамиды, полиуретаны и их смеси в том случае, если они обладают свойством биологического распада. Желательно, чтобы полимерная композиция по изобретению и полученное из нее формованное изделие не содержали полимеров или их смесей, которые не являются биологически распадающимися.

Полимерная композиция в соответствии с изобретением может также содержать полимеры, которые не являются биологически распадающимися. Некоторые растворители полимеров, такие как диметилацетамид (DMA), диметилсульфоксид (DMSO) или диметилформамид (DMF) и т.п., могут также растворять синтетические полимеры, такие как ароматические полиамиды (арамиды), полиакрилонитрил (PACN) или поливиниловые спирты (PVA), которые можно также сочетать с образованием полимерных композиций в комбинации с известными растворителями целлюлозы, такими как LiCl/DMA, диметилсульфоксид/фенол-формальдегид (DMSO/PF), оксиды третичного амина/вода.

Примерами модифицированной целлюлозы могут служить карбоксиэтилцеллюлоза, метилцеллюпоза, нитрат целлюлозы, медно-аммиачная целлюлоза, ксантогенат вискозы, карбамат целлюлозы и ацетат целлюлозы. Примерами волокон из продуктов поликонденсации и полимеризации являются полиамиды, замещенные метиловыми, гидрокси- или бензиловыми группами. Примерами полиуретанов являются полиуретаны, образованные на основе полиэфирполиолена.

Морские растения предпочтительно выбирают из группы, состоящей из водорослей, морских водорослей и бурых водорослей, в частности, algae. Примеры водоросли включают бурую, зеленую, красную, синюю водоросли или их смеси. Примерами бурой водоросли являются Ascophyllum spp., Ascophyllum nodosum, Alaria esculenta, Fucus serratus, Fucus spiralis, Fucus vesiculosus, Laminaria saccharina, Laminaria hyperborea, Laminaria digitata, Laminaria echroleuca и их смеси. Примеры красной водоросли включают Asparagopsis armata, Chondrus cripus, Maerl beaches, Maskocarpus skellatus, Palmaria palmata и их смеси. Примерами зеленой водоросли являются Enkeromorpha compressa, Ulva rigida и их смеси. Примерами синей водоросли являются Dermocarpa, Nostoc, Hapalosiphon, Hormogoneae, Porchlorone. Классификацию водорослей можно найти в Учебнике ботаники для колледжей [Lehrbuch der Botanik fur Hochschulen] E.Strasburger; F.Noll; H.Schenk; A.F.W.Schimper; 33.edition, Gustav Fischer Verlag, Stuttgart-Jena-New York; 1991.

Материал морских растений может быть получен разными способами. Существует три способа сбора:

1. сбор морских растений, выброшенных на берег,

2. срезание морских растений с прибрежных камней, или

3. сбор морских растений в море ныряльщиками.

Материал, собранный третьим способом, обладает самым высоким качеством и богат витаминами, минералами, микроэлементами и полисахаридами. Для цели настоящего изобретения предпочтительно использовать материал морских растений, собранный этим способом.

Собранный материал можно обработать различными способами. Его можно высушить при температурах до 450°С и измельчить с использованием ультразвука, шаровых мельниц для мокрого истирания, штыревых мельниц, мельниц с контрвращением. Полученный в результате порошок можно при желании подвергнуть разделению в циклонном сепараторе. Полученный таким образом порошок используют в соответствии с изобретением.

Указанный порошок из морских растений можно дополнительно подвергнуть экстрагированию, например, паром, водой или спиртом, таким как этанол, в результате чего получают жидкий экстракт. Указанный экстракт также можно использовать в соответствии с изобретением.

Более того, собранный материал морских растений можно подвергнуть криогенному измельчению, при котором при -50°С он измельчается до частиц размером приблизительно 100 μм. При необходимости, такой полученный материал можно еще измельчить до частиц размером приблизительно от 6 до 10 μм.

