Ячейка памяти

Иллюстрации

Показать все

Использование: изобретение относится к вычислительной технике и может быть использовано в запоминающих устройствах компьютеров различного назначения, в разработке систем ассоциативных запоминающих устройств, создания синапсов (элемента электрической цепи с программируемым электрическим сопротивлением) для нейронных сетей, созданием банков данных с прямым доступом, созданием фотовидео-аудио аппаратуры нового поколения. Технический результат: создание принципиально новой ячейки памяти, которая позволяла бы хранить несколько битов информации, характеризовалась бы быстрым временем переключения сопротивления и низкими рабочими напряжениями, но при этом позволяла бы совместить технологию ее изготовления с технологией производства современных полупроводниковых устройств. Сущность изобретения: в ячейке памяти, содержащей трехслойную структуру, включающую два электрода, между которыми расположена функциональная зона, в качестве электродов используются металл и/или полупроводник, и/или проводящий полимер, и/или проводящий и оптически прозрачный оксид или сульфид, а функциональная зона выполнена из органических, металлорганических и неорганических материалов со встроенными в молекулярную и/или кристаллическую структуру различными типами активных элементов, а также их сочетания друг с другом и/или кластерами на их основе, которые изменяют свое состояние или положение под действием внешнего электрического поля и/или светового излучения. 24 з.п. ф-лы, 24 ил.

Реферат

Изобретение относится к вычислительной технике и может быть использовано в запоминающих устройствах компьютеров различного назначения, в разработке систем ассоциативных запоминающих устройств, создания синапсов (элемента электрической цепи с программируемым электрическим сопротивлением) для нейронных сетей, созданием банков данных с прямым доступом, созданием фото-видео-аудио аппаратуры нового поколения.

В современных компьютерах используются запоминающие устройства различного назначения с отличающимися характеристиками по скорости записи, времени хранения, времени доступа и считывания информации. Это существенно усложняет работу вычислительных систем, увеличивает время подготовки компьютеров к работе, усложняет проблему сохранения информации и т.д.

Одной из приоритетных задач, стоящей в области микроэлектроники, является создание универсально запоминающего устройства, обладающего высокой скоростью записи и считывания информации наряду с большим временем хранения и высокой информационной плотностью. Вместе с этим имеется большая потребность в создании эффективного и простого элемента синапса для нейронных компьютеров. Отсутствие такого элемента сдерживает создание реальных нейрокомпьютеров.

Вместе с тем, потенциальные возможности физических принципов, заложенных в основу работы электронных устройств полупроводниковой микроэлектроники, практически исчерпаны. В настоящее время идет интенсивный поиск новых принципов функционирования и производства электронных устройств на основе идей молекулярной электроники с использованием новых, в том числе и молекулярных материалов или супромолекулярных ансамблей.

Вследствие вышеупомянутых недостатков, связанных с существующей технологией запоминающих устройств, приоритетной задачей микроэлектронной промышленности является создание/разработка универсального запоминающего устройства/системы, имеющего высокую скорость считывания/записи, высокую плотность размещения информации и длительный срок сохранения данных.

Патент США 6055180 (МПК6 G 11 С 11/36, 2000) описывает электрически адресуемое пассивное запоминающее устройство для регистрации, запоминания и/или обработки данных, содержащее функциональную среду в форме непрерывной или рельефной структуры, способной испытывать физические или химические изменения состояния. Функциональная среда включает индивидуально адресуемые ячейки, каждая из которых представляет зарегистрированное или обнаруженное значение или имеет присвоенное предопределенное логическое значение. Каждая ячейка заключена в слоистую сэндвич-структуру между анодом и катодом (электродами), которые находятся в контакте с функциональной средой ячейки для обеспечения электрической связи через нее, при этом функциональная среда имеет нелинейную частотную характеристику полного сопротивления (импеданса), за счет чего ячейка может напрямую получать энергию для осуществления изменения физического или химического состояния ячейки.

