Способ, система и аппарат, использующие высокоэнергетические постоянные магниты для электромагнитного перемещения, торможения и дозирования расплавленных металлов, подаваемых в литейные машины
Иллюстрации
Показать всеИзобретение относится к области литья металлов, более конкретно, к электромагнитному перемещению расплавленного металла при производстве металлических изделий методом литья, например, посредством машины непрерывного литья, а также к задаче периодического перемещения измеренных, дозированных, контролируемых и/или заданных количеств расплавленного металла в литейный аппарат, содержащий ряд идентичных форм для получения набора или серии по существу идентичных металлических отливок. Аппарат, система и способ для точного и быстрого управления подачей расплавленного металла в литейную машину путем его накачки, торможения или дросселирования. Использован электромагнитный принцип Фарадея-Ампера для тока в однонаправленном магнитном поле, а направление насосного действия или дросселирования определяется правилом правой руки. Постоянные магниты, содержащие неодим или подобные редкоземельные высокоэнергетические материалы, обеспечивают уникальное магнитное “дальнодействие”. Такие неомагниты, выполненные в виде кубиков, собраны в различные мощные конфигурации для создания интенсивного однонаправленного магнитного поля (В) в немагнитном промежутке, во много раз большем, нежели промежутки, реально осуществимые иными способами. В этом промежутке размещен металлопровод для прокачивания и перемещения расплавленного металла. Одно из преимуществ заключается в том, что данное изобретение позволяет исключить необходимость в металлургических заслонках с сервоуправлением или в дорогостоящих поворотных механизмах для металлургических печей. 5 н. и 41 з.п.ф-лы, 19 ил.
Реферат
Область техники, к которой относится изобретение
Настоящее изобретение относится к области литья металлов, более конкретно, к электромагнитному перемещению расплавленного металла при производстве металлических изделий методом литья, например, посредством машин непрерывного литья. Изобретение относится также к задаче периодического перемещения измеренных, дозированных, контролируемых и/или заданных количеств расплавленного металла в литейный аппарат, содержащий ряд идентичных форм для получения набора или серии по существу идентичных металлических отливок. Новые способы, система и аппарат, соответствующие настоящему изобретению, предлагают использование постоянных магнитов с дальнодействующими магнитными полями для электромагнитного перемещения, торможения, измерения расхода и управления расходом расплавленного металла.
Уровень техники
Необходимость управляемой подачи расплавленного металла в промышленных количествах является важной задачей при разливке металлов в литейных аппаратах разных видов для предотвращения перелива или недостаточной подачи металла. Например, непрерывная управляемая подача полезна для согласования скорости подачи расплавленного металла со скоростью работы литейного устройства или машины, в которую постоянно подается расплавленный металл. В известных системах используются дорогостоящие поворотные печи, разливочные желоба и стопоры с сервоуправлением. Однако реакция на сигнал управления в подобных системах относительно слабая, и их техническое обслуживание может быть дорогостоящим. Кроме того, каждая остановка операции непрерывного литья может включать в себя выгрузку и повторное плавление большого количества расплавленного металла.
В патенте США №5377961 раскрыто устройство для выталкивания малых капель припоя на печатную плату. Это устройство восходит к идеям Майкла Фарадея и Андре-Мари Ампера, высказанным в начале девятнадцатого столетия. Применение фарадеевского правила правой руки для определения направления индуцированной электродвижущей силы можно видеть на примере обмоток ротора электрических машин. Этот принцип также известен, как закон Ампера-Лоренца.
Прототипы насосов, действующих на подобном принципе, описаны в следующих публикациях:
1) L. R. Blake, “Conduction and Induction Pumps for Liquid Metals”, Proceedings of the Institution of Electrical Engineers, Volume 104 (July 1956) pp.49-67; и
2) D. A. Watt, “The Design of Electromagnetic Pumps for Liquid Metals”, Proceedings of the Institution of Electrical Engineers, Volume 106 (December 1958) pp.761-781 (далее “Watt”).
Эти насосы используются для прокачки расплавленного натрия или калия в качестве охладителя через активную зону атомных реакторов. В насосах, описанных в этих публикациях, использовался дорогостоящий электромагнит очень крупных размеров, через который пропускали очень большой ток. Для перекачки очень легкого жидкого металла с расходом 7570 л/мин, требовался ток около 100000 A (Watt, pp.98, 95).
В патенте США №5009399 также был использован принцип Фарадея. Зоной, где создавалось давление, являлась дискообразная, тонкая в осевом направлении полость в виде кругового цилиндра, в котором расплавленному металлу придавалось круговое движение. Источником однонаправленного магнитного поля через тонкое сечение цилиндрической полости являлся электромагнитный “соленоид” без каких-либо движущихся частей.
