Нефтяная скважина, способ добычи нефти из нефтяной скважины и способ управляемого нагнетания флюида в формацию через скважину

Иллюстрации

Показать все

Изобретение относится к нефтегазодобыче и может быть использовано для регулирования потока флюида в процессе добычи. Скважина содержит обсадную колонну с множеством перфорированных секций и эксплуатационную насосно-компрессорную колонну (НКТ), проходящую в обсадной колонне. На поверхности расположен источник переменного тока, электрически подсоединенный к, по меньшей мере, одной из указанных колонн так, что, по меньшей мере, одна из них является электрическим проводником для передачи переменного электрического тока от поверхности в скважину. Имеется управляемая скважинная секция (УСС), содержащая модуль связи и управления, электрически подсоединенный к, по меньшей мере, одной из колонн и содержащий электрически подсоединенные к нему датчик и клапан с электрическим управлением, предназначенный для регулирования потока между внешней и внутренней частями НКТ на основании, по меньшей мере, частично, измерений датчика. Для добычи нефти обеспечивают множество УСС, некоторые из которых дополнительно содержат замедлитель потока, расположенный вокруг части НКТ. Посредством замедлителей потока препятствуют прохождению потока флюида между УСС. Измеряют характеристику флюида в каждой УСС посредством датчика, и на основании результатов измерений регулируют поток флюида в, по меньшей мере, одной УСС посредством клапанов, и осуществляют добычу нефтепродуктов из скважины через НКТ. При нагнетании флюида регулируют описанным образом поток флюида из внутренней части НКТ во внешнюю, при этом замедлителем потока оборудуют каждую УСС. Замедлителем потока может служить пакер или электрически управляемый пакер, содержащий электрически управляемый клапан или расширенная часть НКТ или муфта, расположенная вокруг НКТ в перфорированной части обсадной колонны. В качестве датчиков могут быть использованы датчики потока, давления, плотности флюида или преобразователь акустических сигналов. Изобретения направлены на обеспечение динамического управления процессом добычи нефти для оптимизации указанного процесса. 3 н и 29 з.п.ф-лы, 6 ил.

Реферат

Изобретение относится к нефтяной скважине, способу добычи нефти из нефтяной скважины и способу управляемого нагнетания флюида в формацию через скважину.

Достижение высоких коэффициентов извлечения из мощных коллекторов углеводородов требует одинаковой продуктивности скважин, завершенных на длинных интервалах.

В вертикальных скважинах необсаженные интервалы обычно включают ряд геологических слоев, имеющих разнообразные петрофизические свойства и начальные условия продуктивного пласта. Изменение проницаемости и, особенно, начального давления в продуктивном пласте приводит к неравномерному истощению слоев, если слои разрабатывают с одним перепадом давления. При эксплуатации месторождения слои с высокой проницаемостью истощаются быстрее, чем плотные слои, и слои с высоким давлением могут даже перетекать в слои с более низким давлением.

В горизонтальных скважинах, необсаженный интервал завершения обычно содержится в одном геологическом слое. Однако неравномерный приток может возникать в результате падения давления вдоль буровой скважины. Этот эффект особенно очевиден в длинных интервалах завершения, где пластовое давление практически равно давлению в буровой скважине на дальнем конце (мысок). В этом случае, в мысок притока почти не происходит. На другом конце необсаженного интервала около вертикальной части буровой скважины (пятка) большая разность между пластовым давлением и давлением в буровой скважине приводит в результате к более высоким скоростям притока в нее. Высокие скорости притока около пятки могут привести к раннему появлению газа, прорывающегося из нисходящего конуса газа, или к раннему появлению воды, прорывающейся из восходящего конуса обводнения.

Профили продуктивности вертикальных скважин описываются с помощью уравнения потока Дарси в устойчивом состоянии для радиального потока:

где

qR=скорость потока [l3t-1]

k=абсолютная проницаемость [I2]

kr=относительная проницаемость [безразмерная величина]

Δр=спад давления=пластовое давление - давление в скважине [ml-1t-2]

μ=вязкость [ml-1t-1]

rе=внешний радиус продуктивного пласта [1]

rw=радиус буровой скважины [1]

h=длина необсаженного интервала [1]