Материал из внешних панцирей морских животных лучше выбирать из морских отложений, измельченных панцирей крабов или мидий, омаров, ракообразных, креветок, кораллов. Типичный состав смеси природного происхождения показан в Таблице 1.

Таблица 1
Компонента (%)
Витамины0.2%
Белки5.7%
Жиры2.6%
Влажность10.7%
Зола15.4%
Углеводы65.6%

Минералы в смеси натурального происхождения по Таблице 1 показаны в Таблице 2.1.

Таблица 2.1
ЭЛЕМЕНТКонцентрация (мг/кт)ЭЛЕМЕНТКонцентрация (мг/кг)ЭЛЕМЕНТКонцентрация (мг/кт)
Натрий41,800Железо895Алюминий1,930
Магний2,130Никель35Сера15,640
Кальций19,000Медь6Молибден16
Марганец1,235Хлор36,800Кобальт12
Фосфор2,110Иод624Олово<1
Ртуть2Свинец<1Бор194
Фтор326Цинк35Стронций749

Минералы в смеси натурального происхождения (влажность 94%, остаток горения 90%) показаны в Таблице 2.2.

Таблица 2.2
ЭЛЕМЕНТКонцентрация (мг/кг)ЭЛЕМЕНТКонцентрация (мг/кг)ЭЛЕМЕНТКонцентрация (мг/кг)
Натрий5,100Железо2/040Алюминий<5
Магний24,000Никель14Сера4,500
Кальций350,000Медь10Молибден39
Марганец125Хлор1,880Кобальт6
Фосфор800Иод181Олово<5
Ртуть<0,3Свинец460Бор17
Фтор200Цинк37  

Если исходный материал представляет собой морские отложения, его используют непосредственно. Если же материалом являются панцири крабов или мидий, омаров, ракообразных, креветок, их нужно измельчить.

В качестве материала можно также использовать смеси морских растений и панцирей морских животных, а также экстрагированные из них продукты. Количественное соотношение морских растений и панцирей морских животных составляет предпочтительно 50 вес.%:50 вес.%. Материалы из морских растений лучше применять в соответствии с изобретением.

Материалы из морских растений и/или панцирей морских животных присутствуют в полимерной композиции и полученном из нее формованном изделии в количестве от 0.1 до 30 вес.%, предпочтительно от 0.1 до 15 вес.%, более предпочтительно от 1 до 8 вес.%, точнее от 1 до 4 вес.% от веса биологически распадающегося полимера. Если формованное изделие представляет собой волокно, материал из морских растений и/или панцирей морских животных включается в количестве от 0.1 до 15 вес.%, в частности от 1 до 5 вес.%.

В качестве примера материала из морских растений в соответствии с изобретением используют порошок из Ascofillum nodosum, 95% частиц которого имеют размер <40 μм, и который содержит 5.7 вес.% белка, 2.6 вес.% жира, 7.0 вес.% волокнистых компонентов, 15.4 вес.% золы, 58.6 вес.% углеводов и 10.7 вес.% влажности. Кроме того, он содержит витамины и микроэлементы, такие как аскорбиновая кислота, токоферолы, каротин, барий, никотиновая кислота, витамин К, рибофлавин, никель, ванадий, тиамин, фолиевая кислота, формилтетрагидрофолиевая кислота, биотин и витамин В12. Помимо этого, он содержит аминокислоты, такие как аланин, аргинин, аспарагиновая кислота, глутаминовая кислота, глицин, лейцин, лизин, серин, треонин, тирозин, валин и метионин.

В соответствии с другим вариантом изобретения полимерная композиция включает биологически распадающийся полимер и по меньшей мере два компонента, выбранных из группы, состоящей из сахаридов и их производных, белков, аминокислот, витаминов и ионов металлов. Компоненты могут быть синтетического или природного происхождения. Указанные компоненты можно использовать в сухом виде или с влажностью, содержание которой составляет в пределах от 5 до 15%.