Плотность магнитного потока электромагнитов и обычных постоянных магнитов резко падает, если в их магнитной цепи (в магнитопроводе) встречается препятствие в виде небольшого немагнитного промежутка (зазора).
Сущность изобретения
Способы, система и аппарат, составляющие сущность настоящего изобретения, применимы для электромагнитного приведения в движение, перемещения, остановки движения, измерения расхода и/или управления подачей значительных количеств расплавленного металла через канал нагнетания. Такая подача расплавленного металла может производиться в направлении любого подходящего литейного аппарата и внутрь него, например, в случае непрерывной управляемой подачи в машину непрерывного литья, как показано на фиг.1 и 1А. Примером такой подачи может также являться периодическое перемещение измеренных, дозированных, контролируемых и/или заданных количеств расплавленного металла в подходящий литейный аппарат, содержащий ряд идентичных литейных форм для получения набора или серии идентичных металлических отливок.
В этих случаях используется принцип Ампера-Фарадея для режима двигателя, при котором электрическая энергия преобразуется в механическую, причем наиболее характерным является использование в качестве насоса. Режим работы может быть легко обратим для остановки движения или дросселирования.
Проблему неприемлемой стоимости и большого размера электромагнита для создания магнитного поля, необходимого для перекрытия большого зазора в магнитопроводе, удалось обойти за счет использования высокоэнергетических постоянных так называемых “неомагнитов”, состоящих из магнитного материала, который содержит редкоземельный элемент, например такой, как неодим. Расчеты показали, что сами катушки, т.е. проволочные обмотки электромагнита самой эффективной конфигурации, имеющего мощность, эквивалентную мощности высокоэнергетических постоянных неомагнитов с редкоземельными элементами, будут занимать объем примерно в 130 раз больший, нежели объем, занимаемый неомагнитами. Более того, неомагниты не выделяют бесполезного тепла, в то время как электромагнит выделял бы значительное тепло за счет прохождения большого тока через электрическое сопротивление его обмоток.
Свойство “дальнодействия” неомагнитов, расположенных, сориентированных и организованных в виде узлов особой конфигурации, как это будет далее показано и описано, позволяет впервые осуществить экономически реальное, точное управление подачей промышленных количеств расплавленных металлов. Такое точное управление делает возможным давать старт движению потоков расплавленного металла, останавливать их или корректировать почти мгновенно. Отсутствуют какие-либо движущиеся части. Зона течения расплавленного металла является закрытой или защищена инертной атмосферой и, следовательно, исключается турбулентность течения и коррозионный контакт с атмосферой.
Способ, система и аппарат по изобретению, как вариант, предусматривают наличие электромагнитного расходомера. В расходомере используется принцип Фарадея для режима генератора, при котором механическая энергия преобразуется в электрическую. Соответственно, выходной сигнал электрического датчика, указывающий скорость расплавленного металла, может быть использован для управления динамикой насосного действия.
Перечень фигур чертежей
На чертежах широкие стрелки, отмеченные буквой В, представляют ось однонаправленного магнитного потока сильного магнитного поля. Широкие стрелки, отмеченные буквой I, представляют направление постоянного тока, который, как показано на нескольких фигурах, протекает от “+” к “-”. Широкие стрелки, отмеченные буквой М, представляют направление потока расплавленного металла в режиме насоса; а широкие стрелки, отмеченные буквой Р, представляют движение затвердевшего продукта.
На различных фигурах аналогичные номера и буквы указывают на аналогичные элементы, части и/или составляющие устройств.
Фиг.1 изображает, на виде сбоку, электромагнитный насос в соответствии с настоящим изобретением, устроенный таким образом, чтобы перекачивать расплавленный металл вверх из печи на ленту машины непрерывного литья, служащую одним из примеров литейного устройства, которое может быть выгодно использовано при совместной работе с таким электромагнитным насосом.
Фиг.1А подобна фигуре 1, за исключением того, что труба, ведущая от насоса к машине непрерывного литья, в своей большей части опущена. На фиг.1А показано, что расплавленный металл подается вверх в виде свободной, неограниченной, фонтанирующей струи в форме параболической дуги, движущейся сквозь защитную инертную атмосферу.
Фиг.2 представляет собой перспективный вид насоса для расплавленного металла, соответствующего настоящему изобретению. Аппарат насоса показан сверху, если смотреть под углом вниз со стороны, откуда движется металл. Штриховыми линиями показаны четыре высокоэнергетических, постоянных неомагнита, организованные попарно - два сверху и два снизу от потока М расплавленного металла, что более наглядно представлено на фиг.2А. Каждая пара магнитов на фиг.2 и 2А показана в сборе с соответствующим полюсным наконечником скошенной формы, торец которого направлен на поток М расплавленного металла.