Каждый поток флюида можно описать с помощью этого уравнения. В большинстве буровых скважин необходимо производить расчет потока газа, нефти и воды. На начальной стадии эксплуатации месторождения пластовое давление обычно является большим. Если применяют большие перепады давления, профили притока будут равномерны для слоев с одинаковой проницаемостью, так как изменения в начальном пластовом давлении слоев обычно меньше чем перепад давления. Когда буровая скважина выработана, и слои исчерпаны, пластовое давление оказывает воздействие на профили продуктивности в большей степени, потому что некоторые слои могут иметь маленькую депрессию даже в случае, если буровая скважина эксплуатируется при самом низком давлении. Изменения проницаемости среди слоев могут возникать в результате различий по размеру зерна, сортировке и упаковке, или интерференции протекающих флюидов, то есть относительной проницаемости. Прежде зерновая структура минерала не предполагала изменения профиля продуктивности очень сильно во время срока эксплуатации буровой скважины, потому что структура зерна остается неизменной за исключением уплотнения. Но уплотнение позволяет уровнять проницаемость слоев. Эффекты насыщения флюида по проницаемости приводят к профилям с плохой продуктивностью, потому что, например, слой с высокой проницаемостью, вероятно, будет иметь высокое насыщение для специфического флюида, что делает этот слой даже более продуктивным. Во время срока эксплуатации буровой скважины эти эффекты насыщения могут приводить даже к более плохим профилям, так как, например, прорыв газа или воды в буровую скважину приводит в результате к увеличению насыщения прорвавшегося флюида и даже более высокой продуктивности, чем у этого флюида по сравнению с другими слоями.

На профили продуктивности в горизонтальных скважинах можно воздействовать посредством расслоения, если буровая скважина пересекает наклонный пласт или если горизонтальная буровая скважина слегка наклоняется и пересекает непроницаемый пласт. Однако предполагается, что основной эффект будет заключаться в различии перепада давления между мыском и пяткой.

Проблемам, связанным с профилями с плохой продуктивностью в скважинах с длинными завершениями интервала, была посвящена заявка на патент ЕРС №99203017.1 М.И.Амори и др. "Мининасосы в дренажной секции буровой скважины" от 15 сентября 1999, которая включена здесь в качестве ссылки. В этом способе предполагается использовать нескольких кольцевых насосных устройств, расположенных вдоль необсаженного интервала буровой скважины для сдвига падения давления вследствие протекания в буровой скважине и, таким образом, увеличению притока к мыску буровой скважины.

Скважины можно также использовать для нагнетания флюида. Например, иногда используется заводнение для вытеснения углеводородов в образовании по направлению к эксплуатационным скважинам. При заводнении желательно иметь равномерное нагнетание. Следовательно, при нагнетании флюида возникают те же самые проблемы и по тем же самым причинам, как и при обеспечении равномерного нагнетания, которые упомянуты выше для поиска равномерного притока.

Известные пакеры описаны в патентах США №№6148915, 6123148, 3566963 и 3602305.

Целью настоящего изобретения является решение указанных проблем и устранение недостатков известных решений.

Согласно изобретению создана нефтяная скважина, содержащая обсадную колонну, имеющую множество перфорированных секций, по меньшей мере, в ее части, проходящей в стволе скважины, эксплуатационную насосно-компрессорную колонну, проходящую в обсадной колонне, источник тока, изменяющегося во времени, расположенный на поверхности и электрически подсоединенный к, по меньшей мере, насосно-компрессорной колонне или обсадной колонне так, что по меньшей мере насосно-компрессорная колонна или обсадная колонна является электрическим проводником для передачи электрического тока, изменяющегося во времени, от поверхности в скважину, и скважинную управляемую секцию, содержащую модуль связи и управления, датчик и клапан с электрическим управлением, при этом модуль связи и управления, электрически подсоединен к, по меньшей мере, насосно-компрессорной колонне или обсадной колонне, датчик и клапан с электрическим управлением электрически подсоединены к модулю связи и управления, и клапан с электрическим управлением адаптирован для регулировки потока между внешней частью насосно-компрессорной колонны и внутренней частью насосно-компрессорной колонны на основании, по меньшей мере, частично, измерений датчика.

Нефтяная скважина может включать индукционный дроссель, расположенный вокруг части, по меньшей мере, насосно-компрессорной колонны или обсадной колонны и адаптированный для направления части тока через модуль связи и управления за счет возникновения разности потенциалов в, по меньшей мере, насосно-компрессорной колонне или обсадной колонне между одной стороной индукционного дросселя и другой стороной индукционного дросселя, при этом модуль связи и управления электрически подсоединен к разности потенциалов.