Недостаток запоминающего устройства, описанного в патенте США 6055180, состоит, однако, в том, что запись информации может происходить только один раз, а считывание запоминаемой информации выполняется оптически, что приводит к увеличению размера устройства и повышению сложности устройства и его применения и в то же время снижает надежность считывания информации из-за трудности точного позиционирования оптического луча. Кроме того, альтернативный метод записи с использованием теплового пробоя, вызываемого приложением высокого напряжения, также имеет недостаток в том, что запись информации может происходить только один раз и что требуются высокие напряжения и, следовательно, высокие электрические поля.

Японский патент 62-260401 (МПК Н 01 С 7/10, С 23 С 14/08, Н 01 В 1/12, 1990) описывает запоминающий элемент с трехслойной структурой, состоящий из пары электродов с высокотемпературным компаундом между ними. Запоминающий элемент работает по принципу, использующему изменение электрического сопротивления компаунда после приложения внешнего электрического поля. Поскольку проводимость компаунда может контролируемо изменяться между двумя различными уровнями, в нем можно сохранять информацию в битовой форме.

Патент США 5761116 (МПК G 11 С 16/04, H 01 L 29/788, 1998) описывает "программируемую металлизированную ячейку", состоящую из "проводника легкоподвижных ионов", такого как пленка или слой халькогенида, легированного ионом металла, например, серебра или меди, и пары электродов, например, анода (например, из серебра) и катода (например, из алюминия), расположенных на заданном расстоянии друг от друга на поверхности легированного халькогенида. Ионы серебра или меди можно заставить двигаться через халькогенидную пленку или слой под воздействием электрического поля. Таким образом, когда напряжение прилагается между анодом и катодом, металлический дендрит ("нано-провод") вырастает на поверхности халькогенидной пленки или от катода к аноду, значительно уменьшая сопротивление между анодом и катодом. Скорость роста дендрита является функцией от прилагаемого напряжения и интервала его приложения. Рост дендрита может быть прекращен путем снятия прилагаемого напряжения и может быть обращен в противоположную сторону, по направлению к катоду, путем изменения полярности прилагаемого напряжения.

Патент США 5670818 (МПК H 01 С 29/00, 1997) описывает постоянное запоминающее устройство в форме электрически программируемой “антипрожигаемой” перемычки, состоящей из слоя аморфного кремния между металлическими проводниками. Под воздействием высокого напряжения часть аморфного кремниевого слоя испытывает фазовое изменение, и атомы из металлических проводников мигрируют в кремниевый слой, результатом чего является образование тонкой проводящей нити ("нано-провода"), представляющего собой сложную смесь кремния и металла.

Принципиальные недостатки вышеописанных запоминающих устройств, основывающихся на образовании нано-провода, связаны с низким быстродействием по причине продолжительного интервала, требуемого для осуществления значительного изменения в электрическом сопротивлении между электродами/проводниками и с тем, что требуется высокое напряжение, например, ~60 В. Такие недостатки значительно ограничивают практическое использование этих элементов в существующих высокоскоростных электронных устройствах.

Наиболее близким техническим решением к заявляемому является токоуправляемый бистабильный пороговый или запоминающий переключатель (патент США 4652894, МПК H 01 L 29/28, 1987), состоящий из слоя поликристаллического органического полупроводникового материала, заключенного между парой металлических электродов, где слой органического полупроводникового материала является акцептором электронов для обеспечения быстрого переключения при низких напряжениях между состояниями высокого и низкого импеданса.

Практическое осуществление порогового запоминающего переключателя, описанного в патенте США 4652894, имеет, однако, принципиальное ограничение из-за использования низкотемпературных органических полупроводниковых компаундов, которые не являются механически устойчивыми и, что более важно, имеют недостаточную устойчивость к химической деструкции при воздействии повышенных температур, обычно связанных с современной технологией изготовления полупроводников, т.е. выше примерно 150° С и до 400° С. Вдобавок, физические характеристики органических полупроводниковых материалов вызывают плохую повторяемость цикла считывания/записи/стирания, а память ограничена только 1 битом информации, не позволяя тем самым реализовывать применения/устройства с высокой информационной плотностью.

Основными недостатками известного технического решения являются, во-первых, невозможность объединения существующей технологии производства полупроводниковых приборов с предложенной технологией изготовления известной ячейки памяти, т.к. используемые в ней низкотемпературные молекулярные соединения являются механически, а главное, термически неустойчивыми веществами, способными выдерживать температуру только до 150° С. Это не позволяет применить их совместно с современной технологией изготовления полупроводников, использующих в технологических процессах температуры до 400° С.

