Способ определения динамических процессов в газовой среде

Изобретение относится к газовой промышленности, в частности к эксплуатации подземного хранилища газа (ПХГ), и может быть использовано при изучении флюидодинамики, в частности, при контроле герметичности ПХГ, осуществляемом по миграционным потокам газа в вышележащие пористые пласты через контрольные скважины. Техническим результатом изобретения является повышение достоверности способа при упрощении и удешевлении технологии. Поставленная задача решается тем, что в способе определения динамических процессов в газовой среде по наличию индикатора в пробе газа из газовой среды продуктивных и/или контрольных скважин в качестве индикатора используют метанол или этанол или гликоли. Индикатор вводят в газовую среду предварительно в процессе ее подготовки перед размещением на хранение или непосредственно в газовую среду продуктивного пласта в количестве, необходимом для обеспечения концентрации в газовой среде метанола или этанола не менее 0,0001 г/м3, гликолей не менее 0,0002 г/м3. При этом в первом случае отбор проб осуществляют из пористых пластов, расположенных над хранилищем в пределах его площади, во втором - из скважин, расположенных в зоне потенциальной утечки газовой среды. 1 з.п. ф-лы, 3 табл.

Реферат

Изобретение относится к газовой промышленности, в частности к эксплуатации подземного хранилища газа (ПХГ), и может быть использовано при изучении флюидодинамики. В частности, заявляемый способ найдет широкое применение при контроле герметичности ПХГ, осуществляемый по миграционным потокам газа в вышележащие пористые пласты через контрольные скважины.

Известен способ исследования динамических процессов многопластового месторождения природных газов, который заключается во введении в пласт через нагнетательную скважину индикатора в носителе, отсутствующего в природном газе (преимущественно гелий), отборе пробы из добывающей скважины, определении времени появления индикатора в продукции добывающей скважины, а также зависимости изменения во времени концентрации индикатора в последней. По наличию индикатора в продукции судят о динамических процессах многопластового месторождения. В качестве газа-носителя используется пластовый газ (а.с. СССР №1684491, МПК: Е 21 В 47/10).

Однако данный способ характеризуется получением недостоверных данных ввиду неоднозначности интерпретации полученных результатов на многопластовых газовых месторождениях и ПХГ. Кроме того, данный способ становится неэффективным при его применении одновременно в нескольких скважинах, вскрывающих один и тот же горизонт (пласт) или различные горизонты ввиду неоднозначности интерпретации полученных результатов из-за невозможности идентификации прихода гелия от какой-либо конкретной нагнетательной скважины.

Известен также способ исследования динамических процессов газовой среды, в соответствии с которым в нагнетательные скважины вводят различные индикаторы в газовом носителе, из добывающих скважин отбирают пробы и определяют концентрации индикаторов во времени (в продукции добывающих скважин) (Патент US №4742873, МПК: Е 21 В 47/10).

Однако различные индикаторы могут иметь различные свойства. Это вносит значительную погрешность в определение объемной картины миграции газа при эксплуатации многопластового ПХГ и соответственно снижает достоверность получаемых результатов.

Наиболее близким к заявляемому является способ исследования динамических процессов газовой среды подземного хранилища газа (ПХГ), позволяющий устранить указанный выше недостаток за счет использования индикаторов нескольких цветов. В пласт в период максимального давления через разные центральные нагнетательные скважины закачивают индикаторы в газовом носителе. В каждую из них закачивают индикатор одного цвета в виде газонаполненных микрогранул со степенью дисперсности 0,5-0,6 мкм, состоящих из смеси поликонденсационной смолы и органического люминесцирующего вещества. Количество индикатора определяется по приведенной формуле. В период снижения давления до минимальной средневзвешенной по площади величины одновременно отбирают пробы газа из добывающих скважин. Определяют изменения во времени концентрации индикаторов каждого цвета и объемной скорости газа всех добывающих скважин. По приведенным формулам находят суммарное количество индикатора каждого цвета, поступившего в каждую добывающую скважину, и долю мигрирующего газа. Строят карты и по величине долей мигрирующего газа выявляют направления внутрипластовых и межпластовых перетоков и оконтуривают газодинамически различные зоны (патент РФ №2167288, МПК: Е 21 В 47/00, 47/10).

Данный способ повышает достоверность исследований по сравнению с приведенными выше аналогами, однако характеризуется сложностью процесса его реализации, поскольку требует проведения специального закачивания индикаторов нескольких цветов для получения более достоверной информации и приготовления газонаполненных микрогранул, которые требуют использования специального оборудования, что также значительно удорожает способ.

Задачей предлагаемого изобретения является повышение достоверности способа при упрощении и удешевлении технологии.

Поставленная задача решается тем, что в способе определения динамических процессов в газовой среде по наличию индикатора и его количественной концентрации в пробе газа из газовой среды продуктивных и/или контрольных скважин согласно предлагаемого решения в качестве индикатора используют метанол или этанол или гликоли, при этом индикатор вводят в газовую среду предварительно в процессе ее подготовки перед размещением на хранение или непосредственно в продуктивный пласт в количестве, необходимом для обеспечения концентрации в газовой среде этанола или метанола не менее 0,0001 г/м3, гликолей не менее 0,0002 г/м3. При этом отбор проб осуществляют из пористых пластов, расположенных над хранилищем в пределах его площади, или из скважин, расположенных в зоне потенциальной утечки газовой среды.