Скважинная управляемая секция может дополнительно содержать замедлитель потока, расположенный в обсадной колонне вокруг насосно-компрессорной колонны для обеспечения препятствия прохождению потока флюида в обсадной колонне от одной стороны замедлителя потока до другой стороны замедлителя потока.

Замедлителем потока может быть пакер или электрически управляемый пакер, содержащий электрически управляемый клапан, или расширенная часть насосно-компрессорной колонны или муфта, расположенная вокруг насосно-компрессорной колонны в перфорированной обсадной колонне.

Датчиком может быть датчик потока флюида или датчик давления флюида датчик плотности флюида или преобразователь акустических сигналов.

Нефтяная скважина может дополнительно содержать, по меньшей мере, одну дополнительную скважинную управляемую секцию, причем каждая скважинная секция отделена от другой скважинной секции замедлителем потока, и каждая скважинная секция содержит датчик и клапан с электрическим управлением, причем клапаны с электрическим управлением адаптированы для регулировки потока между внешней частью насосно-компрессорной колонны и внутренней частью насосно-компрессорной колонны, замедлитель потока расположен в перфорированных секциях обсадной колонны и вокруг других частей насосно-компрессорной колонны для предотвращения прохождения потока флюида в перфорированных секциях у каждого замедлителя потока.

Модуль связи и управления, датчик и клапан с электрическим управлением могут быть размещены в коллекторе насосно-компрессорной колонны, связанного с насосно-компрессорной колонной.

Модуль связи и управления может включать модем.

Согласно изобретению создан способ добычи нефти из нефтяной скважины, содержащий следующие этапы:

обеспечение множества скважинных управляемых секций, причем ряд этих секций содержит модуль связи и управления, датчик, клапан с электрическим управлением и замедлитель потока, расположенный в обсадной колонне вокруг части эксплуатационной насосно-компрессорной колонны, модуль связи и управления электрически подсоединен к, по меньшей мере, насосно-компрессорной колонне или обсадной колонне, и клапан с электрическим управлением и датчик электрически подсоединены к модулю связи и управления;

обеспечение препятствия прохождению потоку флюида между скважинными секциями в обсадной колонне с помощью замедлителей потока;

измерение характеристики флюида в каждой скважинной секции с помощью соответствующего датчика;

регулировка потока флюида в насосно-компрессорной колонне с, по меньшей мере одной, скважинной секции с помощью своих соответствующих клапанов с электрическим управлением на основании результатов измерений характеристик флюида;

добыча нефтепродуктов из скважины через насосно-компрессорную колонну.

Способ может дополнительно содержать следующие этапы:

подача тока, изменяющегося во времени, в, по меньшей мере, насосно-компрессорную колонну или обсадную колонну от источника тока, расположенного на поверхности;

обеспечение препятствия протеканию тока с помощью индукционного дросселя, расположенного вокруг, по меньшей мере, насосно-компрессорной колонны или обсадной колонны;

создание разности потенциалов между одной стороной индукционного дросселя и другой стороной индукционного дросселя в, по меньшей мере, насосно-компрессорной колонны или обсадной колонны;

направление тока через, по меньшей мере, один модуль связи и управления посредством разности потенциалов с использованием индукционного дросселя;

подача питания, на по меньшей мере, один модуль связи и управления с использованием разности потенциалов и тока, по меньшей мере, насосно-компрессорной колонны или обсадной колонны.

Способ может дополнительно содержать поддержание связи с, по меньшей мере, одним модулем связи и управления через ток и через, по меньшей мере, насосно-компрессорную колонну или обсадную колонну.

Способ может дополнительно содержать следующие этапы:

передача данных измерений флюида в компьютерную систему, расположенную на поверхности, с использованием модуля связи и управления через, по меньшей мере, насосно-компрессорную колонну или обсадную колонну;

вычисление падения давления вдоль скважинной секции с помощью компьютерной системы и с использованием данных измерений флюида;

определение необходимости регулировки клапанов с электрическим управлением скважинных секций;

посылка сигналов команд в модули связи и управления скважинных секций, требующих регулировки клапана;

регулировка положения клапана с электрическим управлением через модуль связи и управления для каждой скважинной секции, требующей регулировки клапана.