Во-вторых, известная ячейка памяти способна хранить только один бит информации, что не позволяет использовать ее при создании устройств с высокой информационной плотностью.

Кроме того, физические характеристики примененных материалов обуславливают неудовлетворительную повторяемость цикла (запись-чтение-стирание).

Все вышеприведенные, а также известные в литературе ячейки памяти данного типа имеют общий недостаток - позволяют хранить лишь один бит информации.

Ввиду вышеизложенного, существует явная потребность в запоминающих устройствах, которые были бы свободны от вышеописанных недостатков, связанных с существующими запоминающими устройствами. Поэтому настоящее изобретение имеет своей принципиальной целью разработку универсального запоминающего устройства/системы для высокоскоростного запоминания и поиска данных, обладающего способностью долговременного запоминания при высокой плотности битов.

Задачей, решаемой предлагаемым изобретением, является создание принципиально новой ячейки памяти, которая позволяла бы хранить несколько битов информации, характеризовалась бы быстрым временем переключения сопротивления и низкими рабочими напряжениями, но при этом позволяла бы совместить технологию ее изготовления с технологией производства современных полупроводниковых устройств.

Эта задача достигается тем, что в ячейке памяти, содержащей трехслойную структуру, включающую два электрода, между которыми расположена функциональная зона, в качестве электродов используются металл и/или полупроводник, и/или проводящий полимер, и/или проводящий и оптически прозрачный оксид или сульфид, а функциональная зона выполнена из органических, металлорганических и неорганических материалов со встроенными в молекулярную и/или кристаллическую структуру различными типами активных элементов, а также их сочетания друг с другом и/или кластерами на их основе, которые изменяют свое состояние или положение под действием внешнего электрического поля и/или светового излучения.

Предпочтительно выполнить электрод ячейки памяти в виде нескольких пространственно и электрически разделенных между собой элементов, например, двух или трех элементов, расположенных над функциональным слоем, что позволяет более точно контролировать величину электрического сопротивления ячейки, тем самым повысить уровень дискретности записи информации, либо точности величины аналогового значения электрического сопротивления ячейки, а также позволяет развязать электрические цепи записи и считывания информации.

Предпочтительно выполнить функциональную зону ячейки из активного слоя на основе органических, металлорганических и неорганических материалов с встроенными в качестве активных элементов положительными или отрицательными ионами, в том числе и молекулярными ионами, а именно на основе композитов из органических, металлорганических и неорганических материалов с встроенными в качестве активных элементов кластерами на основе твердых электролитов. Указанное выполнение функциональной зоны позволяет создать структуру, способную изменять электрическое сопротивление активного слоя и/или образовывать высокопроводящие области или нити в активном слое под воздействием внешних электрических и/или световых воздействий на ячейку памяти и сохранять это состояние продолжительное время без приложения внешних электрических полей.

Весьма эффективно использовать в качестве одного из активных элементов функциональной зоны ячейки памяти молекулы и/или ионы с электрическим дипольным моментом и/или с встроенными в качестве активных элементов кластерами на основе твердых полимерных и неорганических ферроэлектриков, что обеспечивает работоспособность ячейки памяти при низких прикладываемых напряжениях. Это связано с тем, что присутствие ферроэлектрических элементов увеличивает величину напряженности внутреннего электрического поля, а следовательно, потребует приложения меньшего внешнего электрического напряжения при записи информации.

Предпочтительно выполнить функциональную зону из активного слоя на основе органических, металлорганических и неорганических материалов с встроенными в качестве активных элементов донорными и/или акцепторными молекулами, органическими и/или неорганическими солями и/или кислотами и/или молекулами воды. Встроенные в качестве активных элементов молекулы могут диссоциировать в электрическом поле и/или под действием светового излучения и имеют переменную валентность металлов или атомарных групп, входящих в них. Функциональную зону предпочтительно выполнить из активного слоя на основе органических, металлорганических и неорганических сопряженных полимеров со встроенными в основную цепь и/или присоединенными к цепи или плоскости и/или встроенными в структуру активными элементами, образующими или не образующими светоизлучающую структуру.