Способ реализуется следующим образом.

В газовую среду, например продуктивного пласта, используемого в качестве газового хранилища, индикатор - метанол или этанол или гликоли, поступает с газом закачки, содержащим указанные вещества в качестве технологических примесей. Указанные технологические примеси используются в технологических процессах подготовки газа к транспорту и подземному хранению. В частности, при решении проблем гидратообразования, возникающих в системе сбора и промысловой подготовки газа на промысле, метанол вводят в поток газа в качестве антигидратного ингибитора. Если данная подготовка не проводилась, и в газовой среде хранилища отсутствуют технологические примеси, включающие метанол или этанол или гликоли, перед проведением исследований в газовое хранилище вводят любой из указанных индикаторов. Метанол может подаваться в идущий по газопроводу газ закачки после его компримирования на компрессорной станции. В результате компримирования газ нагревается до температуры +50°С, достаточной для перевода жидкого ингибитора, например, метанола в газообразное состояние, в котором он вместе с газом через скважины поступает в пласт. При применении схемы закачки метанола в пласт с газом количество метанола определяется исходя из концентрации определяемой в газе отбора с учетом насыщения метанолом пластового газа. Минимально фиксируемая концентрация метанола или этанола составляет 0,0001 г/м3 газа, гликолей (этиленгликоль-ЭГ, диэтиленгликоль-ДЭГ, триэтиленгликоль-ТЭГ) - 0,0002 г/м3 газа.

После введения индикатора в газовую среду проводят отбор проб газа из контрольных скважин вышележащих пористых пластов и добывающих (эксплуатационных) скважин и количественно определяют концентрацию индикаторов в отобранных пробах. Определение индикатора в газе может проводиться любым из известных методов, обеспечивающих чувствительность по спиртам 0,0001 г/м3, например гравиметрическим, фотометрическим, хроматографическим, с помощью индикаторных трубок. По наличию индикаторов в контрольных скважинах делают вывод о динамических процессах в газовой среде подземного хранилища газа. Например, в случае отсутствия индикатора в контрольных скважинах, делают вывод о том, что продуктивный пласт представляет гидродинамически изолированную зону. В случае присутствия индикаторов в контрольных скважинах вышележащих пористых пластов по определению концентрации может быть выполнена карта мигрирующих долей газа.

Введение индикатора может осуществляться непосредственно в продуктивный пласт, а отбор проб проводится непосредственно из газовой среды данного продуктивного пласта, например, с целью изучения происходящих в нем динамических процессов, или из скважин, расположенных в зоне потенциальной утечки газовой среды.

Эффективность использования заявляемого способа подтверждается исследованиями, проведенными на Елшано-Курдюмском, Песчано-Уметском, Северо-Ставропольском подземных газовых хранилищах, в которые индикатор закачивался в газовом носителе.

Пример 1.

В селе Пелагиада Ставропольского края по ул. Клубничная 43 был обнаружен грифон. С целью определения причин проявления грифона и источника грифонообразования был проведен комплекс научно-исследовательских работ. А именно, были проведены исследования газа, отобранного из скважины Клубничная 43, на содержание метанола и диэтиленгликоля. По результатам проведенных исследований в составе газа не обнаружены указанные технологические примеси, что дает основание утверждать, что газ грифона не является газом подземного хранилища.

Пример 2.

Отбор проб и лабораторные исследования по определению состава газов и наличия технологических примесей в них проводили из контрольных скважин вышележащих горизонтов Северо-Ставропольского ПХГ.

Контрольные скважины, по которым проводились исследования, представлены в таблице 1.

Таблица 1Контрольные скважины Северо-Ставропольского ПХГ
Контрольный горизонтКоличество скважинНомера скважин
Чокракский горизонт925, 30, 122, 187, 7 дн,10 дн, 12 дн,13 дн, 3 рп
Верхний майкоп15 рп
Конк-караганский горизонт47А дн, 10А дн, 12А дн, 4 рп
Мамайский горизонт11 рп
Всего:15 

Исследования включали:

1. Отбор проб на объекте Северо-Ставропольского ПХГ с поглощением технологических примесей в раствор.

2. Контроль качества отобранных проб.

3. Выполнение исследований отобранных проб газов с определением следующих параметров:

- содержание углеводородных компонентов до C8+;

- содержание неуглеводородных компонентов (азота, углекислого газа);

- содержание технологических примесей (метанола, диэтиленгликоля);

- расчетные параметры (теплота сгорания, число Воббе, коэффициент сжимаемости, вязкость газа, псевдокритические температура и давление).

Исследования выполнялись в аккредитованной в системе ГОСТ Р испытательной лаборатории газа ОАО “ВНИПИгаздобыча” (№POCCCRU 0001. 21 НП75). Все аналитические параметры получены хроматографическим методом.