Способ может содержать регулировку потока флюида в каждой скважинной секции для обеспечения, по существу, постоянной продуктивности, по меньшей мере, одной нефтяной эксплуатационной зоны через скважинные секции, и увеличение эффективности добычи из, по меньшей мере, одной нефтяной эксплуатационной зоны.

Способ может дополнительно содержать обеспечение препятствия перетоку флюида из одного проницаемого слоя, по меньшей мере, одной нефтяной эксплуатационной зоны, имеющей первое давление флюида, в другой проницаемый слой, по меньшей мере, одной нефтяной эксплуатационной зоны, имеющей второе давление флюида, когда первое давление превышает второе давление.

Способ может дополнительно содержать предотвращение преждевременного прорыва газа из образования нисходящего конуса газа в, по меньшей мере, одну нефтяную эксплуатационную зону.

Способ может дополнительно содержать предотвращение преждевременного прорыва воды из образования восходящего конуса обводнения в, по меньшей мере, одну нефтяную эксплуатационную зону.

Способ может дополнительно содержать улучшение профиля продуктивности, по меньшей мере, одной нефтяной эксплуатационной зоны.

Способ может дополнительно содержать продление срока эксплуатации, по меньшей мере, одной нефтяной эксплуатационной зоны.

Способ может дополнительно содержать измерение потока флюида в одной скважинной секции с помощью датчика потока флюида.

Способ может дополнительно содержать измерение давления флюида в одной скважинной секции с помощью датчика давления.

Способ может дополнительно содержать измерение плотности флюида в одной скважинной секции с помощью датчика плотности флюида.

Согласно изобретению создан способ управляемого нагнетания флюида в формацию через скважину, содержащий следующие этапы:

обеспечение множества управляемых скважинных секций, каждая из которых содержит модуль связи и управления, датчик, клапан с электрическим управлением и замедлитель потока, при этом модуль связи и управления электрически подсоединен к, по меньшей мере, насосно-компрессорной колонне или обсадной колонне, клапан с электрическим управлением и датчик электрически подсоединены к модулю связи и управления, и замедлитель потока расположен в обсадной колонне вокруг части насосно-компрессорной колонны;

обеспечение препятствия прохождению потока флюида между скважинными секциями с помощью замедлителей потока;

измерение характеристики флюида в каждой скважинной секции с помощью своего соответствующего датчика;

нагнетание флюида управляемым способом в насосно-компрессорную колонну;

регулировка потока флюида из внутренней части насосно-компрессорной колонны в формацию в, по меньшей мере, одной скважинной секции с помощью своего соответствующего клапана с электрическим управлением на основании результатов измерений флюида.

Способ может дополнительно содержать следующие этапы:

введение сигнала переменного тока в, по меньшей мере, насосно-компрессорную колонну или обсадную колонну от источника тока, расположенного на поверхности;

обеспечение препятствия прохождению сигнала переменного тока с помощью индукционного дросселя, расположенного вокруг, по меньшей мере, насосно-компрессорной колонны или обсадной колонны;

направление сигнала переменного тока через, по меньшей мере, один модуль связи и управления;

подача питания на, по меньшей мере, один модуль связи и управления с использованием сигнала переменного тока из, по меньшей мере, насосно-компрессорной колонны или обсадной колонны.

Способ может дополнительно содержать поддержание связи с, по меньшей мере, одним модулем связи и управления через сигнал переменного тока и через, по меньшей мере, насосно-компрессорную колонну или обсадную колонну.

Способ может дополнительно содержать следующие этапы:

передача данных измерений характеристик флюида в компьютерную систему, расположенную на поверхности, с использованием модуля связи и управления через, по меньшей мере, насосно-компрессорную колонну или обсадную колонну;

вычисление падения давления вдоль секций буровой скважины с помощью компьютерной системы с использованием данных измерений характеристик флюида;

определение необходимости регулировки клапанов с электрическим управлением скважинных секций;

посылка сигналов команд в модули связи и управления скважинных секций, требующих регулировки клапана;

при необходимости регулировки клапана регулировка положения клапана с электрическим управлением через модуль связи и управления для каждой скважинной секции, требующей регулировки клапана.

Способ может содержать регулировку потока флюида в каждой скважинной секции для обеспечения, по существу, равномерного нагнетания флюида из насосно-компрессорной колонны в формацию через скважинные секции.