Предпочтительно выполнить функциональную зону ячейки памяти в виде многослойной структуры, состоящей из нескольких активных, пассивных, барьерных, светоизлучающих и фоточувствительных слоев, выполненных из органических, металлорганических и неорганических материалов со встроенными в молекулярную и/или кристаллическую структуру активными элементами и/или кластерами на их основе, которые изменяют свое состояние или положение под действием внешнего электрического поля и/или светового излучения, что позволяет расширить диапазон и дискретность величин электрического сопротивления, а следовательно, повысить информационную плотность памяти.

Целесообразно выполнить функциональную зону ячейки памяти в виде многослойной структуры, состоящей из чередующихся активных, пассивных и барьерных слоев, снабженных элементами оптической или электрической развязки, при этом пассивные слои выполнены из органических, металлорганических и неорганических материалов, являющихся донорами и/или акцепторами носителей зарядов и обладающих ионной и/или электронной проводимостью, а барьерный слой выполнен из материалов с электронной проводимостью и низкой ионной проводимостью, что позволяет повысить временную стабильность ячейки памяти и одновременно увеличить информационную плотность за счет более высокой дискретности хранимых значений величин электрического сопротивления ячейки памяти. Такое выполнение функциональной зоны позволяет создать многослойную структуру, способную изменять электрическое сопротивление активного слоя и/или образовывать высокопроводящие области или нити с металлической проводимостью в активном слое под действием внешнего электрического поля и/или светового излучения на ячейку памяти и сохранять это состояние продолжительное время без приложения внешних электрических полей.

Функциональная зона имеет двухслойную структуру, состоящую из активного и пассивного слоев, где активный слой выполнен из органических, металлорганических и неорганических материалов и обладает низкой электронной проводимостью.

Также функциональная зона имеет трехслойную структуру с наружными слоями, выполненными из активных слоев и барьерного слоя, расположенного между ними, четырехслойную структуру с двумя активными слоями, которые разделены третьим барьерным слоем, а четвертый является пассивным слоем, и пятислойнуго структуру с двумя наружными пассивными слоями и расположенными между ними двумя активными слоями, которые разделены пятым барьерным слоем.

Элементы электрической развязки выполнены в виде дополнительного электрода, изготовленного из электропроводящего материала и слоя из полупроводникового и/или органического материала, образующих диодную структуру.

Выгодно выполнить электрод ячейки памяти в виде двух параллельных пространственно разделенных полупроводниковым и/или органическим светоизлучающим материалом элементов и образующих, например, или диодную структуру, или фотосопротивление или фоточувствительный элемент, что позволяет электрически или оптически развязать цепи записи и считывания информации.

Также выгодно выполнить электрод ячейки памяти в виде трех параллельных пространственно разделенных полупроводниковым и/или органическим светоизлучающим материалом элементов и образующих, например, светоизлучающую структуру и фотосопротивление или фоточувствительный элемент, что тоже позволяет оптически развязать цепи записи и считывания информации.

Указанное выполнение ячейки памяти позволяет создать элемент памяти с однобитовым или многобитовым способом записи, хранения и считывания информации. При этом информация сохраняется в виде величины сопротивления функциональной зоны. Для ячейки памяти с однобитовым режимом хранения информации величина сопротивления ячейки имеет два уровня - высокий (соответствует значению, например, 0) и низкий (соответствует значению, например, 1), а для ячейки памяти с многобитовым режимом хранения информации величина сопротивления ячейки имеет несколько уровней, соответствующих определенному биту информации. Так, например, для двухбитовой ячейки имеется четыре уровня значений ее сопротивлений, для четырехбитовой - шестнадцать уровней и т.д. Ячейка памяти выгодно отличается от используемых в настоящее время элементов памяти тем, что во время хранения информации она не требует постоянного питания. Время хранения информации зависит от структуры ячейки памяти и используемого материала функциональной зоны, режима записи и может варьироваться от нескольких секунд (может быть использована для создания динамической памяти) до нескольких лет (может быть использована для создания долговременной памяти, типа флэш-памяти).