В предпочтительном варианте изобретения полимерная композиция включает биологически распадающийся полимер и по меньшей мере три компонента, лучше четыре компонента, выбранных из группы, состоящей из сахаридов и их производных, белков, аминокислот, витаминов и ионов металлов.

В наиболее предпочтительном варианте полимерная композиция включает биологически распадающийся полимер и по меньшей мере два компонента, выбранных из группы, состоящей из сахаридов и их производных и аминокислот.

Полимерная композиция и полученное из нее формованное изделие включают по меньшей мере два компонента, выбранных из группы, состоящей из сахаридов и их производных, белков, аминокислот, витаминов и ионов металлов, в количестве от 0.1 до 30 вес.%, предпочтительно от 0.1 до 15 вес.%, лучше в количестве от 4 до 10 вес.% от веса биологически распадающегося полимера.

Сахариды можно использовать в количествах от 0.05 до 9 вес.%, предпочтительно в количествах от 2 до 6 вес.%; витамины - в количествах от 0.00007 до 0.04 вес.%, лучше в количествах от 0.003 до 0.03 вес.%; белки и/или аминокислоты в количествах от 0.005 до 4 вес.%, лучше в количествах от 0.2 до 0.7 вес.%; и ионы металлов и их противоионы в количествах от 0.01 до 9 вес.%, предпочтительно от 0.5 до 1.6 вес.% от веса биологически распадающегося полимера.

Биологически распадающийся полимер предпочтительно выбирают из той же группы, что и в предшествующем варианте изобретения.

Сахариды или их производные выбирают из группы, состоящей из моносахаридов, олигосахаридов и полисахаридов. Предпочтительно используются смеси, содержащие альгиновую кислоту, ламинарин, маннит и метилпентозаны.

Применяемые белки содержат предпочтительно аланин, аргинин, аспарагиновую кислоту, глутаминовую кислоту, глицин, лейцин, лизин, серин, треонин, тирозин, валин и метионин.

Из аминокислот предпочтительны те, которые содержатся в используемых белках.

Далее, применяемые витамины выбирают из группы, состоящей из аскорбиновой кислоты, токоферола, каротина, никотиновой кислоты (витамин В3), фитонадиона (витамин К), рибофлавина, тиамина, фолиевой кислоты, формилтетрагидрофолиевой кислоты, биотина, ретинола (витамин А), пиридоксина (витамин B6) и цианокобаламина (витамин B12).

Ионы металлов выбирают из группы, состоящей из алюминия, сурьмы, бария, бора, кальция, хрома, железа, германия, золота, калия, кобальта, меди, лантана, лития, магния, марганца, молибдена, натрия, рубидия, селена, кремния, таллия, титана, ванадия, вольфрама, цинка и олова.

Противоионами ионов металлов могут быть, например, фторид, хлорид, бромид, йодид, нитрат, фосфат, карбонат и сульфат. Количество ионов металлов, или, соответственно, подходящих противоионов, регулируют таким образом, чтобы, когда по меньшей мере два компонента или, соответственно, полимерную композицию, сжигают, содержание полученной золы было в пределах от 5 до 95%, предпочтительно в пределах от 10 до 60%.

Для целей настоящего изобретения можно использовать частицы материала из морских растений и/или панцирей морских животных или частицы по меньшей мере двух компонентов, выбранных из группы, состоящей из сахаридов и их производных, белков, аминокислот, витаминов и ионов металлов, при этом размер частиц составляет от 200 до 400 μм, предпочтительно от 150 до 300 μм. Можно также использовать частицы меньшего размера, порядка 1-100 μм, лучше 0.1-10 μм, еще лучше 0.1-7 μм, конкретнее 1-5 μм (метод измерения: аппарат лазерной дифракции: Sympatec Rhodos). Также можно использовать зернистые смеси однородного материала или, соответственно, различного материала водорослей.