Другие цели и преимущества настоящего изобретения приведены в следующем подробном описании со ссылками на сопроводительные чертежи, на которых изображено следующее:

фиг.1А схематически изображает верхнюю часть нефтяной скважины, согласно предпочтительному варианту осуществления настоящего изобретения;

фиг.1В схематически изображает верхнюю часть нефтяной скважины, согласно другому предпочтительному варианту осуществления настоящего изобретения;

фиг.2 схематически изображает скважинную часть нефтяной скважины, согласно предпочтительному варианту осуществления настоящего изобретения;

фиг.3 изображает в увеличенном масштабе часть фиг.2, показывающую скважинную секцию нефтяной;

фиг.4 изображает общее падение давления вдоль эксплуатационной насосно-компрессорной колонны в зависимости от расстояния вдоль насосно-компрессорной колонны для диапазона разностей между пластовым давлением и давлением в мыске скважины; и

фиг.5 изображает график относительной скорости притока в зависимости от расстояния вдоль насосно-компрессорной колонны для диапазона разностей между пластовым давлением и давлением в мыске буровой скважины.

Ниже приводится описание предпочтительного варианта осуществления настоящего изобретения со ссылкой на чертежи, на которых одинаковые позиции обозначают одинаковые элементы на всех различных видах, и описание других возможных вариантов осуществления настоящего изобретения. Представленные фигуры не обязательно выполнены в масштабе, и в некоторых случаях чертежи увеличены и/или упрощены в определенных пространствах для удобства изображения. Специалисты могут оценить многие возможные приложения и изменения настоящего изобретения на основании приведенных здесь примеров возможных вариантов осуществления настоящего изобретения, а также на основании тех вариантов осуществления, изображенных и обсужденных в других заявках данного заявителя.

Термин "трубопроводная структура", используемый в настоящей заявке, может представлять собой одну единственную трубу, насосно-компрессорную колонну, обсадную колонну буровой скважины, насосную штангу, ряд взаимосвязанных труб, штанги, металлические фермы, решетки сквозной фермы, опоры, отводные или боковые удлинители буровой скважины, сеть взаимосвязанных труб или других подобных структур, известных специалистам. В предпочтительном варианте осуществления изобретение используется в контексте нефтяной скважины, где трубопроводная структура содержит трубчатую, металлическую, электропроводную трубу или насосно-компрессорную колонну, но изобретение не ограничено этим. Для настоящего изобретения, по меньшей мере, часть трубопроводной структуры должна быть электропроводной, при этом такая электропроводная часть может представлять собой в целом трубопроводную структуру (например, стальные трубы, медные трубы) или проходящую в продольном направлении электропроводную часть, объединенную с простирающейся в продольном направлении неэлектропроводной частью. Другими словами, электропроводная трубопроводная структура представляет собой структуру, которая обеспечивает путь тока от первой части, где источник питания электрически подсоединен ко второй части, где устройство и/или цепь обратного тока электрически связаны. Трубопроводная структура обычно представляет собой известную круглую металлическую насосно-компрессорную колонну, но геометрия поперечного сечения трубопроводной структуры или любой ее части может меняться по форме (например, круглая, прямоугольная, квадратная, овальная) и размеру (например, длина, диаметр, толщина стенки) вдоль любой части трубопроводной структуры. Следовательно, трубопроводная структура должна иметь электропроводную часть, простирающуюся от первой части трубопроводной структуры до второй части трубопроводной структуры, в которой первая часть расположена отдельно от второй части вдоль трубопроводной структуры.

Следует также отметить, что термин "модем" используется здесь в общем для ссылки на любое устройство связи для передачи и/или приема электрических сигналов связи через электрический проводник (например, металл). Следовательно, термин "модем", который используется здесь, не ограничен акронимом для модулятора (устройства, которое преобразовывает голос или сигнал данных к виду пригодному для передачи)/демодулятора (устройства, которое восстанавливает первоначальный сигнал, которым была промодулирована высокочастная несущая). Кроме того, термин "модем", который используется здесь, не ограничен известными компьютерными модемами, которые преобразовывают цифровые сигналы в аналоговые сигналы и наоборот (например, для передачи цифровых информационных сигналов по аналоговой коммутируемой телефонной сети общего пользования). Например, если датчик выдает данные измерений в аналоговом формате, то такие измерения можно только модулировать (например, с использованием модуляции с расширением спектра) и передавать, и, следовательно, не нужно выполнять аналого-цифрового преобразования. В качестве другого примера, релейный/подчиненный модем или устройство связи должны только идентифицировать, фильтровать, усиливать и/или ретранслировать принимаемый сигнал.