Результаты исследований по определению содержания технологических примесей в указанных горизонтах представлены в таблице 2.

Таблица 2.Содержание технологических примесей в газах контрольных скважинах
№ п/п№скважиныИнтервал перфорации, мМетанол, г/м3Диэтиленгликоль, г/м3
Чокракский горизонт
13 рп200,00,00000,0000
27 рп110,0-114,00,00000,0000
312 дн176,5-180,00,00000,0000
413 дн225,0-232,00,00000,0000
530185,0-204,00,00000,0000
625219,7-221,7 0,00000,0000
  228,7-229,7  
  229,7-232,7  
710 дн245,0-249,00,00000,0000
8122174,0-176,00,00100,0000
9187198,8-215,60,00000,0000
Верхний Майкоп
105 рп500,00,00100,0000
Конк-караганский горизонт
114 рп135,00,00000,0000
127А дн88,0-90,00,00000,0000
1310А дн210,0-212,00,00000,0000
1412А H160,0-161,00,00010,0000
Мамайский горизонт
151 рп230,00,00000,0000

В большинстве скважин контрольных горизонтов не обнаружено технологических примесей, что указывает на отсутствие миграционных потоков газа из хранилища в вышележащие пористые пласты, т.е. на герметичность пластового резервуара Североставропольского ПХГ.

Наличие метанола в контрольных скважинах 5 рп, 122, 12А дн, очевидно, вызвано техническим состоянием контрольных скважин, переведенных из эксплуатационного фонда.

Исследования по определению технологических примесей в газах, отобранных из контрольных скважин Северо-Ставропольского ПХГ, указывают на поступление газа резервуара хранилища в вышележащие пористые пласты лишь при неудовлетворительном техническим состоянии скважин, переведенных из эксплуатационного фонда.

Пример 3.

Одним из горизонтов, контролирующих герметичность Елшано-Курдюмского подземного хранения газа, является мелекесский горизонт.

Контроль осуществлялся по скважинам №56, №92, №110, №231. Для выявления перетоков газа из объекта хранения по контрольным скважинам мелекесского горизонта были отобраны пробы газа с целью определения в его составе технологических примесей.

Наличие диэтиленгликоля и метанола в газе контрольных скважин (таблица 3) позволяет судить о связи мелекесского горизонта с объектом газохранения.

Таблица 3Содержание технологических примесей в газе контрольных скважин мелекесского горизонта Елшано-Курдюмского ПХГ
№ п/п№ скважиныМетанол, г/м3Диэтиленгликоль, г/м3
1560,00800,0020
2920,03500,0010
32310,11000,0020
41100,00000,0000

Самое высокое содержание метанола обнаружено в скважине мелекесского горизонта №231 (0.11 г/м3), эта скважина находится в районе расположения эксплуатационных скважин, в которых зафиксированы перетоки.

В контрольной скважине 92 содержание метанола в газе составило 0,035 г/м3, эта скважина расположена недалеко от района отбора-закачки.

В контрольной скважине 56, которая находится в 250-300 м к югу от эксплуатационных скважин, обнаружено содержание метанола 0,008 г/м3.

В контрольной скважине 110, расположенной в части структуры, где никогда не было эксплуатационных скважин на ПХГ, в составе газа не обнаружено ни диэтиленгликоля, ни метанола.

Содержание диэтиленгликоля в контрольных скважинах мелекесского горизонта одного порядка: 0,001 г/м3 (скважина 92) и 0,002 г/м3 (скважина 56,231).

Повышение достоверности заявляемого способа обусловлено наличием качественных характеристик у выбранных в качестве индикатора спиртов - метанола или этанола, или гликолей, являющихся образованиями неприродного происхождения. Данные индикаторы являются устойчивыми к процессу окисления, разрушения, адсорбции и переходу в другую фазу. Устойчивость в газовом состоянии подтверждается их присутствием в газах магистральных газопроводов и газах эксплуатационных и контрольных скважин подземного хранения скважин. Кроме того, данный способ характеризуется простотой и не требует значительных материальных затрат. Наиболее оптимальным для использования в качестве индикатора является метанол, т.к. именно он чаще всего присутствует в технологическом процессе подготовки газа. Этанол обладает теми же качественными характерисиками, однако в технологии подготовки газа в настоящее время не используется.

1. Способ определения динамических процессов в газовой среде по наличию индикатора и его количественной концентрации в пробе газа из газовой среды продуктивных и/или контрольных скважин, отличающийся тем, что в качестве индикатора используют метанол, или этанол, или гликоли, при этом индикатор вводят в газовую среду предварительно в процессе ее подготовки перед размещением на хранение или непосредственно в продуктивный пласт в количестве, необходимом для обеспечения концентрации в газовой среде этанола или метанола не менее 0, 0001 г/м3, гликолей не менее 0,0002 г/м3.

2. Способ по п.1, отличающийся тем, что отбор проб осуществляют из пористых пластов, расположенных над хранилищем в пределах его площади, или из скважин, расположенных в зоне потенциальной утечки газовой среды.