Фиг.2А представляет собой вертикальную фронтальную проекцию насоса, показанного на фиг.2. Для наглядности, фиг.2А изображает только узлы неомагнитов вместе с полюсными наконечниками, закрепленными в немагнитных оболочках, или кожухах, и с ярмом из магнитомягкого ферромагнитного материала.
Фиг.3 - это вид в перспективе металлопровода и связанных с ним элементов в аппарате насоса для расплавленного металла по фиг.2, если смотреть под углом сверху вниз со стороны, откуда движется металл.
Фиг.3А представляет собой перспективный вид с пространственным разделением деталей металлопровода насоса по фиг.2 и связанных с ним элементов, если смотреть под углом сверху вниз со стороны, откуда движется металл. Этот вид изображает элементы, связанные с электродами насоса и с электродами для измерения скорости движения металла. Вертикально идущие силовые линии однонаправленного магнитного потока В показаны небольшими крестиками.
Фиг.4 изображает, на перспективном виде, насос расплавленного металла с концентрированным магнитным потоком высокой плотности, в соответствии с настоящим изобретением, если смотреть под углом сверху в направлении движения металла. Частичный разрез показывает верхнюю камеру охлаждения и тонкую часть металлопровода. Для наглядности, очертания верхних и нижних узлов высокоэнергетических неомагнитов и их соответствующих полюсных наконечников на этом виде не показаны.
Фиг.5 представляет собой вид сверху на металлопровод насоса расплавленного металла, показанного на фиг.4. Вертикальные силовые линии однонаправленного магнитного потока видны в сечении и обозначены небольшими крестиками.
Фиг.6 представляет собой перспективный вид с пространственным разделением деталей и сечениями металлопровода насоса расплавленного металла с концентрированным магнитным потоком высокой плотности, показанного на фиг.4, если смотреть с той же точки, что и на фиг.4. Дополнительно показаны четыре электрода датчика скорости металла.
Фиг.7 представляет собой перспективный вид узла из пяти неомагнитов с концентрированным магнитным потоком высокой плотности, который используется в насосе расплавленного металла, показанном на фиг.4, 5 и 6. Вид на фиг.7 соответствует той же точке и направлению наблюдения, что и виды на фиг.4 и 6, Для наглядности неактивные заполняющие блоки, показанные на фиг.9 и 10, на фиг.7 и 8 опущены.
Фиг.8 представляет собой перспективный вид с пространственным разделением деталей узла неомагнитов, показанного на фиг.7.
Фиг.9 представляет собой перспективный вид узла неомагнитов по фиг.7, на котором пунктирными линиями очерчены поддерживающие заполняющие блоки, неактивные в магнитном отношении, которые входят в узел, показанный на фиг.7, но для наглядности опущены на фиг.7.
Фиг.10 представляет собой перспективный вид с пространственным разделением деталей узла, показанного на фиг.9.
Фиг.11 представляет собой вертикальный разрез аппарата по фиг.4, 6 и 12 плоскостью 11-11.
Фиг.12 представляет собой вид сверху с разрезом по плоскости 12-12 на фиг.11 и 13, иллюстрирующий плоский блок охлаждения, который защищает неомагниты от тепла.
Фиг.13 представляет собой частичный боковой вид элементов, показанных на фиг.12, если смотреть в направлении 13-13.
Фиг.13А представляет собой перспективный вид трехгранного полюсного наконечника вместе с тремя магнитами, его окружающими. Торцевой магнит показан пространственно отнесенным.
Фиг.13В представляет собой перспективный вид шестигранного полюсного наконечника вместе с шестью магнитами, его окружающими. Торцевой магнит показан пространственно отнесенным.
Фиг.13С представляет собой перспективный вид круглого полюсного наконечника внутри своего единого кольцевого магнита. Торцевой магнит показан пространственно отнесенным.
Фиг.14 изображает кривые петли гистерезиса при перемагничивании высокоэнергетического неомагнитного материала для постоянных магнитов, содержащего редкоземельные элементы, и магнитного материала для постоянных магнитов - сплава Альнико 5.
Фиг.15 представляет собой вертикальную проекцию испытательной установки.
Фиг.16 иллюстрирует дальнодействие, и показывает степень убывания силы притяжения “дальнодействующих” неомагнитов на относительно большом немагнитном зазоре в сравнении с магнитным материалом для постоянных магнитов Альнико 5.
Фиг.17 представляет собой перспективный вид сверху длинной магнитной конструкции с тремя магнитными входами. Торцевые магниты показаны пространственно отнесенными.