Термин "клапан", который используется здесь, обычно относится к любому устройству, которое выполняет функции регулировки потока флюида. Примеры клапанов включают в себя, но не ограничиваются, сильфонные газлифтные клапаны и управляемые газлифтные клапаны, каждый из которых можно использовать для регулировки потока транспортирующего газа в насосно-компрессорную колонну буровой скважины. Внутренняя работа клапанов может в значительной степени отличаться, и в настоящей заявке не ограничиваются клапанами, описанными с любой конкретной конфигурацией, до тех пор, пока клапан выполняет функции регулировки потока. Некоторые из различных типов механизмов регулировки потока включают, но не ограничиваются, конфигурации шарового клапана, конфигурации игольчатого клапана, конфигурации запорного клапана и конфигурации клетевого клапана. Способы установки клапанов, обсужденных в настоящей заявке, могут в значительной степени отличаться.

Термин "клапан с электрическим управлением", который используется здесь, обычно относится к "клапану" (как описано выше), который можно открывать, закрывать, регулировать, изменять или дросселировать непрерывно в ответ на электрический сигнал управления (например, сигнал из компьютера, расположенного на поверхности, или из скважинного модуля электронного контроллера). Механизм, который фактически изменяет состояние клапана, может содержать, но не ограничиваться этим, электродвигатель, электрический серводвигатель, электрический соленоид, электрический переключатель, гидравлический привод, управляемый по меньшей мере одним электрическим серводвигателем, электродвигателем, электрическим переключателем, электрическим соленоидом или их комбинациями, пневматический привод, управляемый по меньшей мере одним электрическим серводвигателем, электродвигателем, электрическим переключателем, электрическим соленоидом или их комбинациями, или устройство с отклоняемой пружиной в комбинации с, по меньшей мере, одним электрическим серводвигателем, электродвигателем, электрическим переключателем, электрическим соленоидом или их комбинациями. "Клапан с электрическим управлением" может или нет включать в себя датчик обратной связи по положению для подачи сигнала обратной связи, соответствующего фактическому положению клапана.

Термин "датчик", который используется здесь, относится к любому устройству, которое обнаруживает, определяет, контролирует, записывает или, другими словами, регистрирует абсолютное значение или изменение значения физической величины. Датчик, как описано здесь, можно использовать для измерения значений таких физических величин, но не ограничено этим, как температура, давление (абсолютное и дифференциальное), скорость потока, сейсмические данные, акустические данные, уровень рН, уровни солености, положения клапана или практически любые другие физические данные.

Фраза "на поверхности", которая используется здесь, относится к местоположению, которое находится выше глубины более приблизительно пятидесяти футов внутри Земли. Другими словами, фраза "на поверхности" не обязательно означает расположение на уровне земли, но используется здесь в более широком смысле для обозначения местоположения, которое является часто легко или удобно доступным в устье скважины, где могут работать люди. Например, "на поверхности" может означать на столе в рабочей мастерской, которая расположена на земле на платформе буровой скважины, на дне океана или озера, на глубоководной платформе нефтяной вышки или на 100-м этаже здания. Кроме того, термин "поверхность" может использоваться здесь как прилагательное для определения местоположения элемента или области, которая расположена "на поверхности". Например, фраза "поверхностный" компьютер, которая используется здесь, означает компьютер, расположенный "на поверхности".

Термин "в скважине", который используется здесь, относится к местоположению или положению на глубине ниже около пятидесяти футов в земле. Другими словами, термин "в скважине", широко используемый здесь, относится к местоположению, которое часто нелегко или неудобно достижимо из устья скважины, где могут работать люди. Например, в нефтяной скважине, местоположение "в скважине" находится часто в или рядом с подземной нефтяной эксплуатационной зоной, независимо от того, является ли эксплуатационная зона доступной вертикально, горизонтально, сбоку или под любым другим углом между ними. Кроме того, термин "в скважине" используется здесь как прилагательное "скважинный", описывающее местоположение элемента или области. Например, "скважинное" устройство в буровой скважине означает, что устройство расположено "в скважине", в противоположность расположению "на поверхности".