Для получения материала из морских растений и/или панцирей морских животных или по меньшей мере двух компонентов такой степени размола, материал из морских растений и/или панцирей морских животных или по меньшей мере два компонента можно измельчить, например, с помощью штыревых мельниц, где тонкая фракция впоследствии отделяется соответствующими классификаторами. Такой способ классификации тонера для получения электростатических картин описан в DE 19803107, где из продукта отсортировывается тонкая фракция с размером частиц приблизительно в 5 μм.

Однако с помощью этого способа можно получить только тонкую фракцию, а основная фракция не используется в полимерной композиции по изобретению.

Другой способ получения материала из морских растений и/или панцирей морских животных или по меньшей мере двух компонентов с нужным размером частиц состоит в измельчении материала из морских растений и/или панцирей морских животных или по меньшей мере двух компонентов струйными мельницами со статическими или вращающимися внутренними или внешними классификаторами. Струйные мельницы обычно включают плоскую цилиндрическую дробильную камеру, по окружности которой расположено множество струйных форсунок. Измельчение фактически основано на взаимообмене кинетических энергий. После дробления, вызванного ударом частиц, они поступают в зону классификации по направлению к центру мельничной камеры, где тонкая

фракция выводится статическими или вращающимися внутренними или внешними классификаторами. Грубая фракция удерживается в дробильной зоне центробежными силами и продолжает измельчаться. Часть слишком твердых для дробления компонентов выводится из дробильной зоны через предусмотренные для этого отверстия. Соответствующие струйные мельницы описаны, например, в патенте США 1935344, в ЕР 888818, ЕР 603602 и DE 3620440.

Типичное распределение частиц по размерам показано на Фиг.1.

Формованные по изобретению изделия можно получить из полимерной композиции по изобретению обычными способами, где биологически распадающийся полимер и материал из морских растений и/или панцирей морских животных, или по меньшей мере два компонента, выбранных из группы, состоящей из сахаридов и их производных, белков, аминокислот, витаминов и ионов металлов, сначала смешивают для получения полимерной композиции, а затем формуют изделие.

Смешивание биологически распадающегося полимера и материала из морских растений и/или панцирей морских животных, или по меньшей мере двух компонентов, выбранных из группы, состоящей из сахаридов и их производных, белков, аминокислот, витаминов и ионов металлов, проводят непрерывно или партиями с использованием аппарата и способов, описанных в WO 96/33221, US 5626810 и WO 96/33934.

Изделие по изобретению лучше всего формовать в виде волокон, предпочтительно в виде целлюлозных волокон. Оно может также иметь форму бесконечной нити, мембраны, рукава или плоской пленки.

Известны такие способы получения целлюлозных волокон в соответствии с изобретением как лиоцеллюлозный или NMMO способ, гидратцеллюлозный или вискозный способ, или карбаматцеллюлозный способ. Лиоцеллюлозный способ осуществляют следующим образом. Для получения формовочной массы и целлюлозных волокон по изобретению вначале готовят раствор из целлюлозы, NMMNO и воды образованием суспензии из этих компонентов. Далее указанную суспензию непрерывно подают вращающимися элементами при пониженном давлении над теплообменной поверхностью слоем толщиной от 1 до 20 мм. На протяжении этого процесса вода выпаривается до образования гомогенного раствора целлюлозы. Полученные таким образом растворы целлюлозы могут содержать целлюлозу в количестве от 2 до 30 вес.%, NMMNO в количестве от 68 до 82 вес.% и воду в количестве от 2 до 17 вес.%. При необходимости в указанный раствор можно ввести добавки, такие как неорганические соли, неорганические оксиды, тонко распределенные органические вещества или стабилизаторы.

Затем к такому полученному раствору целлюлозы непрерывно или порционно добавляют в виде порошка, порошковой суспензии или в жидком виде, как экстракт или суспензию, материал из морских растений и/или панцирей морских животных, или по меньшей мере, два компонента, выбранных из группы, состоящей из сахаридов и их производных, белков, аминокислот, витаминов и ионов металлов.