Фиг.18 представляет собой перспективный вид другого варианта осуществления настоящего изобретения, содержащего два кубических узла, каждый состоящий из восьми неомагнитов. Металлопровод и два плоских охладителя показаны расположенными между этими двумя кубическими узлами неомагнитов.
Фиг.19 представляет собой фронтальную вертикальную проекцию варианта осуществления, показанного на фиг.18. Показано прямоугольное ферромагнитное ярмо, связанное с двумя кубическими узлами неомагнитов. Для наглядности на фиг.18 это ярмо опущено.
Сведения, подтверждающие возможность осуществления изобретения
Назначение описываемых электромагнитных насосов 32, 32G (фиг.2, 4) состоит в том, чтобы приводить в движение или задерживать поток расплавленного металла при его движении к форме или в форму, или к литейной машине.
Варианты осуществления настоящего изобретения могут, например, быть с успехом использованы в сочетании с машиной 30 (фиг.1) или 30’ (фиг.1А) непрерывного литья ленточного типа. Такие машины известны в технике непрерывного литья, и в них используется одна или несколько бесконечных, гибких лент 22 или 22’, 24 или 24’ в качестве стенки или стенок полости С движущейся литейной формы. Такая литейная лента находится в движении; она бесконечная, тонкая, гибкая, теплопроводящая и имеет жидкостное охлаждение, обычно водой. В машине, в которой используются две ленты, верхняя литейная лента 22 или 22’ обращается вокруг верхнего транспортера U или U’, а нижняя литейная лента обращается вокруг нижнего транспортера L или L’. Эти ленты обращаются синхронно, двигаясь по овальным траекториям, как показано стрелками 34. Расплавленный металл затвердевает между ними в полости С движущейся литейной формы, которая образована между двумя обращающимися лентами. В результате получается продукт Р литья, выходящий из машины.
Пара разнесенных в поперечном направлении краевых бортов 25 (на фиг.1 и 1А виден только один из них), известных в технике машин непрерывного литья, также обращается и соответствующим образом направляется посредством свободно вращающихся роликов 23. Эти краевые борта образуют пару поперечных боковых стенок полости С движущейся литейной формы.
В рассматриваемом примере осуществления изобретения расплавленный металл М из плавильной печи 28 или печи для подогрева (фиг.1, 1А) поступает в электромагнитный насос 32 (фиг.1, 1А, 2, 3, 3А), который, как вариант, оснащен средствами собственного нагрева (не показаны). Электромагнитный насос 32 находится по высоте ниже уровня 29 расплавленного металла, чтобы можно было выпускать металл из печи 28 до желаемого уровня и не требовалось специально производить проливку насоса металлом. Труба 36, имеющая внутреннюю изоляцию, передает металл М вверх к литейной машине 30. На фиг.1 металл М накачивается вверх к промежуточному ковшу или распределителю 38 для распределения потока металла на стороне входа 42 машины 30 непрерывного литья.
Другой пример осуществления изобретения для подачи расплавленного металла М через электромагнитный насос 32 в литейную машину 30’ показан на фиг.1А. В этом варианте труба 36 с внутренней изоляцией, показанная на фиг.1, укорочена и изогнута так, что образует коленчатый патрубок 36’. Расплавленному металлу М насосом сообщается движение вверх по одной или нескольким свободным, неограниченным параболическим траекториям, в виде одной или нескольких неограниченных фонтанирующих струй 27, движущихся в инертной окружающей атмосфере 31. Струя или струи 27 изливаются в открытый бассейн 40 расплавленного металла в точке соударения, расположенной немного дальше вершины V параболы их траектории. На фиг.1А открытый бассейн 40 создается за счет установки верхнего транспортера U’ немного ниже по направлению движения металла относительно нижнего транспортера L’. Такой способ, с фонтанирующей вверх струей 27 и ее излиянием в открытый бассейн, имеет преимущество, так как позволяет избежать загрязнения металла в случае, когда огнеупорная футеровка трубы 36 или 36’ станет хрупкой и начнет крошиться при разливке металлов с высокой температурой плавления. Следовательно, исключается возможный источник загрязнения расплавленного металла М в полости С движущейся литейной формы и, как следствие, загрязнения продукта Р. Ничто не мешает любым ломким частицам или чешуйкам огнеупорного материала, которые могли быть вынесены вверх фонтанирующей струей 27, выпасть из свободной струи и отделиться от нее, прежде чем струя дойдет до вершины V.
Общие конструктивные соображения. Аппарат 32 (фиг.2) и 32G (фиг.4) для приведения в движение промышленных количеств расплавленного металла и управления течением металла работает на принципе Фарадея-Ампера для режима двигателя, чтобы преобразовывать электрическую энергию в механическую кинетическую энергию расплавленного металла в канале 43 металлопровода 48 (фиг.2) или 48G (фиг.4). Аппарат 32 или 32G, в первую очередь, является насосом, но он легко реверсируется электрически и, таким образом, может быть использован в качестве тормоза, дросселя или обратного насоса.