Настоящее изобретение основывается на том, что: (1) существуют или могут быть приготовлены материалы, которые показывают обратимые изменения, т.е. модуляцию, их электропроводности при приложении и последующем удалении электрического поля и/или светового излучения; и (2) можно изготавливать полезные устройства, в частности, запоминающие устройства - ячейки памяти, в которых явление обратимого изменения или модуляции проводимости, проявляемое такими материалами, образует основу для работы этих устройств.

Существует широкое разнообразие материалов с относительно низкой собственной удельной электропроводностью, включая различные диэлектрики, сегнетоэлектрики, полупроводники, керамику, органические полимеры, молекулярные кристаллы, и соединения вышеупомянутых материалов, которые являются потенциально пригодными в качестве активного слоя ячейки памяти. Такие материалы можно формировать в слои, проявляющие существенное повышение проводимости (т.е. модуляцию проводимости) при легировании заряженными частицами различных типов, например, ионами или комбинацией ионов и электронов, которые встраиваются в материал под влиянием прилагаемого электрического поля одной полярности, и каковые слои реверсивно проявляют существенное снижение электропроводности, когда заряженные частицы должны, по крайней мере, частично, покинуть материал в результате воздействия электрическим полем другой (противоположной) полярности. Таким образом, активные слои, согласно настоящему изобретению, подвержены модуляции проводимости с помощью встраивания активных элементов - реверсивного введения/удаления заряженных частиц, например, ионов или комбинации ионов и электронов, под влиянием прилагаемых электрических полей соответствующей полярности.

Одними из наиболее чувствительных материалов по изменению электропроводности под действием электрического поля в присутствии активных элементов являются сопряженные полимеры, органические, металлорганические материалы, состоящие из молекул, образующих комплексы с переносом заряда, различного типа соединения-включения.

Другим важным классом материалов, изменяющих свою электропроводность, является также широкий класс неорганических материалов, в частности, полупроводниковые материалы, а также соединения-включения со смешанным типом проводимости. Для данного типа материалов характерно изменение проводимости при внедрении под действием электрического поля таких активных элементов, каким являются различного типа ионы. Последние материалы также характеризуются большой подвижностью ионов типа лития, натрия, водорода и т.д.

В число полимеров с варьируемой электропроводностью входят сопряженные полимеры, характеризующиеся сопряженными ненасыщенными связями, которые способствуют движению электронов. В число подходящих сопряженных полимеров входят те, которые выбираются из группы, состоящей из полидифенилацетилена, поли(т-бутил)дифенилацетилена, поли(трифторметил)дифенилацетилена, полибис(т-бутил)дифенилацетилена, поли(триметилсилил)дифенилацетилена, поли(карбазол)дифенилацетилена, полидиацетилена, полифенилацетилена, полипиридиндифенилацетилена, полиметоксидифенилацетилена, поли(т-бутил)фенилацетилена, полинитрофенилацетилена, поли(трифторметил)дифенилацетилена, поли(триметилсилил)фенилацетилена, поли(этилендиокситиофена) и их производных, содержащие улавливающие ионы молекулярные группы, выбираемые из группы, состоящей из краун-эфиров, циклических аналогов краун-эфиров, карбоксилов, дииминов, сульфоновых соединений, фосфоновых соединений и дитиокарбоновых соединений.

В число других подходящих полимеров входят те, что выбираются из группы, состоящей из полианилина, политиофена, полипиррола, полисилана, полифурана, полииндола, по-лиазулена, полифенилена, полипиридина, полибипиридина, полифталоцианина и их производных, содержащие улавливающие ионы молекулярные группы, выбираемые из группы, состоящей из краун-эфиров, циклических аналогов краун-эфиров, карбоксилов, дииминов, сульфоновых, фосфоновых и дитиокарбоновых соединений.

Другими подходящими и связанными химическими соединениями являются: ароматические углеводороды; органические молекулы с донорными и акцепторными свойствами (N-этилкарбазол, тетратиотетрацен, тетратиофульвален, тетрацианохинодим), металлоорганические комплексы (бисдифенилглиоксим, бисортофенилендиимин, тетрааза-тетраметиланнулен и т.д.); порфирин, фталоцианин и их производные, в частности те, что содержат улавливающие ионы молекулярные группы, выбираемые из группы, состоящей из краун-эфиров, циклических аналогов краун-эфиров, карбоксилов, дииминов, сульфоновых, фосфоновых и дитиокарбоновых соединений и т.д.