Аналогично, в соответствии с известной терминологией, употребляемой в практике нефтяного промысла, определения "верхний", "нижний", "вверх по стволу скважины" и "скважинный" являются относительными и касаются расстояния, измеренного вдоль ствола скважины вглубь от поверхности, которое в наклонных или горизонтальных скважинах может или нет совпадать с вертикальной проекцией, измеренной по отношению к данным наблюдений.

Термин "беспроводный", который используется в настоящей заявке, означает отсутствие известного, изолированного электрического провода, например, проходящего от скважинного устройства до поверхности. Использование насосно-компрессорной колонны и/или обсадной колонны в качестве проводника рассматривается как "беспроводным".

Известные горизонтальные скважины обычно заканчиваются перфорированными обсадными колоннами или перфорированными хвостовиками, некоторые из которых могут иметь длину несколько тысяч футов и диаметр четыре - шесть дюймов. Для скважин, которые являются высокодебитными эксплуатационными скважинами, горизонтальная нижняя труба обсадной колонны проводит весь поток в вертикальную секцию. Эксплуатационную насосно-компрессорную колонну и пакер можно разместить внутри обсадной колонны вертикальной буровой скважины вертикальной секции, где можно использовать газлифт или другую насосно-компрессорную добычу. Однако в таких известных горизонтальных скважинах при истощении зоны можно значительно изменять скорости притока флюидов из эксплуатационной зоны в различных местах вдоль протяжения горизонтальной скважины. Такие изменения могут привести к повышенному падению давления вдоль горизонтальной скважины и впоследствии к чрезмерной скорости притока около пятки буровой скважины относительно мыска, что обычно не желательно. Настоящее изобретение предоставляет решение таких проблем, а также и других, за счет выполнения буровой скважины с управляемыми скважинными секциями.

На фиг.1А схематически изображена верхняя часть нефтяной скважины 20, согласно предпочтительному варианту осуществления настоящего изобретения. Обсадная колонна 30 скважины и насосно-компрессорная колонна 40 выполняют для системы роль электрических проводников. Изолирующая соединительная муфта 56 для насосно-компрессорных колонн введена в устье скважины для того, чтобы электрическим способом изолировать насосно-компрессорную колонну 40 от обсадной колонны 30. Таким образом, изоляторы 58 соединительной муфты 56 предотвращают короткое замыкание между нижними секциями насосно-компрессорной колонны 40 и обсадной колонной 30 на подвеске 34. Поверхностная компьютерная система 36, содержащая главный модем 37 и источник тока 38, изменяющегося во времени, электрически подсоединена к насосно-компрессорной колонне 40 ниже подвески 34 с помощью первого вывода 39 источника. Первый вывод 39 источника изолирован от подвески 34, где он проходит через него. Второй вывод 41 источника электрически подсоединен к обсадной колонне 30 или напрямую (как на фиг.1А) или через подвеску 34 (не показана).

Источник 38 тока, изменяющегося во времени, подает электрический ток, изменяющийся во времени, который несет в себе питание и сигналы связи в скважине. Электрический ток, изменяющийся во времени, является, предпочтительно, переменным током, но может быть также изменяющимся во времени постоянным током. Сигналы связи можно вырабатывать с помощью главного модема 37 и вводить в ток, вырабатываемый источником 38. Сигнал связи, предпочтительно, является сигналом с расширенным спектром, но альтернативно можно использовать и другие виды модуляции.

Как показано на фиг.1В, в альтернативе или в дополнение к изолированной подвеске 34, верхний индукционный дроссель 43 можно разместить вокруг насосно-компрессорной колонны 40 выше местоположения электрического соединения для первого вывода 39 источника в насосно-компрессорной колонне. Верхний индукционный дроссель 43 содержит ферромагнитный материал и расположен, в общем, концентрически вокруг насосно-компрессорной колонны 40. Действие верхнего индукционного дросселя 43 зависит от его размера, геометрии, положения относительно насосно-компрессорной колонны 40 и магнитных свойств. Ток, изменяющийся во времени, проходит в насосно-компрессорную колонну 40 ниже верхнего дросселя 43, действующего как катушка индуктивности, которая препятствует протеканию тока между насосно-компрессорной колонной 40 ниже верхнего дросселя 43 и насосно-компрессорной колонной 40 выше верхнего дросселя 43 из-за магнитного потока, возникающего за счет протекания тока внутри верхнего дросселя 43. Таким образом, большая часть тока направляется вниз по насосно-компрессорной колонне 40 (то есть, в скважину), а не создавая короткое замыкание подвески 45 с обсадной колонной 30.