Зазор 44 или 44G следует делать по возможности меньшим, как из экономии магнитного материала, так и для снижения рассеяния магнитного потока. В эксперименте в настоящий момент реально и с успехом работает зазор 44 (фиг.2А, 3 и 3А) или зазор 44G (фиг 11) величиной около 38 мм. Эти зазоры 44 и 44G содержат немагнитный материал, причем располагаются эти зазоры между парой магнитных полюсов, которые будут описаны ниже. Чтобы перекрыть зазор 44 в двухконтурной магнитной цепи (магнитопроводе), показанной штриховыми линиями 61 (фиг.2), или зазор 44G в одноконтурной магнитной цепи, показанной штриховыми линиями 61 G (фиг.4), в обычном случае потребовался бы электромагнит очень больших размеров. Применения такого большого электромагнита удается избежать за счет использования “дальнодействующих” постоянных магнитов 56, которые в данном описании названы также “неомагнитами” (фиг.2, 7, 8, 9, 10, 11, 17) и которые, как далее показано, расставлены и собраны в виде различных, особых мощных структур. Эти магниты 56 содержат магнитный материал, в состав которого входит какой-либо редкоземельный химический элемент, например, такой как неодим или самарий. Редкоземельные элементы - это химические элементы семейства лантаноидов с порядковыми номерами с 57 по 71. Предпочтительные характеристики такого материала для постоянных неомагнитов подробнее описаны ниже.
Вкратце, такие “дальнодействующие” постоянные магниты, также называемые “неомагнитами”, примечательны создаваемой магнитной силой и их уникальной энергетической способностью развивать магнитные поля В внутри относительно широких воздушных зазоров, пространственных зазоров или зазоров из немагнитных материалов, т.е. неферромагнитных материалов, обеспечивая, несмотря на это, интенсивное магнитное поле В, распространяющееся в таком зазоре. По своей способности к дальнодействию они сильно превосходят обычные магниты в магнитопроводе, имеющем один или более зазоров из немагнитного материала (парамагнитные материалы здесь рассматриваются, как немагнитные).
Дополнительное описание и определение предпочтительных неомагнитов приводится ниже.
Конструкция первого варианта осуществления настоящего изобретения. Первый вариант осуществления настоящего изобретения в форме электромагнитного насоса 32 показан на фиг.2, 2А, 3 и 3А. Этот насос способен создавать плотность магнитного потока около 7000-7500 Гс (около 0,7-0,75 Т) на площади около 26 см2 в немагнитном зазоре 44 длиной около 38 мм. Средняя часть насоса 32 представляет собой тонкостенный нагнетающий металлопровод 48, содержащий канал 43. Желательно, чтобы этот металлопровод 48 был относительно тонкостенным и уплощенным и, например, имел узкий, прямой канал 43, по существу постоянного поперечного сечения, проходящий через рабочую зону 50. Показанный на чертеже канал 43 имеет высоту 67 (фиг.3А) приблизительно 5,5 мм и ширину 66 (фиг.3А) приблизительно 51 мм. Таким образом, канал 43 имеет площадь поперечного сечения около 2,8 см2. Металлопровод 48 изображен здесь горизонтально, хотя работоспособна любая конфигурация и ориентация аппарата 32, 50. Металлопровод 48 содержит немагнитный материал, который оказывает тепловое сопротивление и противостоит коррозионному и эрозивному действию расплавленного металла М, подаваемого по трубе 36 (фиг.1). Для перекачки металлов с пониженной температурой плавления подходит силикат кальция; для изготовления нагнетающего металлопровода 48 также подходит какой-либо немагнитный металл, такой как аустенитная нержавеющая сталь.