Предпочтительными полимерами являются те, что обладают высокой термостойкостью, например, остаются термически стойкими при температуре примерно 300-400° С и выше.

Желательно также использовать композиционный материал, включающий пористый диэлектрик, содержащий, по крайней мере, один полимер с варьируемой проводимостью. В число подходящих для создания пористых материалов входят те, что выбираются из группы, состоящей из аморфного кремния (Si), диоксида кремния (SiO2), оксида алюминия (Аl2О3), оксида меди (Сu2О), оксида титана (TiO2), нитрида бора (BN), оксида ванадия (V2О3), нитрида углерода (СN3), ферроэлектрических материалов, включая титанат бария-стронция и т.д.

По крайней мере, один активный слой имеет толщину от примерно 10 до примерно предпочтительно, от примерно 500 до примерно

Способность материалов изменять свою проводимость под действием внешнего электрического поля и/или светового излучения определяется наличием в составе материала активных элементов, которые, изменяя свое электронное состояние, структуру или пространственное положение под действием электрического поля, влияют на электронную проводимость материала. Встраивание активных элементов в функциональную зону проводят различными способами: они могут быть введены в состав материала в процессе его изготовления или в процессе создания активного слоя ячейки памяти, или внедрятся в активный слой в процессе работы ячейки под действием внешнего электрического поля и/или светового излучения.

В качестве активных элементов используются любые, известные из уровня техники, которые изменяют свое состояние или положение под действием внешнего электрического поля и/или светового излучения.

К активным элементам, которые предлагается использовать, в первую очередь относятся: положительные или отрицательные ионы, включая молекулярные ионы; молекулы или молекулярные группы, имеющие в составе металлы или атомные группы с переменной валентностью; молекулы, органические, неорганические или металлорганические соли, органические и неорганические кислоты, а также молекулы воды, диссоциирующие в электрическом поле и/или световом излучении; донорные и акцепторные молекулы или атомные группы; молекулы, ионы, атомные группы с электрическим дипольным моментом; молекулы или атомные группы, способные захватывать ионы различного типа; кластеры, полученные на основе твердых электролитов, полимерных и неорганических сегнетоэлектриков.

При использовании в качестве активных элементов ионов металлов (серебра, меди, лития, натрия и т.д.) в активном слое может происходить формирование нано-точки или нано-проводов, что также сопровождается резким изменением электрического сопротивления между электродами ячейки памяти. Для подобного типа ячеек можно использовать практически любые материалы с собственной низкой электрической проводимостью, предпочтительно использовать пористые или с дефектной структурой материалы.

В число предпочтительных активных элементов входят молекулы и/или ионы с электрическим дипольным моментом или кластеры на основе твердых полимерных и неорганических ферроэлектриков, т.к. они дают возможность использовать более низкое напряжение при записи информации.

Ключевой особенностью настоящего изобретения является присутствие дополнительного слоя материала, обозначаемого как пассивный слой, который может реверсивно функционировать как источник заряженных частиц, например, ионов или ионов+электронов, которые встриваются (инжектируются) в активный слой в ходе приложения электрического поля одной полярности, и как акцептор (сток) заряженных частиц, которые удаляются из активного слоя в ходе приложения электрического поля другой (противоположной) полярности. В соответствии с изобретением, донорские/акцепторные материалы реверсивно заряженных частиц, подходящие для использования в качестве пассивного слоя, включают, например, соединения с подвижными ионами, включая суперионные проводники и соединения включения, например, AgI, AgBr, Ag2S, Ag2Se, Ag2-xTe, RbAg4I5, CuI, CuBr, Cu2-xS, Cu2-xSe, Cu2-xTe, AgxCu2-xS, Cu3HgI4, AuI, Au2S, Au2Se, Аu2S3, NaxCuySe2, Li3N, LiNiO2, LixTiS2, LixMoSe2, LixTaS2, LixVSe2, LixHfSe2, LixTiSe2, LixVSe2, LixNbSe2, LixCoO2, LixWO3, CuxWO3-x, NaxWO3-x, HxWO3-x, LixMoO3-x, NахМоО3-х, СuxМоО3-х, LixV2O5, HxPd, Nаβ -Аl2О3, (AgI)x(Ag2OnB2O3)1-x, Ag2CdI4, CuxPb1-xBr2-x, Li3M2(РO4)3, где М = Fe, Sc or Cr, К3Nb3В2O12, K1-xTi1-xNbxOPO4, SrZr1-xYbxO3, Sr1-x/2TiI-x, NbхО3-х, β -Mg3Bi2, Сs5Н3(SO4)х·Н2O, NаZr2(РO4)3, Nay FeP2O8(OF)1-x, ZrO2-x, CeO2-x, CaF2 и BaF2. Эти материалы реверсивно отдают/принимают ионы серебра (Ag), меди (Сu), золота (Аu), лития (Li), натрия (Na), калия (К), цинка (Zn), магния (Mg), кальция (Са), ионы других металлов или металлсодержащие ионы, водород (Н), кислорода (О), фтора (F) и другие галогенсодержащие ионы.