В зависимости от способа, материал из морских растений и/или панцирей морских животных, или по меньшей мере два компонента, выбранных из группы, состоящей из сахаридов и их производных, белков, аминокислот, витаминов и ионов металлов, можно также вводить после или во время непрерывного измельчения сухой целлюлозы, например, в виде материала водорослей без предварительного измельчения, в виде порошка или высококонцентрированной порошковой суспензии. Порошковую суспензию можно получить смешиванием порошка с водой или любым подходящим растворителем в нужной для данного способа концентрации.

Далее, материал из морских растений и/или панцирей морских животных, или по меньшей мере два компонента, выбранных из группы, состоящей из сахаридов и их производных, белков, аминокислот, витаминов и ионов металлов, можно подвергнуть процессу пульпирования с одновременным дроблением, или подать на рафинер. Пульпирование проводят либо в воде, в растворах каустика, либо в растворителе для растворения целлюлозы на последующей стадии. Здесь материал из морских растений и/или панцирей морских животных, или по меньшей мере два компонента, выбранных из группы, состоящей из сахаридов и их производных, белков, аминокислот, витаминов и ионов металлов, также можно вводить в твердом состоянии, в виде порошка, суспензии, или в жидком виде.

В присутствии агента деривации и/или растворителя, предназначенного для процесса растворения, полимерную композицию, обогащенную материалом из морских растений и/или панцирей морских животных, или по меньшей мере двумя компонентами, выбранными из группы, состоящей из сахаридов и их производных, белков, аминокислот, витаминов и ионов металлов, можно превратить в формовочную экструзионную массу.

Другой способ введения материала из морских растений и/или панцирей морских животных, или по меньшей мере двух компонентов, выбранных из группы, состоящей из сахаридов и их производных, белков, аминокислот, витаминов и ионов металлов, заключается в введении их во время непрерывно контролируемого процесса растворения, как описано в ЕР 356419, US 5049690 и US 5330567.

Кроме того, введение можно проводить периодически, путем получения маточной смеси раствора целлюлозы. Непрерывное введение материала из морских растений и/или панцирей морских животных, или по меньшей мере двух компонентов, выбранных из группы, состоящей из сахаридов и их производных, белков, аминокислот, витаминов и ионов металлов, является наиболее предпочтительным.

Материал из морских растений и/или панцирей морских животных, или по меньшей мере два компонента, выбранных из группы, состоящей из сахаридов и их производных, белков, аминокислот, витаминов и ионов металлов, можно вводить на любой другой стадии процесса производства формованного изделия. Например, его можно подать через трубопровод, где смешивание происходит посредством расположенных там статических элементов или, соответственно, активными элементами, такими как известный системные рафинеры или гомогенизаторы, например, аппарат от Ultra Turrax. Если процесс проводят в режиме непрерывной порционной подачи, например, через каскадный реактор, материал водорослей можно ввести в твердом, порошковом виде, в виде суспензии или жидкости на оптимальной для процесса стадии. Тонкое распределение достигается известными перемешивающими элементами, приспособленными для данного способа.

В зависимости от размера применяемых частиц предназначенную для экструзии массу или формовочную массу можно отфильтровать до или после введения. При очень тонком измельчении применяемого продукта, в способах формования с использованием форсунок больших диаметров фильтрация не нужна.

Если формовочные массы очень чувствительны к воздействию, материал в соответствующем состоянии подают через инжекиионный участок непосредственно к формовочной фильере или экструзионной головке встречным потоком. Если материал водорослей, или по меньшей мере два компонента, выбранных из группы, состоящей из сахаридов и их производных, белков, аминокислот, витаминов и ионов металлов, находятся в жидком состоянии, его также можно подать на непрерывно формующуюся нить во время процесса формования.

Полученный таким образом раствор целлюлозы формуется в соответствии со традиционными способами, такими как способ сухого-мокрого формования через фильеру, способ мокрого формования, способ формования выдуванием в расплаве, способ центрифугового формования, способ формования в воронке, или способ сухого формования.