Металлопровод 48 содержит канал 43 прокачки, расположенный на пути однонаправленного магнитного потока 54 (фиг.3А) с индукцией В. Этот магнитный поток 54 проходит параллельно узкой (тонкой) стороне уплощенной рабочей зоны 50. В насосе 32 магнитное поле создается двумя парами неомагнитов 56, каждый из которых в данном варианте осуществления представляет собой куб с размером ребра, например, около 51 мм. Первая пара магнитов 56 с полюсным наконечником 58 показана выше зазора 44 (рис.2А, 3 и 3А). Как показано, зазор 44 измеряется в направлении, параллельном оси В однонаправленного магнитного потока 54 (фиг.3А). Вторая пара неомагнитов 56 вместе со своим полюсным наконечником 58 расположена ниже зазора 44. Эти скошенные полюсные наконечники 58 изготовлены из железосодержащего магнитомягкого (ферромагнитного) материала, например, из конструкционной стали, как будет более подробно описано ниже. Каждая пара магнитов удерживается вместе со своим полюсным наконечником 58 посредством четырехгранной оболочки (кожуха) 59, изготовленной из подходящего немагнитного материала, например, алюминия, и прикрепленной к ярму 60 винтами 52 (фиг.2А). Этим двум оболочкам 59 придана такая форма, чтобы они плотно охватывали соответственно первую и вторую пары неомагнитов вместе с их соответствующими скошенными полюсными наконечниками 58. Угол скоса каждой грани полюсного наконечника 58 относительно его продольной оси выдерживается не превышающим примерно 30°, так как больший угол схождения приводит к нежелательному возрастанию рассеяния магнитного потока. Угол схождения около 30° показан на фиг.2 только для двух граней полюсного наконечника 58.
Ярмо 60, обычно прямоугольной формы, из железосодержащего магнитомягкого материала (ферромагнетика) окружает узлы неомагнитов и создает магнитопровод 61, имеющий два контура, причем оба контура проходят через зазор 44. Конструкционная сталь, например, содержащая 0,2 масс.% углерода, является магнитомягкой, т.е. она является ферромагнетиком и подходит для изготовления полюсных наконечников 58 и ярма 60. Конструкционная сталь, например, также подходит для изготовления перемычки 62, которая включена в один из контуров двухконтурного магнитопровода 61. Перемычка 62 крепится болтами 64 и может быть снята. Это позволяет разобрать весь аппарат 32 насоса для того, чтобы можно было снять нагнетающий металлопровод 48, 50.
У верхнего и нижнего полюсных наконечников 58 имеются соответственно верхний и нижний торцы 87 (фиг.2А). Эти полюсные торцы расположены параллельно и определяют немагнитный зазор 44. Верхний и нижний параллельные и плоские полюсные торцы имеют форму квадрата со стороной приблизительно 51 мм. Таким образом, площадь торца каждого полюса составляет около 27 см2. Эти полюсные торцы установлены плотно и вровень с верхней и нижней параллельными, плоскими поверхностями уплощенной рабочей зоны 50 (фиг.3 и 3А) металлопровода 48. Верхний и нижний полюсные торцы 87 имеют соответственно северную (N) и южную (S) магнитную полярность.
Как было сказано выше, вертикальный промежуток между этими параллельными, плоскими полюсными торцами определяет немагнитный зазор 44 (фиг.2А, 3 и 3А) в двухконтурном магнитопроводе 61. Этот зазор, величиной около 38 мм, по существу тот же самый, что и расстояние по вертикали между верхней и нижней параллельными, плоскими поверхностями рабочей зоны 50.
Как показано на фиг.2, ферромагнитное ярмо 60 содержит удлиненный съемный вертикальный элемент 60а, который крепится болтами 63 соответственно к верхнему и нижнему поперечным элементам 60b и 60с.Эти поперечные элементы являются съемными и крепятся другими болтами 63 соответственно к верхнему и нижнему вертикальным элементам 60’ и 60’’, Промежуток между этими элементами перекрывается перемычкой 62, прикрепленной к ним болтами.
На фиг.3А силовые линии вертикального магнитного потока В показаны в сечении в виде множества крестиков 54. Эти крестики показывают картину (распределение) магнитного потока 54.
Крестики 55 показывают слабые пограничные области распределения магнитного потока 54. Электрический ток I пропускают через расплавленный металл в поперечном направлении при низком напряжении. На фиг.3 этот ток I течет в направлении, указанном большими символами полярности: плюс (+) и минус (-). Этот постоянный ток I протекает через расплавленный металл в неэлектропроводной уплощенной зоны 50 металлопровода 48 поперек его канала 43 в пределах сечения с высотой, равной размеру 67 и составляющей около 5,5 мм, и шириной, равной размеру 66, т.е. около 51 мм. Ток I передается в расплавленный металл посредством двух удлиненных электродов 68 (фиг.3А), каждый из которых имеет штыревой вывод 51 (фиг.3 и 3А) для электрического подключения.
Величиной этого постоянного тока соответствующим образом управляют, чтобы управлять величиной подачи металла при его нагнетании. При увеличении тока I величина подачи увеличивается, и наоборот. Реверсирование тока I приводит к реверсированию направления нагнетания и, следовательно, к изменению направления подачи расплавленного металла на обратное.