Некоторые из вышеупомянутых материалов, например, LixVSe2, LixHfSe2, LixTiSe2, LixVSe2, LixNbSe2, LixCoO2, LixMoO3-x, могут одновременно использоваться для активного слоя и пассивного слоя, посредством такого воплощения устройств памяти, изготовленных согласно изобретению с такими материалами, способными к одновременному функционированию в качестве активного и пассивного слоя, поскольку функциональная зона включает единственный (отдельный) слой, зажатый между парой электродов.

В некоторых воплощениях запоминающего устройства, изготовленного согласно настоящему изобретению, по крайней мере, один активный слой и, по крайней мере, один пассивный слой состоят из одного и того же материала, за счет чего функциональная зона, имеющая многослойную структуру, в сущности, включает единый слой. Функциональная зона - единый слой включает композиционный материал, включающий пористый диэлектрик, состоящий, по крайней мере, из одного полимера с варьируемой проводимостью. Пористый диэлектрик выбирается из группы, состоящей из Si, аморфного Si, диоксида кремния (SiO2), оксида алюминия (Аl2О3), оксида меди (Сu2O), оксида титана (ТiO2), нитрида бора (BN), оксида ванадия (V2O3), нитрида углерода (CN3), ферроэлектрических материалов, включая титанат бария-стронция. Многослойная структура с единым слоем может, далее, включать барьерный слой, расположенный внутри структуры и состоящий из материала, который препятствует спонтанному движению заряженных частиц, когда разность электрических потенциалов не прилагается между упомянутыми первым и вторым электродами.

В некоторых воплощениях запоминающего устройства, изготавливаемого в соответствии с настоящим изобретением, многослойная структура, в сущности, включает единый слой, содержащий, по крайней мере, один полимер с варьируемой проводимостью, который легируется заряженными частицами или электролитными кластерами при встраивании их в полимер.

Материалы, используемые в качестве пассивного слоя, характеризуются легкостью, т.е. быстротой, с которой они отдают и принимают заряженные частицы, например, ионы или ионы+электроны, под влиянием относительно слабого электрического поля, т.е. в диапазоне электрических полей, используемых в типичных полупроводниковых устройствах, таких как флэш-память. Таким образом, приложение электрического поля с одной полярностью к функциональной зоне с многослойной структурой - стопке слоев, состоящей из, по крайней мере, одного активного слоя и, по крайней мере, одного пассивного слоя, будет вызывать перемещение заряженных частиц, таких как ионы или ионы+электроны, из последнего слоя в первый, а приложение электрического поля с другой (противоположной) полярностью будет "оттягивать", по крайней мере, некоторые из ионов или ионов + электронов из первого слоя и возвращать их во второй слой. Далее, отдача и прием заряженных частиц являются реверсивными (обратимыми) процессами и могут модулироваться на протяжении чрезвычайно продолжительных периодов времени и в течение миллионов циклов.