Когда формование происходит в соответствии со способом сухого-мокрого формования через фильеру, слой пряжи может также охлаждаться в воздушном зазоре между фильерой и коагуляционной ванной посредством резкого охлаждения. Такой воздушный зазор должен быть порядка 10-50 мм. Параметры охлаждающего воздуха предпочтительно таковы: температура 5-35°С, относительная влажность до 100%. Способы формования целлюлозных волокон в соответствии с NMMO способом описаны в патентных документах US 5589125 и 5939000, а также ЕР 0574870В1 и WО 98/07911.

При необходимости полученные формованные изделия можно подвергнуть последующей традиционной обработке химического волокна с получением нитей или штапельного волокна.

В результате получается целлюлозное волокно по изобретению с материалом из морских растений и/или панцирей морских животных, или по меньшей мере с двумя компонентами, выбранными из группы, состоящей из сахаридов и их производных, белков, аминокислот, витаминов и ионов металлов, а лучше по меньшей мере с тремя компонентами, еще лучше с четырьмя такими компонентами.

Кроме способа формования нити применяют также экструзионное формование для получения плоских пленок, рукавов, оболочек (колбасных оболочек) и мембран. Вискозный способ проводят следующим образом. Пульпу с приблизительным содержанием α-целлюлозы от 90 до 92 вес.% обрабатывают водным раствором NaOH. Далее целлюлозу преобразуют сернистым углеродом в ксантогенат целлюлозы, и добавлением водного NaOH при постоянном помешивании получают раствор вискозы. В указанном растворе вискозы содержится приблизительно 6 вес.% целлюлозы, 6 вес.% NaOH и 32 вес.% сернистого углерода от содержания целлюлозы. После того как суспензия перемешана, в виде порошка или жидкого экстракта добавляют материал из морских растений и/или панцирей морских животных, или по меньшей мере два компонента, выбранных из группы, состоящей из сахаридов и их производных, белков, аминокислот, витаминов и ионов металлов. При желании можно ввести традиционные добавки, такие как поверхностно-активные вещества, дисперсионные агенты или стабилизаторы.

Материал из морских растений и/или панцирей морских животных, или по меньшей мере два компонента, выбранных из группы, состоящей из сахаридов и их производных, белков, аминокислот, витаминов и ионов металлов, можно ввести на любой стадии способа.

Такой полученный раствор затем формуют в волокна так, как, например, раскрывается в Патенте США 4144097.

Карбаматцеллюлозный способ можно осуществлять следующим образом. Для этой цели карбаматную целлюлозу получают из пульпы с содержанием α-целлюлозы приблизительно от 90 до 95 вес.%, как описывается, например, в US 5906926 или в DE 19635707. Далее из пульпы путем ее обработки водным NaOH получают щелочную целлюлозу. После разделения на волокна щелочную целлюлозу подвергают вызреванию, и затем раствор каустической соды вымывают. Активированную таким образом целлюлозу смешивают с мочевиной и водой и вводят в растворитель в реакторе. Эту смесь нагревают. Полученный карбамат отделяют и получают из него карбаматный формовочный раствор, который описан в DE 19757958. К указанному формовочному раствору добавляют материал из морских растений и/или панцирей морских животных, или по меньшей мере два компонента, выбранных из группы, состоящей из сахаридов и их производных, белков, аминокислот, витаминов и ионов металлов.

Далее формовочный раствор подвергают формованию для образования волокон в соответствии с известными способами, в результате чего получают целлюлозные волокна по изобретению.

Неожиданно было выявлено, что, несмотря на введение добавок, волокна целлюлозы в соответствии с изобретением обладают такими же превосходными свойствами, как и волокна целлюлозы без добавок, если говорить об их тонине, силе разрыва, изменении силы разрыва, удлинении, удлинении в мокром состоянии, пределе прочности на разрыв, прочности в мокром состоянии, прочности в петле в зависимости от тонины, истирании на разрыв в мокром состоянии, изменение истирания в мокром состоянии и модуле в мокром состоянии, и в то же время имеют другие положительные свойства, которые придает им материал из морских растений и/или панцирей морских животных, или по меньшей мере два компонента, выбранных из группы, состоящей из сахаридов и их производных, белков, аминокислот, витаминов и ионов металлов. Введение добавок в формовочные массы из целлюлозы, NMMNO и воды показало, что обесцвечивание при рабочей температуре сохранилось как и прежде, и формовочные массы не устойчивы в хранении и включают примеси в конечных продуктах целлюлозы.