Ток I пересекает расплавленный металл М внутри металлопровода 48 под прямым углом и к направлению течения металла М и к направлению магнитного потока В. Части электродов 68, соприкасающиеся с расплавленным металлом, вставляются в удлиненные пазы 57 на противоположных узких сторонах металлопровода. Наружные части электродов 68 входят в удлиненные гнезда 69 двух съемных Н-образных держателей 47 электродов, которые смонтированы на двух противоположных боковых стенках металлопровода 48. Держатели 47 изготовлены из неэлектропроводного и немагнитного материала и прикреплены к металлопроводу 48 посредством винтов 49, которые завернуты в резьбовые отверстия 49’ в держателях 47 сквозь свободные отверстия 49" в металлопроводе 48.
Желательно, чтобы электроды 68 были изготовлены из углерод- содержащего материала, например, такого как графит. Электроды 68, выполненные из металла, который химически отличается от перекачиваемого расплавленного металла, скорее всего, будут быстро растворены за счет электролитического действия. Электроды, выполненные из того же металла, что и сам перекачиваемый металл, не подвержены электролитическому растворению. Металлические электроды 68, у которых имеются внутренние каналы охлаждения, можно охлаждать циркулирующим хладагентом, таким как вода, протекающая через трубопровод 46 (фиг.2), показанный штриховым контуром, и через штуцеры 53, соединенные с этими внутренними каналами. Такое охлаждение предотвращает не только плавление металлических электродов 68, но может также вызвать появление затвердевшей корки из расплавленного металла на открытом торце каждого электрода в результате кристаллизации.
Если металлопровод 48 выполнен из подходящего электропроводящего немагнитного металла, например, из аустенитной нержавеющей стали, тогда тот же самый источник тока, который обеспечивает поперечный постоянный ток I, может быть использован для предварительного нагрева металлопровода за счет теплового действия тока при его протекании через электрическое сопротивление и для предотвращения, таким образом, затвердевания металла в моменты, когда начинается его движение. Использование такого металла для металлопровода 48 позволяет приварить или припаять твердым припоем металлические электроды 68 к наружным сторонам указанного металлопровода и вообще не проводить электроды сквозь его стенки.
В процессе работы во всем канале металлопровода 48, 50 постоянно присутствует давление накачки. При резком реверсе тока I направление давления моментально изменяется на обратное. Такое изменение полезно для торможения или внезапной остановки течения металла, например, при чередующихся стартах и остановах течения расплавленного металла для отливки серии идентичных отдельных предметов в ряде идентичных подвижных литейных форм, которые поочередно соответствующим образом позиционируют, а затем удерживают в неподвижном положении, пока формы получают соответствующие идентичные дозы расплавленного металла.
Другой вариант осуществления настоящего изобретения показан как пример усовершенствованного электромагнитного насоса. Этот усовершенствованный насос 32G (фиг.4) отличается от насоса 32 тем, что в нем использована “трехмерная” (x-y-z) сборка 80N из постоянных неомагнитов 56 в конфигурации с пятикратной магнитной концентрацией, как показано на фиг.7-11. Еще одна, но инвертированная сборка 80S с пятикратной концентрацией описана ниже. Эти сборки 80N и 80S с магнитной концентрацией усиливают плотность В’ магнитного потока почти на 100% по сравнению с насосом 32. Следовательно, они создают и увеличенную плотность В’ магнитного потока порядка 14000-15000 Гс (около 1,4-1,5 Т) в немагнитном зазоре 44G (фиг.11), в котором располагается металлопровод 48G с каналом 43G, в котором создается повышенное давление.
Средняя часть металлопровода 48G (фиг.4, 5, 6) содержит уплощенную рабочую зону 50G. Эта уплощенная рабочая зона 50G имеет относительно большую длину по сравнению с уплощенной зоной 50 (фиг.3 и 3А), чтобы иметь возможность надлежащим образом, близко к металлопроводу 48G и в уплощенной зоне 50G, разместить десять совместно работающих неомагнитов 56 (по пять магнитов на каждой сборке 80N и 80S) с их соответствующими полюсными наконечниками 86. Желательно, чтобы металлопровод был тонкостенным и уплощенным и имел узкий прямой канал 43 по существу постоянного поперечного сечения с высотой 67G (фиг.4) около 8 мм, и шириной 66 (фиг.4) около 51 мм. Таким образом, канал 43 имеет площадь поперечного сечения около 4 см2. Металлопровод 48G изображен здесь горизонтально, хотя любая ориентация аппарата 32G, 48G является работоспособной. Увеличенный магнитный поток 54G поля В’ направлен перпендикулярно уплощенной рабочей зоне 50G, в направлении ее толщины. На фиг.5 в виде множества небольших крестиков показана картина распределения силовых линий магнитного потока 54G поля В’. Крестики 55 показывают слабые пограничные области картины распределения магнитного потока 54G.