В соответствии с изобретением, рабочие показатели запоминающих элементов или устройств являются функцией от характеристик модуляции проводимости полимерного материала активного слоя. Следовательно, легкость, с которой заряженные частицы, такие как ионы, реверсивно встраиваются (отдаются) в активный слой (т.е. легируют его) и выводятся оттуда, определяет легкость, с которой происходит "программирование" и "стирание" в запоминающем устройстве. Поскольку обязательным условием этой характеристики является легкость движения заряженных частиц, например, ионов или ионов+электронов, в активный слой и из него, ионы или ионы+электроны будут свободно двигаться в полимерном материале и будут, таким образом, иметь тенденцию к возврату в начальное состояние или местоположение под влиянием внутренних электрических полей (как происходит во время отсутствия электрического поля, действующего извне). Поэтому согласно изобретению, чтобы улучшить характеристики удержания данных запоминающего устройства, интервал, на протяжении которого происходит релаксация, регулируется, т.е. регулируется интервал, когда ранее инжектированные подвижные ионы или ионы+электроны частично смещаются или выходят из активного слоя и возвращаются в пассивный слой, отчего проводимость снижается. Такая регулировка может, например, достигаться путем введения, по крайней мере, одного барьерного слоя для того, чтобы препятствовать движению заряженных частиц в отсутствие прилагаемого электрического поля. Поэтому, материал, который может использоваться в качестве барьерного слоя, должен иметь свойство не допускать легкого перемещения сквозь него заряженных частиц, таких как ионы или ионы+электроны, или свойство не притягивать или даже отталкивать ионы или ионы+электроны. Следовательно, барьерный слой ограничивает спонтанное движение заряженных частиц (т.е. движение в отсутствие электрического поля, действующего извне) между активным слоем и пассивным слоем, тем самым увеличивая время удержания данных запоминающего устройства. В число материалов, подходящих для использования в качестве барьерного слоя, согласно изобретению, входят SiOx, AlOx, NbOx, TiOx, CrOx, VOx, TaOx, MoOx, CuOx, MgOx, WOx, AlNx, Al, Pt, Nb, Be, Zn, Ti, W, Fe, Ni и Рd.

В соответствии с изобретением образуется функциональная зона с многослойной структурой, которая включает, по крайней мере, один активный слой и, по крайней мере, один пассивный слой, и может включать, по крайней мере, один барьерный слой. Функциональная зона с многослойной структурой располагается между парой электропроводящих электродов, которые служат в качестве электрических соединений для обеспечения действия внешних электрических полей.

В число подходящих электропроводящих материалов, используемых в качестве электродов, входят металлы, металлические сплавы, нитриды, оксиды, сульфиды металлов, углерод и полимеры, включая, например: алюминий (Al), серебро (Ag), медь (Сu), титан (Ti), вольфрам (W), их сплавы и нитриды, аморфный углерод, прозрачные оксиды, включая оксид индия и олова (IТО), прозрачные сульфиды и органические полимеры. Рабочие функции отдельных материалов, используемых для электродов, определяются легкостью, с которой электроны и/или дырки встраиваются (инжектируются) в ячейку памяти под влиянием прилагаемого электрического поля, и, в свою очередь, влияют на функцию памяти устройства, т.е. скорость, с которой устройство может программироваться, считывать и стирать, а также количество электроэнергии, требуемое для выполнения этих функций. Вдобавок, один из электродов может, в некоторых случаях, служить в качестве материала-реагента для формирования пассивного слоя устройства.

фиг.1 (А)-1 (В) схематически показывают вид в перспективе с частичным разрезом примера двухслойной ячейки памяти 10, соответствующего изобретению, для иллюстрации принципа модуляции проводимости;

фиг.2 является графиком зависимости тока (I) и напряжения (V) (вольтамперная характеристика), иллюстрирующим работу ячейки памяти в соответствии с изобретением;

фиг.3 является графиком зависимости напряжения (V) и тока (I) от времени (в нсек) в ходе переключения ячейки памяти в соответствии с изобретением от состояния "OFF" с высоким сопротивлением (соответствующего логическому 0) в состояние "ON" с низким сопротивлением (соответствующего логической 1);

фиг.4-21 иллюстрируют в виде упрощенного схематического вида в поперечном разрезе различные конструкции ячеек памяти, соответствующего изобретению, каждая из которых содержит стопку слоев между вертикально разнесенными друг от друга первым и вторым электродами;

фиг.22, 23 представляют схемы, поясняющие принцип записи, стирания и считывания информации с заявляемой ячейки памяти;

фиг.24 представляют эпюры напряж