Кроме того, неожиданно оказалось, что ионные компоненты, содержащиеся в материале, остаются в составе волокна даже при способе его формования в водной жидкой ванне и не переходят в коагуляционную ванну в течение короткого периода формования.

После процесса формования определяли величину рН полученного штапельного волокна в соответствии с DIN способом 54275. В сравнении с волокном, не содержащим морские растения и/или панцири морских животных, величина рН волокна, содержащего их, повысилась, что указывает на экстракцию ионных компонентов волокна. Благодаря этому качеству, учитывая влажность тела человека, носка изделий, включающих такое волокно, оказывает положительное гигиеническое воздействие на кожу.

Более того, введение материала из морских растений и/или панцирей морских животных, или по меньшей мере двух компонентов, выбранных из группы, состоящей из сахаридов и их производных, белков, аминокислот, витаминов и ионов металлов, снижает степень фибриллирования волокон, полученных в соответствии с лиоцеллюлозным способом. Таким образом, волокно в соответствии с изобретением, например, целлюлозное волокно с введением водоросли, может успешнее применяться в течение последующей текстильной обработки волокна.

Несмотря на введение материала из морских растений, который богат содержанием железа и металлов, и/или панцирей морских животных, или по меньшей мере двух компонентов, выбранных из группы, состоящей из сахаридов и их производных, белков, аминокислот, витаминов и ионов металлов, практически не наблюдалось разложения формовочного раствора из целлюлозы, NMMNO и воды. Напротив, температура разложения такого формовочного раствора даже повысилась при введении материала из морских растений и/или панцирей морских животных. Это означает, что, несмотря на присутствие ионов металлов, не наблюдается никакого негативного влияния на устойчивость формовочной массы.

Благодаря введению материала из морских растений и, следовательно, введению металлов, включенных в него, на материале волокна можно проводить химические реакции, такие как ионообменные процессы между содержащимися ионами металлов (например, увеличение концентрации ионов водорода в волокнистом материале) или деацетилирование хитина.

Другим преимуществом, которым обладают формованные изделия по изобретению, с введенным материалом из морских растений и/или панцирей морских животных, или по меньшей мере двух компонентов, выбранных из группы, состоящей из сахаридов и их производных, белков, аминокислот, витаминов и ионов металлов, является равномерное включение активных веществ в матрицу волокна с разными диаметрами полученного волокна. Более того, возможно получение мононити или бесконечной филаментной нити. Это обеспечивает множество вариантов применения технических изделий.

В частности, если формованное изделие в соответствии с изобретением получено из полимерной композиции, содержащей исключительно биологически распадающийся материал, его полное биологическое разложение является значительным преимуществом.

Формованные изделия в соответствии с изобретением можно использовать в качестве упаковочного материала, волокнистого материала, нетканых тканей, текстильных композиций, волокнистой паутинки, волокнистого прочеса, сукна, наполнителя для мягкой мебели, тканых материалов, вязаных тканей; как текстиль для дома, например, постельное белье; как наполнитель, ватин, как больничное белье: простыни, подгузники, матрасы; как ткань для одеял с подогревом; как стельки для обуви, а также для текстильной отделки. Другие области их применения описываются в Справочнике по текстильному дизайну интерьера Lexikon der textilen Raumausstattung), Buch und Medien Verlag Buumann KG, ISBN 3-98047-440-2.

Если тканый материал, произведенный из формованного изделия в соответствии с изобретением, представляет собой волокна, он может или состоять исключительно из указанных