Ранее говорилось, что аппарат, соответствующий настоящему изобретению, является работоспособным при ориентации канала 43 с расплавленным металлом в любом удобном направлении относительно горизонтали. Для удобства, на чертежах показано горизонтальное расположение канала 43.
На фигурах 7-10 изображена сборка 80N, состоящая из пяти постоянных неомагнитов 56 кубической формы, собранных вместе с центральным ферромагнитным полюсным наконечником 86 в конфигурацию, обеспечивающую концентрацию магнитного поля. Следует отметить, что на фиг.7 изображены взаимно ортогональные оси х-х, у-у и z-z, причем, для наглядности, ось z-z расположена вертикально. Центральный полюсный наконечник 86 (контур которого обозначен жирными линиями) имеет почти кубическую форму, за исключением того, что он несколько вытянут в направлении z-z, чтобы образовать северный магнитный полюс 87, который выступает вниз из сборки 80N. Таким образом, квадратный торец 87 полюсного наконечника 86, имеющего северную полярность, сидит плотно и вровень с рабочей зоной 50G металлопровода 48G. Выражаясь технически, полюсный наконечник 86 представляет собой сплошной прямоугольный параллелепипед, имеющий квадратные верхнюю и нижнюю грани, и четыре прямоугольных боковых грани. Верхний неомагнит 56 кубической формы, магнитное поле которого направлено вдоль оси z-z, посажен без зазоров на квадратную поверхность верхней грани полюсного наконечника 86. Нижняя квадратная поверхность северного полюса неомагнита по форме и размеру соответствует прилегающей к ней квадратной верхней поверхности полюсного наконечника 86.
Два неомагнита 56 кубической формы, магнитное поле которых направлено вдоль оси х-х, посажены своими северными полюсами без зазоров на противоположные грани полюсного наконечника 86. Поверхности их северных полюсов соответствуют ширине граней полюсного наконечника 86, а их верхние поверхности расположены вровень с верхней гранью полюсного наконечника. Магнитное поле двух других кубических неомагнитов 56 направлено вдоль оси у-у. Поверхности их северных полюсов посажены без зазоров на две другие противоположные грани полюсного наконечника 86. Поверхности их северных полюсов соответствуют ширине граней полюсного наконечника 86, а их верхние поверхности расположены вровень с верхней гранью полюсного наконечника.
Половина магнитодвижущей силы, соответствующая северному полюсу, в данной конструкции создается при помощи сборки 80N из пяти неомагнитов (фиг.7-11, а также 4), обеспечивающей пятикратную концентрацию магнитного поля. Сборка 80N помещена внутрь ферромагнитного С-образного ярма 60G (фиг.4) с консольным креплением. Ярмо 60G выполнено из магнитомягкого ферромагнитного материала, например, конструкционной стали (с содержание углерода 0,2 масс.%), и это ярмо образует магнитопровод 61 G. Левая часть С-образного ярма 60G на фиг.4 остается открытой для облегчения демонтажа металлопровода вместе с относящимися к нему элементами.
С-образное ярмо 60G содержит вертикальный удлиненный элемент 71, имеющий выступающий блок 82 регулировки, прикрепленный к его верхнему концу. Регулировочный винт 83 зажима, имеющий стопорную гайку 78, завернут сквозь этот выступающий блок, и плотно поджимает съемный верхний элемент 82 зажима к верхней пластине верхней ферромагнитной чашки 88, которая описана далее. Удлиненный элемент 81 основания, прикрепленный к нижнему концу вертикального элемента 71, проходит под нижней пластиной нижней ферромагнитной чашки 88, которая описана далее.
На фиг.7 показаны пять неомагнитов 56, собранных вместе с их полюсным наконечником 86, как описывалось ранее. Для наглядности, на фиг.7 и 8 опущены неактивные, заполняющие блоки 84 (фиг.9 и 10). Эти неактивные, заполняющие блоки, изготовленные, например, из алюминия (AI), представляют собой кубики того же размера, что и неомагниты 56. Для ясности, контуры двенадцати заполняющих блоков 84 на фиг.9 и 10 показаны пунктирными линиями.
Из фиг.9 видно, что сборка 80N для концентрации магнитного поля по существу состоит из двух слоев. Верхний слой содержит один кубик неомагнита 56, окруженный восемью неактивными кубиками 84. Из фиг 10 видно, что нижний слой содержит центральный полюсный наконечник 86, окруженный четырьмя кубиками неомагнитов 56 и четырьмя неактивными кубиками 84. Неомагниты прилегают к четырем граням полюсного наконечника 86, как описывалось ранее. Четыре кубика соприкасаются с четырьмя вертикальными ребрами полюсного наконечника. Таким образо