На фиг.2 схематически изображена скважинная часть нефтяной эксплуатационной скважины 20, согласно предпочтительному варианту осуществления настоящего изобретения. Скважина 20 имеет вертикальную секцию 22 и горизонтальную секцию 24. Скважина имеет обсадную колонну 30, проходящую в стволе скважины и через формацию 32, и эксплуатационная насосно-компрессорная колонна 40 проходит в обсадной колонне. Следовательно, скважина 20, показанная на фиг.2, подобна по конструкции известной скважине, но с учетом того, что она входит в состав настоящего изобретения.

В этом варианте осуществления в состав вертикальной секции 22 входит пакер 44, который снабжен изоляционной оплеткой 76 для того, чтобы электрически изолировать насосно-компрессорную колонну 40 от обсадной колонны 30. Вертикальная секция 22 также снабжена газлифтным клапаном 42 для того, чтобы выполнить искусственный подъем флюидов внутри насосно-компрессорной колонны с использованием пузырьков 46 газа. Однако в альтернативном варианте, можно использовать и другие способы обеспечения искусственного подъема для осуществления других возможных вариантов осуществления (например, с помощью вставного штангового насоса). Кроме того, вертикальную часть 22 можно дополнительно изменять для выполнения многочисленных других возможных вариантов осуществления. Например, в общем виде, в состав вертикальной части 22 может входить один или более газлифтных клапанов с электрическим управлением, один или несколько индукционных дросселей и/или один или несколько управляемых пакеров, содержащих электрически управляемые клапаны пакера, которые описаны в родственных заявках.

Горизонтальная секция 24 скважины 20 проходит через нефтяную эксплуатационную зону 48 (например, нефтяную зону) формации 32. Местоположение, где сходятся вертикальная секция 22 и горизонтальная секция 24 называется пяткой 50, и дальний конец горизонтальной секции называется мыском 52. В различных местоположениях вдоль горизонтальной секции 24 обсадная колонна 30 имеет перфорированные секции 54, которые позволяют пропускать флюиды из эксплуатационной зоны 48 в обсадную колонну 30. Многочисленные замедлители 61-65 потока размещены вдоль горизонтальной секции 24 в кольцевом пространстве 68 между обсадной колонной 30 и насосно-компрессорной колонной 40. Назначение этих замедлителей 61, 62, 63, 64, 65 потока состоит в том, чтобы препятствовать или предотвратить прохождение потока флюида вдоль кольца 68 внутри обсадной колонны 30 и таким образом отделить или сформировать ряд управляемых скважинных секций 71, 72, 73, 74, 75. В варианте осуществления, показанном на фиг.2, замедлители 61, 62, 63, 64, 65 потока представляют собой известные пакеры с электрически изолирующими оплетками для обеспечения электрической изоляции между насосно-компрессорной колонной 104 и обсадной колонной 54 (функциональный эквивалент пакера 44 с изоляционной оплеткой 76), которые известны в технике. Однако любой из замедлителей 61, 62, 63, 64, 65 потока можно выполнить любым другим способом, который делает площадь в поперечном сечении кольцевого пространства 68 между обсадной колонной 30 и насосно-компрессорной колонной 40 маленькой по сравнению с внутренней площадью в поперечном сечении насосно-компрессорной колонны 40 при поддержании электрической изоляции между насосно-компрессорной колонной и обсадной колонной. Другими словами, замедлители 61, 62, 63, 64, 65 потока не обязательно должны образовывать непроницаемые для флюида уплотнения между скважинными секциями 71, 72, 73, 74, 75, что обычно выполняют известные пакеры. Таким образом, например, любой из замедлителей 61, 62, 63, 64, 65 потока может представлять собой (но не ограничиваться этим) известный пакер, управляемый пакер, содержащий электрически управляемый клапан пакера, который описан в других заявках данного заявителя, плотно облегающую трубчатую секцию, увеличенную часть насосно-компрессорной колонны, муфту вокруг насосно-компрессорной колонны или надувной хомут вокруг насосно-компрессорной колонны. В общем виде, управляемый пакер в виде замедлителя потока может обеспечить переменное управление по всему каналу для прохождения флюида среди секций буровой скважины (такие управляемые пакеры дополнительно описаны в р